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Introduction

● MEMS stiction failure
● Due to the dominance of surface adhesive forces 

● E. g., van der Waals forces and capillary forces

● In humid condition, the capillary forces are dominant

● Depends on the surface topologies

● An uncertain phenomenon
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● An uncertain phenomenon

Stiction failure in a MEMS sensor
 ( Jeremy A.Walraven Sandia National 
Laboratories. Albuquerque, NM USA)  
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Motivation

Initial configuration

Primary contact configuration

Condensing water formation

Failure
s

● Construct a numerical model
● To predict the crack length s and its uncertainties from the surface topology

● At an acceptable computational cost
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● The crack length s characterizes the required 
energy to release the cantilever beam out of the 
failure configuration

● The crack length s characterizes the required 
energy to release the cantilever beam out of the 
failure configuration



 
 Construct a Stochastic Multi-scale Model (SMM) for stiction problems 
● Multi-scale component of SMM

● Micro- to meso-scale model: evaluate the meso-scale contact laws from contacting 
topologies

● Meso- to macro-scale model: use the meso-scale contact laws to predict the macro 
behaviors

● Probabilistic component of SMM
● Direct method (Full Monte Carlo method)

● Characterize the randomness of the micro-scale topology 

● Propagate the randomness through the multi-scale model

● Indirect method through “a stochastic model of the random meso-scale contact laws” (*)

● Implement  “A stochastic model of the random meso-scale contact laws” to model the 
randomness of the meso-scale contact laws 

- Not a trivial task
● Propagate the randomness of meso-scale contact laws (only) through the meso- to macro-scale 

model

- Lower computational cost
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Methodology

(*) A Clément, C Soize, J. Yvonnet, Uncertainty quantification in computational stochastic multi-scale analysis 
of nonlinear elastic materials



Multi-scale component of SMM

2. Contact modeling (*)

 Meso-scale contact law

1 . Discretization

...

3. Finite Element model
(n integration points)

Micro-scale topologies

Macro-scale 
behavior

● Meso-scale contact law: force-distance function modeling the interaction of two contacting bodies
● The bridge between micro and macro-scales

● The key ingredient of this research

● Meso-scale contact law: force-distance function modeling the interaction of two contacting bodies
● The bridge between micro and macro-scales

● The key ingredient of this research

Analytical contact models  
 - Meniscus 
 - Laplace pressure
 - Asperity contact models
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(*) Details of Contact modeling procedure



Probabilistic component of SMM: Direct method (Full Monte Carlo Method)
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● Characterize the rough surface as a stationary Gaussian random field● Characterize the rough surface as a stationary Gaussian random field

Topology
Spectral Density

Atomic Force 
Measurements

Characterization:  
Surface topology



Topology
Spectral 
Density

1. Surface generator

…
(different 

topologies)
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● Propagate the randomness through the multi-scale model● Propagate the randomness through the multi-scale model

Probabilistic component of SMM: Direct method (Full Monte Carlo Method)

Zoom to the topologies (*)

(*) The axes have different scales: the x and y axes units are m and the z axis one is nm



Topology
Spectral 
Density

1. Surface generator

…
(different 

topologies)
...

3. Finite Element model

...

s

s
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● Propagate the randomness through the multi-scale model● Propagate the randomness through the multi-scale model

Probabilistic component of SMM: Direct method (Full Monte Carlo Method)

2. Contact modeling

...

...



● A time consuming process
● Requires a big memory
● Motivation  for constructing the indirect method through a stochastic 

model of meso-scale contact laws
● to represent the probability distribution of the meso-scale contact laws 
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1. Surface generator

...

2. Contact modeling 3. Finite Element model

...

s

s

Topology
Spectral 
Density

Probabilistic component of SMM: Direct method (Full Monte Carlo Method)

…
(different 

topologies)
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1. Surface generator 2. Contact modeling 3. Finite Element model

...

s

s

Topology
Spectral 
Density

Reference distribution
 of contact length

Probabilistic component of SMM: Direct method (Full Monte Carlo Method)

…
(different 

topologies)

...

...

Reference random contact law fields



Indirect method: Stochastic model of random contact laws

Generated contact laws 
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Basic vector value random variable: 
e.g., Gaussian one

● The stochastic model of random contact laws T represents the  probability distribution of meso-
scale contact laws

● T: matching a random vector of a basic distribution, e. g., Gaussian one, to a random contact law

● The stochastic model of random contact laws T represents the  probability distribution of meso-
scale contact laws

● T: matching a random vector of a basic distribution, e. g., Gaussian one, to a random contact law

N observed contact laws
from SMM using Monte Carlo method

Probabilistic Approximation

● Remark: The correlation of neighboring contact forces can be neglected● Remark: The correlation of neighboring contact forces can be neglected



Stochastic model of random contact laws
● Reduced-order process 

● Fitting the adhesive contact laws using an analytical function (modified Morse potential) 
computed from the reduced parameters

● Each contact law corresponds to a vector of reduced parameters and vice versa

● Randomness modeling process
● Using Polynomial Chaos Expansion as the mean to represent the probability distribution of the 

reduced parameters
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12

Generated contact laws N observed contact laws
from SMM using Monte Carlo method

Probabilistic Approximation



Stochastic model of random contact laws: Reduced Order process
● Reduced-order process 

● Fitting the contact laws using an analytical function (modified Morse potential)  

● The logarithm is applied to enforce the positivity of 

● Reduced-order process 
● Fitting the contact laws using an analytical function (modified Morse potential)  

● The logarithm is applied to enforce the positivity of 

Observed meso-scale contact laws Vectors of  contact law's 
reduced parameters

Extracting parameters

Reconstructing 
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 Stochastic model of random contact laws: Randomness modeling process

● Using Hermite polynomial chaos expansion to construct the stochastic model:

● The coefficients are found by solving Maximum Likelihood problem

● Likelihood function is computed using multivariate kernel density estimation with Scott's 
data-based rule for the optimal bandwidth

● The constraint of identical covariance

● The coefficient matrix can be rewritten as

where       is defined on the Stiefel manifold
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Coefficients Vector Hermite Polynomial

Gaussian random vector



 
● Multi-scale component of SMM

● Using analytical contact model for rough surfaces (*) to solve the Micro- to meso-scale 
model

● Using Finite Element model of Euler-Bernoulli beam theory with a Newton-Raphson 
algorithm for dealing with the nonlinearity of contact laws to solve the meso- to macro-scale 
model

● Probabilistic component of SMM
● Using Spectral Representation with Fast Fourier Transform implementation for the 

simulation of the stationary Gaussian random field of topologies  (**)

● Using gradient-free optimization in which a  line-search technique and the orthogonal 
directions obtained by Gram–Schmidt process are applied to solve the maximum likelihood 
problem of PCE.
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Implementation (Summary)

(*) TV Hoang et al.,  A probabilistic model for predicting the uncertainties of the humid stiction phenomenon on hard 
materials

(**) F Poirion, C Soize, Numerical Methods and Mathematical Aspects For Simulation of Homogeneous and 
Inhomogeneous Gaussian Vector Fields

(*) TV Hoang et al.,  A probabilistic model for predicting the uncertainties of the humid stiction phenomenon on hard 
materials

(**) F Poirion, C Soize, Numerical Methods and Mathematical Aspects For Simulation of Homogeneous and 
Inhomogeneous Gaussian Vector Fields



Numerical results: Meso-scale contact laws
● Comparison of the distributions of reduced parameters of random meso-scale contact laws 

obtained 
● By full Monte Carlo method and 

● By the stochastic model of random meso-scale contact laws
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Numerical results: Macro-scale stiction level
● Comparison of the distribution of crack lengths obtained by SMM with two different 

methodologies
● Using direct method (full Monte Carlo method) as the reference and 

● Using indirect method through the stochastic model of random meso-scale contact laws
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Longer crack length
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Numerical results: Macro-scale stiction level
● In case of SMM using stochastic model of random contact laws the crack lengths are shorter, 

the adhesive energies are higher.
● Due to the magnifying of the error resulting from the logarithm scaling

● Improvements: 
● Increase the order of PCE; or

● Adapt the probability distribution of the     random variables.
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Conclusions

● We construct a Stochastic Multi-scale Model (SMM) for stiction problems taking the surface 
topology into account by

● Using multi-scale approach with the introduction of the meso-scale contact laws

● Applying PCE to build a stochastic model of the random meso-scale contact laws

● to reduce efficiently the computational cost

● The stochastic model of meso-scale contact laws needs to be improved
● Increasing the order of PCE; or

● Adapt the probability distribution of the     random variables.

● Experimental validation
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Q&A

● Thank you for your attention● Thank you for your attention
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