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Introduction

« MEMS stiction failure
 Due to the dominance of surface adhesive forces

« E. g., van der Waals forces and capillary forces

* In humid condition, the capillary forces are dominant

 Depends on the surface topologies

 An uncertain phenomenon

Stiction failure in a MEMS sensor

( Jeremy A.Walraven Sandia National
Laboratories. Albuquerque, NM USA)
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Motivation

e (Construct a numerical model

* To predict the crack length s and its uncertainties from the surface topology

* At an acceptable computational cost
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« The crack length s characterizes the required
energy to release the cantilever beam out of the
failure configuration



Methodology

m Construct a Stochastic Multi-scale Model (SMM) for stiction problems

* Multi-scale component of SMM
* Micro- to meso-scale model: evaluate the meso-scale contact laws from contacting
topologies

 Meso- to macro-scale model: use the meso-scale contact laws to predict the macro
behaviors

* Probabilistic component of SMM
e Direct method (Full Monte Carlo method)

e Characterize the randomness of the micro-scale topology

* Propagate the randomness through the multi-scale model

« Indirect method through “a stochastic model of the random meso-scale contact laws” (*)

* Implement “A stochastic model of the random meso-scale contact laws” to model the
randomness of the meso-scale contact laws

Not a trivial task

* Propagate the randomness of meso-scale contact laws (only) through the meso- to macro-scale
model

Lower computational cost

(*) A Clément, C Soize, J. Yvonnet, Uncertainty quantification in computational stochastic multi-scale analysis
of nonlinear elastic materials



Multi-scale component of SMM

 Meso-scale contact law: force-distance function modeling the interaction of two contacting bodies

 The bridge between micro and macro-scales

» The key ingredient of this research
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Probabilistic component of SMM: Direct method (Full Monte Carlo Method) A

Characterize the rough surface as a stationary Gaussian random field

Characterization:
Surface topology

logy(sz/m)

= logyo(&y [rad/pm]) 0 01og, (&, [rad/pm])

Atomic Force Topology
Measurements Spectral Density



Probabilistic component of SMM: Direct method (Full Monte Carlo Method) ,

* Propagate the randomness through the multi-scale model

1. Surface generator Zoom to the topologies (*)
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(*) The axes have different scales: the x and y axes units are um and the z axis one is nm



Probabilistic component of SMM: Direct method (Full Monte Carlo Method) :

* Propagate the randomness through the multi-scale model

1. Surface generator
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3. Finite Element model
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Probabilistic component of SMM: Direct method (Full Monte Carlo Method) .

1. Surface generator

2. Contact modeling
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« Atime consuming process
* Requires a big memory

3. Finite Element model

* Motivation for constructing the indirect method through a stochastic

model of meso-scale contact laws

» to represent the probability distribution of the meso-scale contact laws
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Probabilistic component of SMM: Direct method (Full Monte Carlo Method) 0

1. Surface generator

2. Contact modeling
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Indirect method: Stochastic model of random contact laws

11
The stochastic model of random contact laws T represents the probability distribution of meso-
scale contact laws

T: matching a random vector of a basic distribution, e. g., Gaussian one, to a random contact law

T’ Basic vector value random variable:

F d) = T(d e.g., Gaussian one
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Remark: The correlation of neighboring contact forces can be neglected



Stochastic model of random contact laws ,
1
 Reduced-order process

Fitting the adhesive contact laws using an analytical function (modified Morse potential)
computed from the reduced parameters

« Each contact law corresponds to a vector of reduced parameters and vice versa
« Randomness modeling process

Using Polynomial Chaos Expansion as the mean to represent the probability distribution of the
reduced parameters

Generated contact laws N observed contact laws
from SMM using Monte Carlo method
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Stochastic model of random contact laws: Reduced Order process

Reduced-order process
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« Fitting the contact laws using an analytical function (modified Morse potential)

Observed meso-scale contact laws

o
=

|I+Calculz|1ted force |

=]
W
T

=
)
T

I
e

11 13 15 17 19
Distance d [nm]

01 R 'I—E—Calculéted force |
—— Curve fitting

LMP&]

Contact force F

|
=
R
it T

13 15 17 19
Distance d [nm)]

The logarithm is applied to enforce the positivity of Ejg;

Eright;

Vectors of contact law's
reduced parameters
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Stochastic model of random contact laws: Randomness modeling process

14
« Using Hermite polynomial chaos expansion to construct the stochastic model:
I log(Eleft) ]
log(Finax) . Np
1Og(Eright> = Z Ckwk (f)
Amax k=0 L» :
s Gaussian random vector
Coefficients Vector - » Hermite Polynomial

« The coefficients are found by solving Maximum Likelihood problem

» Likelihood function is computed using multivariate kernel density estimation with Scott's
data-based rule for the optimal bandwidth

» The constraint of identical covariance

CC" = Cov(A) with C = [c1ca...cn,]

 The coefficient matrix can be rewritten as

C = [Cov(A)~Y2TS

where S is defined on the Stiefel manifold SST =1



Implementation (Summary) 15

* Multi-scale component of SMM

» Using analytical contact model for rough surfaces (*) to solve the Micro- to meso-scale
model

« Using Finite Element model of Euler-Bernoulli beam theory with a Newton-Raphson
algorithm for dealing with the nonlinearity of contact laws to solve the meso- to macro-scale
model

* Probabilistic component of SMM

« Using Spectral Representation with Fast Fourier Transform implementation for the
simulation of the stationary Gaussian random field of topologies (**)

« Using gradient-free optimization in which a line-search technique and the orthogonal
directions obtained by Gram—-Schmidt process are applied to solve the maximum likelihood
problem of PCE.

(*) TV Hoang et al., A probabilistic model for predicting the uncertainties of the humid stiction phenomenon on hard
materials

(**) F Poirion, C Soize, Numerical Methods and Mathematical Aspects For Simulation of Homogeneous and
Inhomogeneous Gaussian Vector Fields



Numerical results: Meso-scale contact laws

« Comparison of the distributions of reduced parameters of random meso-scale contact laws
obtained

« By full Monte Carlo method and

« By the stochastic model of random meso-scale contact laws
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Numerical results: Macro-scale stiction level

Comparison of the distribution of crack lengths obtained by SMM with two different
methodologies

» Using direct method (full Monte Carlo method) as the reference and

» Using indirect method through the stochastic model of random meso-scale contact laws
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Numerical results: Macro-scale stiction level

1
In case of SMM using stochastic model of random contact laws the crack lengths are shorter,

the adhesive energies are higher.

» Due to the magnifying of the error resulting from the logarithm scaling

Improvements:
* |ncrease the order of PCE: or

« Adapt the probability distribution of the = random variables.
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Conclusions

19
We construct a Stochastic Multi-scale Model (SMM) for stiction problems taking the surface
topology into account by

« Using multi-scale approach with the introduction of the meso-scale contact laws

» Applying PCE to build a stochastic model of the random meso-scale contact laws
« to reduce efficiently the computational cost
The stochastic model of meso-scale contact laws needs to be improved
» Increasing the order of PCE; or

« Adapt the probability distribution of the = random variables.

Experimental validation
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Q&A

Thank you for your attention
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