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My PhD focuses on the analysis and development of the 
PFEM for new applications involving free surfaces/interfaces 

 

Bird strike experiment 
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PFEM general ideas 



The first step in the PFEM is discretizing the continuum 
with some particles/nodes 

 

 

 

 

 

 
 

The particles carry all the physical and mathematical information 
(density, viscosity, velocity, pressure, …) 



Then, particles are free to move and at each time step a 
new mesh is built in order to define the weak form  

 

 

 

 

                                               (new velocities, pressures, nodes positions,…) 

𝑡𝑁 

𝑡𝑁+1 



Formulation for incompressible  
free-surface flows 



The starting point are the equations of the continuum 
written in Lagrangian form and current configuration 

𝜌
D𝒖

D𝑡
= div 𝛔 + 𝜌𝒃   in 𝛀 

D𝜌

D𝑡
+ 𝜌 div 𝒖 = 0 in 𝛀  

𝒖 𝒙, 𝑡 = 𝒖 𝒙, 𝑡 ∀𝒙 ∈ Γ𝐷 

𝛔 𝒙, 𝑡 ∙ 𝒏 = 𝒕 𝒙, 𝑡 ∀𝒙 ∈ Γ𝑁 

𝛔 = 𝛔T 



From now on I will concentrate on Newtonian 
incompressible fluid flows 

𝜌0
D𝒖

D𝑡
= −div 𝑝𝐈 + 𝜇 div grad(𝒖) + grad(𝒖)T + 𝜌0𝒃 in 𝛀  

𝐃 𝒖 =
1

2
(grad(𝒖) + grad(𝒖)T) 𝛔 = −𝑝𝐈 + 2𝜇𝐃 𝒖  , 

div 𝒖 = 0 in 𝛀  

𝜌
D𝒖

D𝑡
= div 𝛔 + 𝜌𝒃   in 𝛀 

D𝜌

D𝑡
+ 𝜌 div 𝒖 = 0 in 𝛀  



A stable weak form can be obtained by using a Galerking 
approach and a Petrov-Galerking stabilization for pressure  

 
 𝜌0

D𝒖

D𝑡
⋅ 𝒘 dΩ =  𝑝𝐈 ∶ grad 𝒘  dΩ −  𝜇 grad 𝒖 ∶ grad 𝒘  dΩ +

ΩΩΩ

 

− 𝜇 grad 𝒖 T ∶ grad 𝒘  dΩ
Ω

+ 𝜌0 𝒃 ⋅ 𝒘 dΩ +  𝒕 ⋅ 𝒘
Γ𝑁Ω

 dΓ  

 div 𝒖 𝑞 dΩ
Ω

 +  𝜏pspg
𝑒
1

𝜌0
grad(𝑞)

Ω0
𝑒

𝑁𝑒𝑙

𝑒=1

𝜌0
D𝒖

D𝑡
+ div 𝑝𝐈 − 𝜇 div grad 𝒖 + grad 𝒖 T − 𝜌0𝒃  

𝐌
𝒖n+1 − 𝒖n

Δ𝑡
+ 𝐊𝒖 + 𝐃T𝒑 = 𝑩 

𝐂
𝒖n+1 − 𝒖n

Δ𝑡
+ 𝐃𝒖 + 𝐋𝒑 = 𝑯 

∀𝒘 ∈ 𝑯1(Ω)| 𝒘 = 𝟎 on Γ𝐷, ∀𝑞 ∈ 𝐿2(Ω) 



In order to validate the method we have tested it for a 
classical sloshing example, for which an analytical solution 
exists 

𝜌0 = 1 kg/m
3 

𝜇  = 0.01 kg/ms  



Our results perfectly agree with the analytical solution, 
better than those found by other authors 



Careful! For free-surface flows some dangerous 
simplifications are often proposed in the literature 

1. Strong imposition of the pressure at the free surface 

 

 

 

 

2. Wrong definition of the boundary term 

 𝜌0
D𝒖

D𝑡
⋅ 𝒘 dΩ

Ω

= (… ) −  𝜇 grad 𝒖 ∶ grad 𝒘  dΩ +  ( 𝒕 − 𝜇 grad 𝒖 T𝒏 ) ⋅ 𝒘 dΓ
Γ𝑁Ω

 

𝜇 div grad 𝒖 + grad 𝒖 T = 𝜇 Δ 𝒖 , for incompressible flows 

 𝜌0
D𝒖

D𝑡
⋅ 𝒘 dΩ

Ω

= (… ) +  𝒕 ⋅ 𝒘 dΓ
Γ𝑁

 𝑝 = 0 , on ΓN + 𝒕 ⋅ 𝒘 dΓ
Γ𝑁

 

𝒕 − 𝜇 grad 𝒖 T𝒏 

neglected 

neglected 



PFEM issues 



To introduce the problem, let’s consider again a sloshing 
example, but with a very coarse discretization 

1 2 

3 4 



Some odd oscillations in the pressure field appear when 
the time step is decreased 



A first observation: the evolutions of the vertical velocity at 
node 5 for meshes 1 – 4, without performing any remeshing, 
are very different 



The remeshing introduces perturbations in the velocity field 
which have to be counter-balanced by the pressure gradient 

𝐌
𝒖 n+1 + 𝛿𝒖 − 𝒖n

Δ𝑡
 

𝐌
𝛿𝒖

Δ𝑡
+ 𝐊𝛿𝒖 + 𝐃T𝛿𝒑 = 𝟎 

+ 𝐊(𝒖 n+1+𝛿𝒖) 

+ 𝐃T 𝒑 n+1 + 𝛿𝒑 = 𝑩 

𝒖n+1 = 𝒖 n+1 + 𝛿𝒖 

𝒑n+1 = 𝒑 n+1 + 𝛿𝒑 



Now, let’s take a look at a more realistic problem… 

Pressure sensor 

[ Experimental results  available online on the SPHERIC community website: https://wiki.manchester.ac.uk/spheric ] 

https://wiki.manchester.ac.uk/spheric
https://wiki.manchester.ac.uk/spheric


The present method can reproduce the global evolution 
of the phenomenon with very good accuracy 

3.5s simulation 
 
6000 particles 
 
green: experimental 
blue dots: numerical 



If a reasonable discretizationis used pressure evolution 
appears to be very well reproduced 
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Nevertheless, pressure oscillations are still present and 
become visible if the time step is slightly decreased 
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On fluid-solid boundaries higher gradients are present 
and/or the discretization can become too coarse: this is 
where pressure oscillations appear the most! 



Conclusions 

Correct free-surface flows formulation: 

 

- Avoid imposing pressure at the free surface 

- Do not use so-called «pseudo-tractions» 

 

Remeshing issues: 

 

- Use large time steps 

- Use fine discretizations 

- Different fluid-solid contact definition  
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