

Computational & Multiscale Mechanics of Materials University of Liège, Belgium

A stochastic multi-scale analysis

for MEMS stiction failure

Truong Vinh Hoang*, Ling Wu, Jean-Claude Golinval, Stéphane Paquay,

Maarten Arnst, Ludovic Noels

3SMVIB: The research has been funded by the Walloon Region under the agreement no 1117477 (CT-INT 2011-11-14) in the context of the ERA-NET MNT framework.

Introduction

MEMS stiction failure

- Due to the dominance of surface adhesive forces
 - E. g., van der Waals forces and capillary forces
 - In humid condition, the capillary forces are dominant
- Depends on the surface topologies
- An uncertain phenomenon

Stiction failure in a MEMS sensor

(Jeremy A.Walraven Sandia National Laboratories. Albuquerque, NM USA)

Contact zone: Low humidity levels

Motivation

- Construct a numerical model
 - To predict the crack length s and its uncertainties from the surface topology
 - At an acceptable computational cost

- Construct a Stochastic Multi-scale Model (SMM) for stiction problems
- Multi-scale component of SMM
 - Micro- to meso-scale model: evaluate the meso-scale contact laws from contacting topologies
 - Meso- to macro-scale model: use the meso-scale contact laws to predict the macro behaviors
- Probabilistic component of SMM
 - Direct method (Full Monte Carlo method)
 - Characterize the randomness of the micro-scale topology
 - Propagate the randomness through the multi-scale model
 - Indirect method through "a stochastic model of the random meso-scale contact laws" (*)
 - Implement "A stochastic model of the random meso-scale contact laws" to model the randomness of the meso-scale contact laws
 - Not a trivial task
 - Propagate the randomness of meso-scale contact laws (only) through the meso- to macro-scale model
 - Lower computational cost

(*) A Clément, C Soize, J. Yvonnet, Uncertainty quantification in computational stochastic multi-scale analysis of nonlinear elastic materials

- Meso-scale contact law: force-distance function modeling the interaction of two contacting bodies
 - The bridge between micro and macro-scales
 - The key ingredient of this research
- 1. Discretization 2. Contact modeling (*)

Finite Element model (n integration points)

(*) Details of Contact modeling procedure

Micro-scale topologies \mathbb{D}_i

Analytical contact models

- Meniscus
- Laplace pressure
- Asperity contact models

Meso-scale contact law

Macro-scale behavior

Probabilistic component of **SMM**: Direct method (Full Monte Carlo Method)

• Characterize the rough surface as a stationary Gaussian random field

Characterization: Surface topology

Atomic Force Measurements

6

Topology Spectral Density Probabilistic component of SMM: Direct method (Full Monte Carlo Method)

• Propagate the randomness through the multi-scale model

(*) The axes have different scales: the x and y axes units are μ m and the z axis one is nm

Probabilistic component of **SMM**: Direct method (Full Monte Carlo Method)

• Propagate the randomness through the multi-scale model

8

- A time consuming process
- Requires a big memory
- Motivation for constructing the indirect method through a stochastic model of meso-scale contact laws
 - to represent the probability distribution of the meso-scale contact laws

9

Indirect method: Stochastic model of random contact laws

 The stochastic model of random contact laws T represents the probability distribution of mesoscale contact laws

11

• T: matching a random vector of a basic distribution, e. g., Gaussian one, to a random contact law

• Remark: The correlation of neighboring contact forces can be neglected

Stochastic model of random contact laws

- **Reduced-order process**
 - Fitting the adhesive contact laws using an analytical function (modified Morse potential) computed from the reduced parameters
 - Each contact law corresponds to a vector of reduced parameters and vice versa
- Randomness modeling process
 - Using Polynomial Chaos Expansion as the mean to represent the probability distribution of the reduced parameters

N observed contact laws

Stochastic model of random contact laws: Reduced Order process

- Reduced-order process
 - Fitting the contact laws using an analytical function (modified Morse potential)

• The logarithm is applied to enforce the positivity of E_{left} ; E_{right} ; F_{max}

Stochastic model of random contact laws: Randomness modeling process

• Using Hermite polynomial chaos expansion to construct the stochastic model:

14

- The coefficients are found by solving Maximum Likelihood problem
 - Likelihood function is computed using multivariate kernel density estimation with Scott's data-based rule for the optimal bandwidth
 - The constraint of identical covariance

$$CC^{\mathrm{T}} = \mathrm{Cov}(\Lambda) \quad \text{with } C = [c_1 c_2 ... c_{N_{\mathrm{p}}}]$$

The coefficient matrix can be rewritten as

$$C = [\operatorname{Cov}(\Lambda)^{-1/2}]^{\mathrm{T}}S$$

where $S\,$ is defined on the Stiefel manifold $SS^T=I$

- Multi-scale component of SMM
 - Using analytical contact model for rough surfaces (*) to solve the Micro- to meso-scale model
 - Using Finite Element model of Euler-Bernoulli beam theory with a Newton-Raphson algorithm for dealing with the nonlinearity of contact laws to solve the meso- to macro-scale model
- Probabilistic component of SMM
 - Using Spectral Representation with Fast Fourier Transform implementation for the simulation of the stationary Gaussian random field of topologies (**)
 - Using gradient-free optimization in which a line-search technique and the orthogonal directions obtained by Gram–Schmidt process are applied to solve the maximum likelihood problem of PCE.

(*) TV Hoang et al., A probabilistic model for predicting the uncertainties of the humid stiction phenomenon on hard materials

(**) F Poirion, C Soize, Numerical Methods and Mathematical Aspects For Simulation of Homogeneous and Inhomogeneous Gaussian Vector Fields

- Comparison of the distributions of reduced parameters of random meso-scale contact laws obtained
 - By full Monte Carlo method and
 - By the stochastic model of random meso-scale contact laws

- Comparison of the distribution of crack lengths obtained by SMM with two different methodologies
 - Using direct method (full Monte Carlo method) as the reference and
 - Using indirect method through the stochastic model of random meso-scale contact laws

Numerical results: Macro-scale stiction level

- In case of SMM using stochastic model of random contact laws the crack lengths are shorter, the adhesive energies are higher.
 - Due to the magnifying of the error resulting from the logarithm scaling
- Improvements:
 - Increase the order of PCE; or
 - Adapt the probability distribution of the Ξ random variables.

Conclusions

- We construct a Stochastic Multi-scale Model (SMM) for stiction problems taking the surface topology into account by
 - Using multi-scale approach with the introduction of the meso-scale contact laws
 - Applying PCE to build a stochastic model of the random meso-scale contact laws
 - to reduce efficiently the computational cost
- The stochastic model of meso-scale contact laws needs to be improved
 - Increasing the order of PCE; or
 - Adapt the probability distribution of the Ξ random variables.
- Experimental validation

References

- TV Hoang et al., A probabilistic model for predicting the uncertainties of the humid stiction phenomenon on hard materials
- L Wu et al., A micro–macro approach to predict stiction due to surface contact in microelectromechanical systems
- F Poirion, C Soize, Numerical Methods and Mathematical Aspects For Simulation of Homogeneous and Inhomogeneous Gaussian Vector Fields
- A Clément, C Soize, J. Yvonnet, Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials
- · C Soize, R Ghanem, *Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure*
- · C Desceliers, R Ghanem, C Soize, *Maximum likelihood estimation of stochastic chaos representations from experimental data*
- M Arnst, R Ghanem, C Soize, Identification of Bayesian posteriors for coefficients of chaos expansions
- D W Scott, Multivariate Density Estimation: Theory, Practice, and Visualization

• Thank you for your attention