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The problem 

• MEMS structures 

– Are not several orders larger than their micro-structure size 

– As a result, their macroscopic properties can exhibit a scatter 

• Due to the fabrication process 

• Due to uncertainties of the material  

• … 

    The objective of this work is to estimate this scatter 

 

• Characteristics of our model: 

– Clamped microbeam 

– Macroscopic property of interest: first mode eigenfrequency 

• For a MEMS gyroscope for example 

 

 

• Up to now, the only sources of uncertainty is due to the material 

 

– Silicon crystals are anisotropic 

 

– Polysilicon is polycrystalline 

 

Each grain has a random 

orientation 
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Monte-Carlo for a fully modelled beam 

• The first mode frequency distribution can be obtained with 

– A 3D beam with each grain modelled 

– and a Monte-Carlo simulation of this model 

 

 

 

 

 

 

 

 

 

 

• Considering each grain is expensive and time consuming 

 Motivation for stochastic multi-scale methods 
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Motivations 

• Multi-scale modelling 

– 2 problems are solved 

concurrently 

• The macro-scale problem 

• The meso-scale problem (on 

a meso-scale Volume 

Element) 

 

 

 

• Length-scales separation 

 

 

 

 

Lmacro>>LVE>>Lmicro 

BVP 

Macro-scale 

Material 

response 

Extraction of a meso-

scale Volume Element 

 

For accuracy: Size of the meso-

scale volume element smaller than 

the characteristic length of the 

macro-scale loading 

To be statistically representative: 

Size of the meso-scale volume 

element larger than the 

characteristic length of the micro-

structure 
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Motivations 

• For structures not several orders larger than the micro-structure size 

 

 

 

 

 

 

 

 

 

• Possibility to propagate the uncertainties from the micro-scale to the macro-scale 

  

Lmacro>>LVE>~Lmicro 

For accuracy: Size of the meso-

scale volume element smaller than 

the characteristic length of the 

macro-scale loading 

Meso-scale volume element no 

longer statistically representative: 

Stochastic Volume Elements* 

*M Ostoja-Starzewski, X Wang, 1999 

P Trovalusci, M Ostoja-Starzewski, M L De Bellis, A Murrali, 2015 

X. Yin, W. Chen, A. To, C. McVeigh, 2008 

J. Guilleminot, A. Noshadravan, C. Soize, R. Ghanem, 2011 

…. 
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A 3-scale procedure 

Grain-scale or micro-scale Meso-scale Macro-scale 

 Samples of the 

microstructure (volume 

elements) are generated 

 

 Each grain has a random 

orientation 

 Intermediate scale 

 

 The distribution of the 

material property ℙ(𝐶) 
is defined 

 Uncertainty 

quantification of the 

macro-scale quantity 

 

 E.g. the first mode 

frequency ℙ 𝑓1  

SVE size 

Mean value of 

material property 

SVE size 

Variance of 

material property 

Quantity of 

interest 

Probability density 

Stochastic 

Homogenization 

 

 

      SFEM 
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• Definition of Stochastic Volume Elements (SVEs) 

– Poisson Voronoï tessellation 

– Each grain 𝑖 is assigned an elasticity tensor ℂ𝑖 

– ℂ𝑖 defined from silicon crystal properties 

– Each ℂ𝑖 is assigned a random rotation  

– Mixed BCs 

 

 

• Stochastic homogenization 

– Several realizations 

 

 

 

 

 

– Homogenized elasticity tensor not unique as statistical representativeness is lost* 

• It is thus called apparent elasticity tensor 

 

From the micro-scale to the meso-scale 

Computational 

homogenization 

ℂ𝑖 

ℂ𝑖 

ℂ𝑖 

ℂ𝑖 

ℂ𝑖 

𝝈
𝑚𝑖 = ℂ𝑖: 𝝐𝑚𝑖     , ∀𝑖 𝝈𝑀 = ℂ𝑀 ∶ 𝝐𝑀 

Samples of the meso-

scale homogenized 

elasticity tensors 

*“C. Huet, 1990 
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From the micro-scale to the meso-scale 

𝐶𝑂𝑉 =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑚𝑒𝑎𝑛
∙ 100% 

 

• Distribution of the apparent meso- 

      scale elasticity tensor ℂ𝑀  

 

– For large SVEs, the apparent tensor 

     tends to the effective (and unique) 

     one 

 The bounds do not depend  

      on the SVE size but on the silicon 

      elasticity tensor 

 

 However, the larger the SVE, the lower 

the probability to be close to the bounds  
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• Use of the meso-scale distribution with macro-scale finite elements  

– Beam macro-scale finite elements 

– Use of the meso-scale distribution as a random variable 

– Monte-Carlo simulations  

 

 

 

 

 

 

 

 

 

 

 

 

 

From the micro-scale to the meso-scale 

ℂ𝑀1 ℂ𝑀2 ℂ𝑀3 

Coarse macro-scale 

mesh 

Fine macro-scale 

mesh 
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• Use of the meso-scale distribution with macro-scale finite elements  

– Beam macro-scale finite elements 

– Use of the meso-scale distribution as a random variable 

– Monte-Carlo simulations  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• No convergence: the macro-scale distribution (first resonance frequency) depends 

on SVE and mesh sizes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the micro-scale to the meso-scale 

ℂ𝑀1 ℂ𝑀2 ℂ𝑀3 

Coarse macro-scale 

mesh 

Fine macro-scale 

mesh 

Convergence 
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• Use of the meso-scale distribution with macro-scale finite elements  

– Beam macro-scale finite elements 

– Use of the meso-scale distribution as a random variable 

– Monte-Carlo simulations  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the micro-scale to the meso-scale 

ℂ𝑀1 ℂ𝑀2 ℂ𝑀3 

Coarse macro-scale 

mesh 

Fine macro-scale 

mesh 

Convergence 

Refining the 1D mesh:  

More random variables having the same distribution  

Change in SVE:  

Change of 

distribution of 𝐸 at 

each Gauss Point 
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• Introduction of the (meso-scale) spatial correlation 

– SVEs extracted at different distances 

– Spatial correlation of the rth and sth components of the 

apparent (homogeneous) elasticity tensor ℂ𝑀   

 

 

 

– Represented by the correlation length: 

 

 

 

• The correlation length increases  

     with the SVE size 

𝑅ℂ
𝑟𝑠

𝝉 =
𝔼 ℂ 𝑟 𝒙 − 𝔼 ℂ 𝑟 ℂ 𝑠 𝒙 + 𝝉 − 𝔼 ℂ 𝑠

𝔼 ℂ 𝑟 − 𝔼 ℂ 𝑟 2 𝔼 ℂ 𝑠 − 𝔼 ℂ 𝑠 2
 

From the micro-scale to the meso-scale 

𝐿ℂ
𝑟𝑠

=
 𝑅ℂ

𝑟𝑠∞

−∞

𝑅ℂ
𝑟𝑠

0
 

Young’s modulus correlation 
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• Use of the meso-scale distribution with stochastic (macro-scale) finite elements  

– Use of the meso-scale correlated distribution as a random field 

– Monte-Carlo simulations  

    

The meso-scale random field 

*C. Soize, 2001 

 S. Das, R. Ghanem, 2009 

 J. Guilleminot, A. Noshadravan, C. Soize, R. Ghanem, 2011  

  ….. 

 

 

ℂ𝑀1 

ℂ𝑀2 

ℂ𝑀3 

Stochastic model 

ℂ𝑀1 ℂ𝑀2 ℂ𝑀3 

Direct resolution of SVEs at each 

(macro-scale) (Gauss) integration-points 
Not computationally efficient 

Stochastic model of meso-scale 

elasticity tensors* 

Two options for the 

meso-scale random field  
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• Generation of the elasticity tensor ℂ𝑀(𝑥, 𝜃) (matrix 𝑪𝑀) spatially correlated field 

– One possible method 

– Define a lower isotropic lower bound 𝑪𝐿 from the silicon crystal tenor 𝑪𝑆   

min
𝐸,𝜈

𝑪(𝐸, 𝜈) − 𝑪𝑆  with  𝑪(𝐸, 𝜈) ≤ 𝑪𝑀 

– Define the positive semi-definite tensor Δ𝑪(𝑥, 𝜃)such that 

    𝑪𝑀(𝑥, 𝜃) = 𝑪𝑳 + Δ𝑪(𝑥, 𝜃)  

• This will ensure the convergence of the Stochastic Finite Element Method* 

• We now need to generate the spatially correlated random field Δ𝑪(𝑥, 𝜃) 

 

– Cholesky decomposition 

 Δ𝑪 𝑥, 𝜃 = 𝑨 𝑥, 𝜃 𝑨 𝑥, 𝜃 T    with  𝑨(𝑥, 𝜃) = 𝑨 + 𝑨′(𝑥, 𝜃) 

– 𝑨′(𝒙,𝜽) is generated using the spatial correlation matrix 𝑅𝑨′ 𝜏  

• Here we use the spectral method** 

• Assumed Gaussian (can be changed) 

Homogeneous 

random field  

The meso-scale random field 

Lucas, Golinval, Paquay, Noels, Nguyen, Wu,2015, Paper provisionally accepted 
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• Good agreement between: 

– The samples of elasticity tensors computed from the homogenization 

– The generated elasticity tensors 

            

The meso-scale random field 

Young’s modulus distribution Young’s modulus spatial correlation 

Micro-samples Generator 

Skewness of 𝐸 −0,11 0,26 

Kurtosis of 𝐸 2,93 3,02 

Relative error [%] 

mean of 𝐸 0,026 

variance of 𝐸 0,97 
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• Stochastic finite element method (SFEM) 

– Macro-scale beam elements of size 𝑙mesh 

– Use the meso-scale random field obtained using SVEs of size 𝑙SVE 

– The meso-scale random field is characterized by the correlation length 𝐿ℂ 

   

From the meso-scale to the macro-scale 

𝑳𝐒𝐕𝐄 = 𝟎. 𝟏 𝝁𝒎 𝑳𝐒𝐕𝐄 = 𝟎. 𝟒 𝝁𝒎 

Random field with different SVEs sizes 
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• The ratio 𝛼 =
𝐿ℂ

𝑙mesh
 

– Links the (macro-scale) finite element size to the correlation length  

– Is related to the SVE size thought the correlation length 

   

From the meso-scale to the macro-scale 

ℂ𝑀1 ℂ𝑀2 ℂ𝑀3 

𝑙SVE 

𝑙mesh 

Young’s modulus correlation 

𝐿ℂ =
 𝑅ℂ
∞

−∞

𝑅ℂ 0
 

Stochastic model 
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• Effect of the ratio 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• For extreme values of a:  

 

 

  

From the meso-scale to the macro-scale 

𝛼 ≫ 1: no more scale separation if 𝐿SVE~𝐿macro 

𝛼 ≪ 1: loss of microstructural details if 𝐿SVE~𝐿micro 

 𝛼 =
𝑙ℂ

𝑙mesh
 

 𝛼 =
𝐿ℂ

𝑙mesh
> 1 

 𝛼 =
𝐿ℂ

𝑙mesh
< 1 

For the spatial 

correlation to be 

accounted for, we 

need more integration 

points 

The spatial correlation 

can be accounted for 

Big SVEs 

𝑳ℂ ≫ 

Small SVEs 

𝑳ℂ ≪ 

 

One mesh size 
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• Verification of the 3-scale process (𝛼~2) with direct Monte-Carlo simulations 

– First bending mode of a 3.2 𝜇m-long beam 

 

 

 

 

 

 

 

– Second bending mode of a 3.2 𝜇m-long beam 

From the meso-scale to the macro-scale 

Relative difference 

in the mean: 0.57 % 

Eigen frequency 

Relative difference 

in the mean: 0.44 % 

Eigen frequency 
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𝐶𝑂𝑉 =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑚𝑒𝑎𝑛
∙ 100% 

 

• Convergence of the 3-scale process 

– In terms of  

– First flexion mode of a 3.2 𝜇m-long beam 

 

From the meso-scale to the macro-scale 

Coarse macro-scale 

mesh 

Fine macro-scale 

mesh 

 𝛼 =
𝑙ℂ

𝑙mesh
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Perspectives 

• Validate the 1D model on a bigger beam with experimental results 

– Measures for appropriate data as inputs: grain sizes, preferred direction, … 

– Samples of 1st mode frequency 

– Is the grain orientation the main contribution to the scatter of the first mode? 

 

• Extend the model to 3D 

– Extension to 3D macroscale SFEM (generator already 3D) 

 

– Extension to thermoelasticity 

 

– Will permit to study the influence of the clamp and thermoelastic damping 

 

 

• Study geometric uncertainties 
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Thank you for your attention !  


