
Option Replication and the Performance of a Market

Timer∗

Georges HÜBNER†

May 2015

Abstract

The Treynor and Mazuy framework is a widely used return-based model of market timing.
However, existing corrections to the regression intercept can be manipulated through derivatives
trading. We propose an adjustment based on Merton’s option replication approach. The linear
and quadratic coefficients of the regression are exploited to assess the cost of the replicating option
that yields similar convexity for a passive portfolio. A similar reasoning applies for various timing
patterns and in multi-factor models. The proposed framework induces a potential rebalancing
risk and involves the delicate issue of choosing the cheapest option. We show that these issues
can be overcome for reasonable tolerance levels.

Keywords: Performance measurement, market timing, Treynor and Mazuy, option replica-
tion, mutual fund performance.

JEL codes: G10, G12

∗This paper has benefited from comments made by Hatem Ben Ameur, Maria Ceu Cortez, Georges Gallais-
Hamonno, Marie Lambert, Bertrand Maillet, Guillaume Monarcha, Hery Razafitombo, as well as by participants in the
Workshop on Investment Funds at the University of Luxembourg, the Thematic Cluster Day on Hedge Funds atf the
University of Orleans, the 2011 French Finance Association Conference (Montpellier), and the 2011 European Financial
Management Association Annual Meeting (Braga). I thank Thomas Lejeune and Arnaud Cavé for their excellent
research assistance. Financial support from Deloitte Belgium and Deloitte Luxembourg is gratefully acknowledged.
All remaining errors are my own.

†Deloitte Chaired Professor of Portfolio Management and Performance, HEC Management School - University
of Liège, Belgium; Associate Professor, School of Economics and Business, Maastricht University, the Netherlands;
Founder & Chief Scientific Officer, Gambit Financial Solutions Ltd, Belgium. Corresponding address. University of
Liège, HEC Management School, Rue Louvrex 14 - N1, B-4000 Liège, Belgium. Phone: (+32) 42327428. E-mail:
g.hubner@ulg.ac.be



1 Introduction

Assessing the performance of actively managed funds is an ongoing theoretical and empirical chal-

lenge. According to the hypothesis of efficient financial markets, active fund managers would not

be able to take advantage of proprietary skills that would generate reproducible positive abnormal

returns. Traditional performance measures such as the Sharpe (1966) ratio, Jensen’s (1968) alpha

and the Treynor (1965) ratio reflect a clear aim to detect the manager’s ability to perform superior

asset selection. But when a fund’s observed returns follow an unstable pattern, a fundamental ques-

tion arises: is this mainly due to static exposures to non-linear instruments, or does it result from

voluntary variations in the manager’s betas, reflecting some kind of market timing skills? Unlike

the majority of the hedge fund literature, studies on mutual fund performance have mostly taken

the second route: viewing changing betas as an indication of market timing (see Jiang et al., 2007;

Comer et al., 2009; Elton et al., 2012; Rodriguez, 2014)1, which is considered to be a portfolio man-

agement skill. The competing explanation, which attributes risk shifting to the use of derivatives as

a way to create non-linear risk exposure, does not a priori correspond to superior performance. By

trading option-like securities, the manager can mechanically create convexity or concavity in the

portfolio returns. If portfolio performance is measured using traditional methods, such as Jensen’s

alpha or the Sharpe ratio, the output might give the illusion of superior skills when in reality the

manager has "only" manipulated returns. Consider, for instance, a portfolio manager benchmarked

on the S&P500 index, who would systematically go long on the index for 101% of its equity, short

1% of ATM index calls with a maturity of 2 weeks, and would leverage the portfolio to get a beta

of 1. Rebalancing this strategy — which involves no particular skill — from 1999 to June 2014 would

deliver a statistically significant Jensen’s alpha (measured with the market model) of 2.89% per

year. The portfolio Sharpe ratio would reach 0.43 per year, in comparison with the index Sharpe

1 In the context of hedge fund returns, which are usually reported with monthly frequencies, the vast
majority of the literature refers to the first alternative (see Fung and Hsieh, 2001; Agarwal and Naik, 2004).
Only a few recent papers (Chen and Liang, 2007; Detemple et al., 2010) explicitly associate hedge fund
time-varying betas with a potential market timing behavior.
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ratio of 0.29 during the same period. The manager has not worked particularly well; she has only —

voluntarily or not — manipulated her portfolio performance.

To date, two return-based approaches have been used on a regular basis for the detection of

market timing skills: the piecewise linear regression of Henriksson and Merton (1981) (henceforth

HM) and the quadratic regression of Treynor and Mazuy (1966) (henceforth TM).2 Empirical ev-

idence based on these measures has regularly delivered a disappointing picture regarding market

timing skills (see Kryzanowski et al., 1996; Becker et al., 1999; Bollen and Busse, 2004; Comer et

al., 2009). Furthermore, Krimm et al. (2011) find a negative relationship between timing and global

performance. However, a direct holding-based approach delivers a more precise picture. Kaplan

and Sensoy (2008) identify a positive relationship between variations in equity betas and market

returns for market timing funds. In their study of detailed portfolio holdings, Jiang et al. (2007)

conclude that the average performance attributable to timing skills is positive, and could amount

to an annual level of 0.6%. The extent of this abnormal return is economically relevant but the

contrast of this result when set against the pervasive evidence is also empirically puzzling. Using a

more granular analysis of holdings, Elton et al. (2012) conclude that most of the outperformance

fades away when using a multi-index model. Even though these authors concede that market tim-

ing is also used by some fund managers, they find an average underperformance of market timers,

mostly due to the managers with the most negative market timing behavior. A potential explana-

tion could be provided by Huang et al. (2011), who show that risk-shifting of mutual fund portfolio

holdings could be largely attributable to unskilled or manipulative managers. These managers tend

to increase risk at the wrong time, leading to negative convexity in portfolio returns.

Reconciling the performance delivered by a simple model like the HM or TM with the one

retrieved from a holding-based model is a more arduous task than merely comparing alphas. Inger-

soll et al. (2007) demonstrate how easily one can manipulate most performance measures, including

alphas, by dynamically trading securities to distort the distribution of returns. The resulting option-

2A noteworthy exception is the Positive Period Weighting Measure proposed by Grinblatt and Titman
(1989), but this approach has led to few further developments in the literature on fund performance.
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like characteristics displayed by the pattern of portfolio returns has long been explicitly associated

with spurious market timing effects (Jagannathan and Korajczyk, 1986). The mere separation be-

tween the regression intercept and the market timing coefficient in the HM and the TM models, as

in Lee and Rahman (1990), is not sufficient to discriminate between genuine and false market tim-

ing skills. In order to better identify pure market timers, three types of adjustment of alphas have

been proposed: a variance correction approach (Grinblatt and Titman, 1994); an approximation

based on the squared benchmark returns (Bollen and Busse, 2004); and a synthetic option pricing

approach (Merton, 1981). All three methods, however, remain subject to manipulation because

a manager who has access to a complete derivatives market can easily alter the timing coefficient

without affecting the regression intercept (alpha) to a proportional extent. Based on this statement,

Ingersoll et al. (2007) propose a general formulation of a manipulation-proof performance measure

(MPPM). Its functional form is contingent on the characterization of the investor’s preferences.

In this paper, we revisit the Treynor and Mazuy model by applying, almost in its entirety, the

original option replication approach proposed by Merton within the HM context. Our main objective

is to derive the appropriate performance adjustment of the TM model, in the MPPM sense, in an

economy where preferences are consistent with mean-variance analysis. Unlike all previous attempts

to alter the TM regression alpha on the basis of the quadratic term alone, we exploit information

on both the linear and the quadratic coefficients of the regression to assess the replicating cost of

the option for a passively managed portfolio with non-linear benchmark exposures.

We use the same logic as in Ingersoll et al. (2007): if the manager has free access to a complete

derivatives market on its benchmark, there are many ways in which she can distort the payoff of

her portfolio. Considering the benchmark case where asset return distributions are stationary and

Gaussian, the benchmark sensitivities of the option portfolio up to the second (quadratic) order

can be approximated through a Taylor series expansion. Then, only the option delta, gamma and

theta matter. Anyone can mix these option "greeks" to obtain the desired linear and quadratic

sensitivities, but the same greeks will also entirely drive the periodic holding cost of this portfolio.
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Amongst all the portfolios involving derivatives that mimic a fund’s pattern of returns, the cheapest

one, called the "replicating portfolio" provides the minimum alpha required from a manager who

claims to time the market. The actual performance of the active fund, mixing the impact of asset

selection and market timing skills, is obtained by calculating the difference between its measured

alpha and that of the replicating portfolio. In the simple case where only one option is used to

replicate the market timing portfolio, we show that the performance measure has a simple and

intuitive form. The approach can be easily extended to a multivariate setup without superfluous

interaction terms, as in the extension of the TM model proposed by Lehmann and Modest (1987).

By setting the passive return as that of the cheapest option-based portfolio replicating strategy,

this approach addresses the point of the identification of the option strategies raised by Ingersoll et

al. (2007). Moreover, we overcome the performance manipulation issue through the use of options

on traded securities. The availability of a complete market enables us to carry out an arbitrage

argument, unlike in Ingersoll et al. (2007), whose proposed correction involves replicating a non-

traded option on the quadratic market return.

The practical implementation of our approach involves tackling the delicate issue of choosing the

appropriate replicating option characteristics. It involves a trade-off between the systematic risk and

bias of the option portfolio rebalancing, on the one hand, and the minimization of the replication

cost on the other. We posit that there are practical ways of dealing with this issue. Through an

experiment on the U.S. market, the results suggest that the choice of an option maturing in 6

months’ time provides a reasonable trade-off between rebalancing risk and replication cost when

returns are measured on a weekly basis.

The paper is organized as follows. The second section introduces the existing approaches to

account for market timing performance. In section 3, we develop the theoretical framework of

portfolio replication with options from the Treynor and Mazuy model. Section 4 discusses the issues

of option rebalancing and cost minimization. In section 5, we illustrate the choice of the replicating

option. Section 6 concludes.
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2 Performance measurement in market timing models

The literature on one-factor models identifies two major specifications allowing the identification

of a manager’s market timing abilities. The Henriksson and Merton (1981) model considers that

the manager chooses to switch the portfolio’s beta depending on the sign of the market return. A

good market timer increases the market exposure when the return is positive, and keeps it lower

otherwise. Treynor and Mazuy (1966) propose the addition of a quadratic term to the one-factor

model. The coefficient of this term reflects the convexity achieved by the manager through her

exposure to the market portfolio. If this coefficient is positive, the manager gradually increases her

beta as the market goes up, indicating that she is displaying a good timing ability. The regression

equations of the Henriksson and Merton (1981) and the Treynor and Mazuy (1966) models are

represented in equations (1) and (2), respectively:

rt = αHM + βHMrmt + γHM

�
−r+mt

�
+ εt (1)

rt = αTM + βTMrmt + γTMr
2
mt + εt (2)

where rt ≡ Rt−Rf is the portfolio excess return over the risk-free rate, rmt is the market portfolio

excess return, and −r+mt = max (−rmt, 0).

The HM model reflects the behavior of a manager who succeeds in switching her market beta

from a high level equal to βHM when the market return exceeds the risk-free rate to a low level of

(βHM − γHM) otherwise. Admati et al. (1986) show that under the standard assumption of a joint

normal distribution of asset returns, the TM model is consistent with a manager whose target beta

varies linearly with her forecast for the expected market rate of return. In both models, a negative

value of gamma induces negative market timing.

Both the HM and TM models aim to capture timing and selectivity skills using one single

equation. The constant of the regression is supposed to capture the asset selection skills of the

manager. The coefficient of the second variable (the truncated positive market return for HM and

the squared market return for TM) reveals her ability to time the market, but this does not, in
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itself, deliver a measure of excess return due to market timing. To obtain a synthetic view on the

manager’s performance, it is necessary to perform an adjustment that simultaneously accounts for

the timing and selectivity skills.

For the Henriksson and Merton (1981) model, an adjustment proposed by Merton (1981) per-

fectly corresponds to the exact cost of replicating the return generating process of equation (1).

There exists no such perfect arbitrage-free formula for equation (2). Thus, in what follows, we will

mostly discuss the performance measured in the Treynor and Mazuy (1966) model, which is the

focus of the paper. To date, the literature on mutual fund performance has produced three alter-

native ways to measure the contribution of market timing to active returns: the first one based

on the variance of market returns, the second one of the squared market returns (both approaches

corresponding to ex-post adjustments), and the third one based on the value of an option.

2.1 Ex-post mechanical adjustments to performance

From the TM equation (2), two straightforward adjustments have been proposed in the literature. In

summary, these adjustments result simply from estimating the mean of equation (2) and considering

the fact that performance is obtained by calculating the difference between the average portfolio

excess return and its linear required return.

The work of Admati et al. (1986) characterizes the properties of an active market timing

portfolio managed optimally if returns are multivariate normal and the representative investor

exhibits a constant absolute risk aversion (CARA) utility function. It is assumed that on receiving

information about market returns, the manager linearly adjusts her beta to the timing signal. The

authors show that the optimal portfolio returns are characterized by a quadratic function that

can be measured by equation (2). In this particular instance of the TM model, the reward for the

manager’s market timing ability is appropriately represented by the variance of the market portfolio

returns (Grinblatt and Titman, 1994), leading to equation (3) for the total return attributable to
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the manager’s performance, denoted π:

πTM,v = αTM + γTMσ
2
m (3)

where σ2m is the variance of the market portfolio returns.

Within the framework proposed by Admati et al. (1986), the identification of the market timing

premium is a step towards the identification of the coefficients of the regression, which corresponds

to the optimal timing portfolio when the portfolio manager makes linear beta adjustments to timing

signals (Grinblatt and Titman, 1994). This framework is thus restrictive. It entails an analytical

connection between the regression coefficients αTM and βTM in equation (2). Detemple et al. (2010)

characterize this connection further by deriving a continuous-time generalization of market timing

models, encompassing HM and TM as special cases. They derive a closed-form solution for the

correlation structure between the returns of the fund and of the market, and they adapt equation

(3) accordingly. The total performance adjusted for time-varying correlations collapses to expression

(3) divided by the volatility of the portfolio returns.

An even simpler approach is proposed by Bollen and Busse (2004) and by Comer et al. (2009).

These authors build upon the fact that a perfect market timer ex post would make a manager’s

beta time-varying according to market conditions by setting βTM,t = βTM + γTMrm,t. Accordingly,

the total performance of a manager combining asset selection and market timing skills results from

averaging the periodic market returns in the model with time-varying betas:

πTM,a = αTM + γTMr
2
m (4)

Equation (4) is a simplified version of (3). The advantage of this formulation is that it is no

longer restricted in order to correspond to an optimal behavior, as in the Admati et al. (1986)

framework. However, the cost is a potentially high upward bias in the performance as measured

with these metrics. When returns are computed with a daily frequency, the difference between the

corresponding equations does not appear to matter empirically (Krimm et al., 2011). However, as

the expected market return becomes significant with longer measurement intervals, the upward bias
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in equation (4) may start to matter.

Even though the formulations of the corrections are simple and seem to make sense, they appear

to provide only a very crude adjustment to the portfolio alpha. Furthermore, this adjustment

happens to be too small, which leads to an underestimation of true performance, because it rests on

a flawed estimate of required return. To understand this, refer to equation (4). It corresponds to a

performance equal to πTM,a = r− βTMrm, i.e. the mean portfolio return minus the required return

under the linear market model. Because the fund generates a positive convexity (the quadratic term

is always positive), it is less risky than suggested by its linear exposure only, and its required return

must be lowered. πTM,a is thus too small. Note that, as r2m > σ
2
m, the downward bias of equation

(3) is even more pronounced. Naturally, if the manager generates a negative convexity, the outcome

is opposite, and the fund’s performance is overestimated.

To illustrate this misestimation of true market timing performance, we get back to the simple

example developed in the first paragraph of the introduction. Calibrating a TM specification on the

data would result in the following coefficient estimates: αTM = 8.70%, βTM = 0.984 and γTM =

−0.016. Over the same period, we obtain the sample yearly values σ2m = 364.4 and r2m = 365.1.

The adjusted performance of the manager is thus estimated to be equal to πTM,v = 3.04% and

πTM,a = 3.03%, while in reality she displays absolutely no market timing. Those values barely differ

from the alpha of 2.89% obtained with the linear market model. The mechanical adjustment is

severely underestimated, leaving the impression of a good performance. The bias results from the

inadequate assessments of the benefit of shorting the call options and the associated increase in risk

due to the negative convexity of the fund’s payoff.

In the next section, we present an alternative approach, which explicitly accounts for the role

of the linear market beta in total performance with market timing. As for the original option-based

approach proposed by Merton (1981), we associate the market timing return with the outcome of

an option. Our analysis focuses on the cost, expressed in rates of return, of replicating the pattern

of the TM regression using a mix of options and risk-free instruments only.
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2.2 The replicating cost of building market timing portfolios

Both the Admati et al. (1986) and the Bollen and Busse (2004) frameworks aim at directly measuring

the contribution of market timing skills in the total portfolio return, irrespective of how the manager

has tried to achieve this result. When considered from the point of view of the manager’s intentions,

her skill is related to her capacity to create an option on the market portfolio and to sustain this

strategy over time.

The idea of calling upon option trading strategies to assess the market timing abilities of a

portfolio manager is introduced by Merton (1981). In the context of the HM model — developed

in his companion paper coauthored with Henriksson — Merton shows that the portfolio manager’s

global performance, combining her timing and selectivity abilities, expressed in realized returns and

denoted π, can be represented as

πHM,o = αHM + γHMe
Rf∆tP

�
M,∆t, eRf∆t

�
(5)

where P
�
M,∆t, eRf∆t

�
is a put with a remaining time to maturity equal to the time interval and

strike price of eRf∆t written on the market portfolio M , whose price is normalized to 1

The reasoning underlying Merton’s result is that the portfolio return obtained in equation (1)

can be achieved by taking at the same time a long position of βHM in the underlying index and of

γHM in a put on the same index, which will only pay off if the index return is lower than the riskless

rate. The remaining amount 1−βHM−γHM is invested (if positive) or borrowed (if negative) at the

risk-free rate. The cost of adopting such a strategy is the initial put premium, which is a lump sum

amount P
�
S,∆t, eRf∆t

�
per unit of gamma, and that would need to be capitalized to represent the

realized opportunity cost of the strategy versus a linear one.

Ingersoll et al. (2007) adapt (5) to the TM framework and obtain

πTM,o = αTM + γTMe
2Rf∆t

�
eσ

2
m∆t − 1

�
(6)

where Rf is the continuous interest rate and σ2m is the variance of the market portfolio returns.

The authors interpret the second term of this expression as the payoff for the fraction γTM of a
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derivative security that pays the square of the excess market return. At the same time, Ingersoll et

al. (2007) concede that this definition of total performance is easily prone to manipulation.

Note that the market beta does not explicitly intervene in any of the three formulations for π in

the models of Grinblatt and Titman (1994), Bollen and Busse (2004), and Ingersoll et al. (2007).

In the Admati et al. (1986) approach, this coefficient represents an output of the model, and it is

completely absent from the empirical approach of Bollen and Busse (2004).

There are two major differences between the original Merton (1981) interpretation of the HM

model and the transformation proposed by Ingersoll et al. (2007). The first difference is that, once

we depart from the Admati et al. (1986) strict optimization framework, the value of γTM in the

TM formulation can be fully independent of the level of βTM. A market timer can freely choose her

beta and, at the same time, achieve a level of performance that depends on her skill (or luck) in

timing the market. In the HM model, this is not the case: the level of γHM reflects the difference

between the high market beta and the low market beta. Therefore the value of βHM is present,

albeit implicitly, in equation (5). The second reason for the difference between the two models is

that the Merton interpretation rests on the cost of replicating a protective put on the market. The

quadratic option proposed in equation (6) is not tradable, and so the reasoning is held within a

context of incomplete markets. Below, we follow the very same reasoning as Merton (1981) within

the scope of the TM model.

3 The Treynor and Mazuy model revisited

We examine the properties of a passive portfolio strategy that would exhibit a pattern of returns

similar to equation (2). In the absence of any managerial skill, there is a direct connection between

the levels of the beta and gamma coefficients on the one hand, and the intercept of the regression

on the other. The difference between the resulting "passive" level of alpha and the actual alpha

delivers the performance attributable to the manager.
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3.1 Option replication in the Treynor and Mazuy model

Consider a simple self-financing investment strategy consisting of creating a long position in an

index with a positive or a negative convexity in returns and lending or borrowing at the risk-free

rate. A position involving a long call option written on this index has a positive delta and a positive

gamma. Similarly, a position involving a short put option has a positive delta and a negative

gamma. In principle, one can find an option whose time-to-maturity and moneyness match the

desired sensitivities to the underlying index.

Formally, we can rewrite equation (2) of the actively managed portfolio in terms of total returns:

Rt −Rf = αTM + βTM (Rmt −Rf ) + γTM (Rmt −Rf )
2 + εt

⇒ Rt ≃ α
′
TM + βTMRmt + γTMR

2
mt + εt (7)

where α′TM = αTM + (1− βTM)Rf and the second line follows from the fact that R2f ≃ 0 and

RmtRf ≃ 0.3

It is possible to use options in order to reproduce the return generating pattern of (7). The

equation involves positive linear and quadratic sensitivities with respect to the index. Such a port-

folio with a positive convexity can be reproduced by a protective put, considering only second-order

effects of the option sensitivities (i.e. delta and gamma). To do so, we create a passive portfolio

consisting of a series of positions wi > 0 in n options on the market index, the remainder of the

portfolio (1 −
�
wi) being held in a combination x of the risk-free asset and (1− x) of the index.

Unlike in the HM model, in which the maturity and moneyness of the option are constrained by

the return generating function, the option characteristics are left open. As before, we normalize to

1 the price of the market portfolio at time t.

Let �Rt be the rate of return of the passively managed portfolio involving only a constant in-

vestment in the index, the risk-free asset, and index options. Using the second order Taylor series

expansion, the rate of return during the interval ∆t of the portfolio can be expressed using the

3For instance, using weekly data over the 1999-2014 period, the average of R2m has an order of magnitude
of 10−3, while for the average of R2f and RmRf it reduces to 10−7.
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"greeks", i.e. the partial derivatives of the options with respect to selected variables:

�Rt =
n�

i=1

wi

�
∆(i)Rmt +

1

2
Γ(i)R2mt +Θ

(i)

	
+



1−

n�

i=1

wi

�
(xRf + (1− x)Rmt) + o(∆t) (8)

where τ and κ are the time-to-maturity and the strike price (expressed as a multiple of the spot

price) of the option, respectively, and ∆(i) ≡ ∂Fi
∂M

, Γ(i) ≡ ∂2Fi
∂M2 and Θ(i) ≡ ∂Fi

∂t
are the option deltas,

gammas and thetas. Note that, in the context of constant interest rates and market volatility over

the time interval, the remaining greeks (rho and vega) do not show up. The remaining term o(∆t)

results from the higher orders of the Taylor series expansion and from the potential rho and vega

effects.

Besides the residual term, equations (7) and (8) look very similar. The linear and quadratic

coefficients are equal if the following set of conditions is satisfied:

βTM =
n�

i=1

wi∆
(i) +



1−

n�

i=1

wi

�
(1− x) (9)

γTM =
1

2

n�

i=1

wiΓ
(i) (10)

These two identities ensure that the linear and quadratic sensitivities in (7) and (8) are equal.

An investor could thus enter an arbitrage portfolio by taking a long position in the active portfolio

and a short position in the passive one, with a neutralization of the linear and quadratic systematic

risk exposures. Its rate of return is given by:

Rt − �Rt = α′TM −
n�

i=1

wiΘ
(i) −



1−

n�

i=1

wi

�
xRf + (εt − o(∆t)) (11)

in which the last term represents the residual specific risk of the portfolio, to be diversified away.

Naturally, the passive manager’s objective is to minimize the cost of replication, i.e. to maximize

the constant rate of return retrieved from equation (8) defined as:

�α = max
w∗
1
,...,w∗n,x

∗

�
n�

i=1

w∗iΘ
(i) +



1−

n�

i=1

w∗i

�
x∗Rf


. (12)

while simultaneously respecting equations (9) and (10).
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An active portfolio manager only delivers positive performance if she manages to exceed the

constant of the best possible replication portfolio �α thanks to a superior intercept α′TM. Hence,

to assess the performance of the actively managed portfolio reflected in equation (7), we finally

subtract the average return of the replicating portfolio:

�πTM = Rt − �Rt = α′TM − �α

= αTM +

�
1− βTM −



1−

n�

i=1

w∗i

�
x∗


Rf −

n�

i=1

w∗iΘ
(i) (13)

As for the other adjustments proposed in the literature, the global performance of a market

timer can be decomposed into the regression alpha plus an adjustment, but this adjustment now

explicitly accounts for the portfolio beta, which affects the optimal mix of options and the leverage

level in the replicating portfolio.

3.2 Portfolio performance through replication with a single instrument

The adjustment proposed in equation (13) involves the selection of a number of options as well

as the level of leverage. Even though this adjustment provides the best possible solution to the

portfolio replication problem, this measure is not likely to be implemented as a performance measure

in practice. There are two reasons for this. First, the design of �πTM involves a complex process of

selecting different options and mixing them with each other and with the linear exposure in the index

in the optimal way. This sophisticated program would require a substantial effort to periodically

rebalance the portfolio in order to maintain its optimal character. But even if such an algorithmic

procedure were accessible at reasonable cost, there is a second, more fundamental reason for not

considering expression (13) as a performance measure: it does not correspond to a passive portfolio

replication procedure. In order to assess this cost, a single replication rule must be adopted for the

whole period under study, and it must be implementable in a systematic manner. Knowing ex post

what the active portfolio manager has done, it is impossible to go back in time and discover what

would have been the best mix of derivatives that would replicate the slope and curvature of the

portfolio. Rather, it is reasonable to assess that the passive manager who would have obtained the
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same beta and gamma would have chosen one single option, presumably the cheapest one, which

could have yielded the same linear and quadratic sensitivities to the benchmark index.

We can also justify the use of a single option in the replicating portfolio as a special case of the

general problem described above. If the replicating portfolio is constrained to feature one option

and no linear instrument (ETF or future), then the actual replicating cost will be higher. In order

to achieve this, the constant of equation (8) must be lower than �α or, equivalently, the estimated

portfolio performance must be higher than �πTM . This means that the performance measure obtained

with a single replicating instrument will be interpreted as the upper bound of the actual portfolio

manager’s performance. As it is technically possible to replicate her portfolio within more favorable

conditions, the estimated performance presumably overestimates the true skill of the market timer.

Using a single option and no linear instrument in the replicating portfolio implies setting n = 1

and x = 1. Along the same lines as before, we create a passive portfolio consisting of a long position

w > 0 in a call option on the market index, the remainder of the portfolio (1−w) being held in the

risk-free asset. Equation (8) now becomes:

R
(τ,κ)
t = w

�
∆τ,κRmt +

1

2
Γτ,κR

2
mt +Θτ,κ

	
+ (1−w)Rf + o(∆t) (14)

where τ and κ are the time-to-maturity and the strike price (expressed as a multiple of the spot

price) of the option, respectively, and ∆τ,κ ≡
∂C(M,τ,κ)

∂M
, Γτ,κ ≡

∂2C(M,τ,κ)
∂M2 and Θτ,κ ≡

∂C(M,τ,κ)
∂t

are the option delta, gamma and theta. The challenge is to choose the right option, then to set its

weight for replication purposes.

The linear and quadratic coefficients of equations (7) and (14) are equal if the following set of

conditions is satisfied:

βTM = w∆τ,κ (15)

γTM = w
1

2
Γτ,κ (16)

The system of two equations with three unknowns ∆τ,κ, Γτ,κ and w is indefinite, as there

is a continuum of pairs (τ, κ) that satisfy conditions (15) and (16). The chosen pair minimizes
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the cost of replication, i.e. it maximizes the constant rate of return, which we call α(τ,κ) =

wτ,κΘτ,κ + (1−wτ,κ)Rf . The solution to this problem is given through the following program:

α(τ
∗,κ∗) = max

τ,κ
(wτ,κΘτ,κ + (1−wτ,κ)Rf ) (17)

s.t.
2∆τ∗,κ∗

Γτ∗,κ∗
=

βTM

γTM
(18)

where wτ,κ ≡
βTM
∆τ,κ

> βTM .

Having established portfolio coefficients βTM and γTM , one has to screen all index call options

that respect equation (18). For each eligible pair (τ, κ), there is a corresponding weighting coefficient

wτ,κ, which allows us to check the equation (17). The optimal pair τ∗, κ∗ is obtained by screening

all possible maturities, attaining the corresponding moneyness, and verifying the values of α(τ,κ) in

order to obtain the maximum return.

To obtain the excess performance of the active portfolio that yields the returns (7) over the

replicating portfolio, we deduct α(τ
∗,κ∗):

π∗TM = α′TM − α
(τ∗,κ∗)

= αTM + (wτ∗,κ∗ − βTM)Rf −wτ∗,κ∗Θτ∗,κ∗ (19)

= αTM + βTM

��
1

∆τ∗,κ∗
− 1

	
Rf −

Θτ∗,κ∗

∆τ∗,κ∗

�
(20)

As wτ∗,κ∗ > βTM and Θτ∗,κ∗ < 0 (Merton, 1981), both terms inside brackets are positive. The

first term reflects the interest income saved by the portfolio manager over the replication portfolio.

It represents the incremental money market return earned over the passive portfolio, which must be

invested in options as a higher proportion of the portfolio than was the case at the original exposure

to the market index. The second term features the option theta, as in Merton (1981). This simply

translates the loss in the option time value over the passage of time. Because the adjustment for

market timing is strictly positive, a passive manager who generates no performance must generate

a negative regression intercept αTM .
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3.3 Interaction of directional and quadratic exposures

The reasoning underlying the option replication approach can naturally be extended to the cases of

negative convexity and/or of negative directional exposure.

The situation of a portfolio manager who negatively times the market involves a negative convex-

ity coefficient γ−TM < 0 (where index −TM represents the negative market timer). The analysis is

then conducted along similar lines as above. The replicating portfolio with one option involves going

short an amount of −w puts on the index and investing 1+w in the riskless asset. The performance

of the "contrarian" market timer, denoted π∗−TM , is obtained by the following equation:

π∗−TM = α−TM −
�
wτ∗,κ∗ + β−TM

�
Rf +wτ∗,κ∗Θτ∗,κ∗ (21)

The second and third term are both negative. The intercept of the regression corresponding to

a neutral performance is positive.

A manager who adopts a negative directional exposure, such as a Short Selling fund, also fits

within this framework. To replicate a fund with a negative beta and a positive gamma, one has to

use a long position in a put option. If both the portfolio beta and gamma are negative, then a short

position in a call option will be adopted.

The situation of a market neutral fund cannot be replicated by a simple strategy involving a

call or a put. Indeed, to create an option portfolio with a zero (or a very low) delta and positive

or negative gamma, the appropriate strategy is the bottom or the top straddle. The bottom strad-

dle consists of going simultaneously long on a call and a put with the same strike and maturity,

respectively. The top straddle involves the reverse (selling a call and a put).

To activate the straddle, the portfolio beta, which is close to zero, is separated into two parts:

a long part β+TM > 0 and a short part β−TM < 0. To ensure the identical convexity of each option,

we set γTM = γ+TM + γ
−
TM where

β+TM

γ+TM
= −

β−TM

γ−TM
. Using the same superscripts for the greeks of the

call option (+) and of the put option (−), the performance of this non-directional fund is given by:

πndTM = αTM +
�
w+τ∗,κ∗ +w

−
τ∗,κ∗ − βTM

�
Rf −w

+
τ∗,κ∗Θ

+
τ∗,κ∗ −w

−
τ∗,κ∗Θ

−
τ∗,κ∗ (22)
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Table 1 summarizes the kind of option strategy replicating each type of market timing portfolio.

Insert Table 1 here

3.4 Multi-factor quadratic model

An actively managed portfolio producing a quadratic pattern of returns such as in (7) is likely to

bear a significant specific risk, represented by εt in the equation. There is ample evidence that this

error term does not behave like white noise. As Detemple et al. (2010) point out, the correlation

between the portfolio and market returns in the presence of market timing varies with the level of

market returns. This is empirically confirmed by Mattalin et al. (2011). As a result, the specific

component εt displays ample heteroskedasticity. This could distort the arbitrage argument that is

essential to the portfolio replication approach. Therefore, the specification issue has a particular

importance in this context. One has to ensure that the return generating process employed reaches

a very high explanatory power. The proposed multi-factor extensions of the original market model

employed by Treynor and Mazuy are of interest in this regard.

Bollen and Busse (2004) and Krimm et al. (2011) apply the Fama and French (1993) - Carhart

(1997) four-factor model to obtain a more precise return-generating process, and they add a single

term to reflect the ability to anticipate variations in the market returns. This basic setup has been

extended along two dimensions. Chen et al. (2013) apply quadratic terms to all four risk factors,

and find evidence of growth timing. Comer (2006) and Comer et al. (2009) extend the four-factor

specification to a set of four bond indexes retrieved from the Blake et al. (1993) 6-factor bond model.

This overlay enables the authors to capture the potential risk exposures of hybrid funds, with a

reported average R-squared value reaching more than 98% for the two samples they studied.

Lehmann and Modest (1987) provide the foundations for generalizing the TM model to a multi-

factor setting. Considering that the manager can anticipate the variations in a numberK of indexes,

the authors propose the addition of the same number of squared returns to the regression, but also

the addition of all the two-by-two interaction terms. This would leave us with K (K − 1) /2 market

17



timing terms to compute, with presumably a high number of insignificant explanatory variables,

inducing issues of overspecification. In his 8-factor model (4 for stocks and 4 for bonds), Comer

(2006) defends a more parsimonious solution. He discards all the interaction terms, and considers

two market timing factors: one for the stock market and one for the bond market.

Our portfolio replicating approach carries a simpler multi-factor extension. Consider that the

linear return generating specification featuresK risk factors, but that only a subset L ≤ K are prone

to a market timing behavior. For each of these L factors, we can isolate the linear and quadratic

sensitivities and apply the same reasoning as in the previous section. For each underlying index, the

weight to be invested in options is first determined. Once all the weights are set, they are summed

up with the linear betas on the K − L factors with no market timing, and the remainder of the

portfolio value is invested in the risk-free asset. Formally, the model is written as:

Rt ≃ α+



1−

K�

i=1

βi

�
Rf +

K�

i=1

βiRit +
L�

i=1

γiR
2
it + εt (23)

where, as in equation (7), the terms R2f and RitRf are assumed to be negligible. The associated

market timing adjusted performance is computed as:

π∗ = α+
L�

i=1

�
wτ∗i ,κ∗i − βi

�
Rf −

L�

i=1

wτ∗i ,κ∗iΘτ∗i ,κ∗i (24)

which is a straight generalization of equation (19) to a multi-index model. Note that we do not

require any correlation structure between the risk factors, as each replicating portfolio is considered

in isolation.

4 Option rebalancing and cost issues

The portfolio replicating approach of the TM quadratic return generating process creates two poten-

tial problematic issues. The first relates to the risk of discrete rebalancing, which may induce a drift

in the linear and quadratic sensitivities of the replicating portfolio to the underlying of the option,

reducing the mimicking properties of the portfolio. The second is linked to the objective of finding
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the cheapest replicating option, whose empirical behavior (if maturity is too low, for instance) could

become too remote from the market timing portfolio even though the beta and gamma constraints

might be formally met. We discuss these two issue below.

4.1 Systematic rebalancing risk

Equation (8) holds when portfolio rebalancing occurs continuously. When returns are measured

on a discrete basis (from one day to two months), for instance, the risk of the hedged portfolio

can become substantial (Gilster, 1997). Even for relatively short frequencies (one day or one week),

Gilster shows that the rebalancing risk of a hedged position is usually significant.

Nevertheless, the issue of the replication of the market timer portfolio is less about the extent

of the rebalancing risk than about its systematic character, i.e. its impact on the regression beta

and gamma of the replicating portfolio. Gilster (1990, 1997) documents that replicating portfolios

for near-to-maturity options, when rebalanced in discrete-time, exhibit significant systematic risk

with the underlying index returns. Considered within the TM quadratic regression framework, the

beta would not simply correspond to the product w∆τ,κ as in equation (9), but would be greater.

Part of the bias could be corrected for through the quadratic beta that also explains the replicating

portfolio returns, thereby reflecting the gamma risk emphasized by Gilster (1997). Thus, with the

specification of equation (14), the rebalancing risk would mostly refer to a third-order effect.

To check the magnitude of this bias, it is necessary to ensure that (i) the slope and convexity

of the sensitivity of the replicating portfolio match the beta and gamma of the TM regression

(fitting constraint), and (ii) the ex-post cost of the replication is close to the ex-ante estimation

(unbiasedness constraint).

To respect the first constraint, the strike price and time-to-maturity of the cheapest-to-replicate

option would need to respect some tolerance regarding the quality of the quadratic fit regarding the

individual coefficients. This translates into the need to supplement the optimization problem (17)
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with two additional constraints:

���βTM − β
(τ∗,κ∗)

��� ≤ tolβ (25)
���γTM − γ

(τ∗,κ∗)
��� ≤ tolγ (26)

where β(τ
∗,κ∗), γ(τ

∗,κ∗) and ηt are obtained by the reverse quadratic regression of the replicating

portfolio returns on the underlying index:4

R
(τ∗,κ∗)
t = c(τ

∗,κ∗) + β(τ
∗,κ∗)Rmt + γ

(τ∗,κ∗)R2mt + ηt (27)

Imposing restrictions on the significance of the reverse quadratic regression compared to the

TM specification would be superfluous. The TM model represents the return generating process of

an actively managed portfolio, which potentially mixes asset selection and market timing skills. If

the manager places strong emphasis on selectivity, the residual term εt of the quadratic regression

will presumably be volatile, and the specific risk will be high.5 As the reverse quadratic regression

reproduces a mere fitting exercise on passive portfolio returns, there is no expected connection with

the significance of the original market timing model.

Regarding the second (unbiasedness) constraint, the reverse regression provides a quality check

of the ex-post (actual) cost of the option replicating approach. The difference between equations(27)

and (8) taken at point (τ∗, κ∗) yields the following inequality:

���c(τ∗,κ∗) − α(τ∗,κ∗)
��� ≤ tolβ

��R̄m
��+ tolγR̄2m = tolα (28)

If the linear quadratic coefficients are arbitrarily close to the original TM values, then the

constant of the regression c(τ
∗,κ∗) will also approach the theoretical value of the constant rate of

return α(τ
∗,κ∗). The difference between c(τ

∗,κ∗) and α(τ
∗,κ∗) is an empirical matter. Expression

α(τ
∗,κ∗) represents an ex-ante cost of replicating the market timer’s portfolio with options, and

4As they only involve individual parameter values, the constraints are compatible with the multi-factor
specification (23).

5Nothing in our setup precludes the use of the appraisal ratio to assess the risk-adjusted performance of
the manager. This simply entails replacing the regression alpha with expression (24) at the numerator.
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corresponds to the original Merton (1981) interpretation. After the option replicating strategy has

been systematically implemented, the outcome of regression (27) depends on the realizations of the

index returns. This may induce deviations from the effects foreseen by the Taylor series expansion.

For instance, a very large outlier may have occurred during the estimation period. Effects of a higher

order than two, captured neither by the delta nor by the gamma, might then become significant in

the option returns. These effects impact the estimates of β(τ
∗,κ∗) and γ(τ

∗,κ∗) in the quadratic fitting

equation. The regression intercept c(τ
∗,κ∗) represents the ex post return of the option portfolio.

4.2 Cost-minimizing option

Implementing a strategy that consists of replicating a portfolio with a single long call option involves

a careful selection of this option. As the underlying asset is determined by the selection of the index

in the TM model, the choice collapses to setting the moneyness κ and the time-to-maturity τ of

the option. The contract must respect a constraint, namely the target level of the ratio of the delta

over its gamma in equation (18). Then, amongst all eligible options, the best one is the option

that minimizes the cost of replication, i.e. that maximizes expression wτ,κΘτ,κ+(1−wτ,κ)Rf . The

function to maximize depends on the pair (τ, κ) through the option theta, but also through the

weight invested in the option in the passive portfolio wτ,κ ≡
βTM
∆τ,κ

.

The partial derivatives of delta and gamma with respect to time are usually called Charm and

Color, respectively (Garman, 1992). In the Black-Scholes-Merton world, they bear an analytical

form and their behavior is well-known. Unfortunately, even in such a controlled environment, their

signs are erratic. Haug (2003) presents an example where the Charm is negative for ITM and

positive for OTM calls, but at the same time the Color is negative for the near ATM and positive

for the far OTM or ITM options. Overall, the evolution of the ratio of delta over alpha over time

(and so their derivative with respect to time-to-maturity) is indeterminate.

We illustrate in Figure 1 the sets of parameters that reach different target values of the ratio

βTM
γTM

= 2∆τ,κ
Γτ,κ

for options that are priced under the Black-Scholes-Merton model. We take as inputs
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the average 3-month T-Bill rate and average volatility of the S&P500 weekly returns over the Jan.

1999 — Sept. 2008 period, namely 0.066% and 2.289%, respectively. The plotted contour lines

correspond to the target values of this ratio taking multiples of 1/3, ranging from 0 to 3. The ratio

represents the fraction of beta over gamma in the TM model. As the average market beta is equal to

one, we span in principle values of gamma starting from 1/3 onwards. We set the range of maturities

to 1 to 52 weeks, and the range of moneyness ratios from 0.80 to 1.00.

Insert Figure 1 here

Interpreting the ratio 2∆τ,κ
Γτ,κ

as a reverse indicator of curvature, Figure 1 shows that only ITM

options (i.e. whose strike κ < 1) provide potentially meaningful convexity. For long maturity options,

the progression of the ratio remains gradual. With a one-year maturity option, it takes a moneyness

of ca. 90% to obtain a beta equal to half the option gamma or, by identity, a TM beta equal to

its gamma. On the other hand, the ratio evolves very quickly with short maturity options. When

the maturity approaches one week, i.e. when the lowest maturity is not lower than the frequency of

returns estimation, the ratio becomes huge when the moneyness reduces to lower than 93%.

The next step of the analysis is to find out the cheapest-to-replicate option among the options

that respect a target ratio value. Following the same example as above, we set βTM = 1 and let the

value of βTM
γTM

be equal to 2 (blue line), 1 (red line) and 0.67 (green line). These values correspond,

respectively, to the contour lines between the dark and light green regions (ratio = 2), sky and

light blue regions (ratio = 1) and light and dark blue regions (ratio = 0.67) in Figure 1. The

γTM equals 0.5, 1.0 and 1.5, which are reasonable values for a market timer as shown later in our

empirical study. For each feasible pair (τ, κ), we compute the cost of the option replicating portfolio

−α(τ,κ) = −wτ,κΘτ,κ − (1−wτ,κ)Rf . The lower this cost, the cheaper it is to replicate the option.

Insert Figure 2 here

The replication cost increases with the level of γTM. This is the natural consequence of increasing

the convexity of the portfolio payoff, which is done at the expense of the option theta. The com-
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parison of the three lines shows quite small differences between the patterns of the cost function.

For γTM = 0.5 (blue line), the cost increases from 1.420% to 1.613%. The start and end points are

2.853% and 3.319% for γTM = 1, and 4.293% and 5.105% for γTM = 1.5, respectively. Thus, the

cost increases slightly less than proportionally with the value of gamma and with maturity.6

In all the illustrated cases, the option replication cost increases with option maturity. Even

though this result cannot be generalized (because option Charm and Color have indefinite signs),

our realistic example shows that this scenario can happen. This means that, in the absence of any

constraint on specific or approximation risk control, the cheapest-to-replicate option might have

a maturity of one period. As it matches the frequency of returns computation, the option-based

portfolio produces the same returns as in the HM model, and is unlikely to be adequately estimated

using the TM specification in the reverse regression. Hence, our case illustrates the need to assign

constraints (25) and (26) for the reverse regression of option returns.

5 The choice of the replicating option

The goal of this section is to identify the most satisfactory trade-off between the regression fit and

the accuracy of the intercept.

As indicated in the previous section, the option choice without constraints might realistically

indicate that the shorter the time to maturity, the cheaper the option replication. The reverse

quadratic regression (27) restricts the feasibility of maturity reduction because the quality of the

fit naturally deteriorates as the option maturity decreases. The goal of this subsection is to detect,

within the same setup as in the previous example, the range of option maturities for which the

approximation error induced by the Taylor series expansion is "acceptable", i.e. it falls within the

tolerance bounds for the alpha, beta and gamma retrieved from the quadratic regression.

We set portfolio beta as equal to one and adopt the same set of TM gammas as before, namely

0.5, 1.0 and 1.5. The sample period is Jan. 1999 — Sept. 2008 and we create portfolios with a

6For a given value of gamma, the cost rises proportionally to the level of beta regardless of the maturity.
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quadratic exposure on the S&P500 index. In order to ensure the correspondence between the

Black-Scholes option prices and the behavior of the time series of index returns, we posit a flat

weekly volatility of 2.375%. By using the sample standard deviation of returns in option prices, we

avoid introducing a pricing bias in the estimation of regression (27). For each feasible pair (τ, κ), a

portfolio is constituted every week by investing a weight wτ,κ in the option at a price C(M,τ, κ) and

(1−wτ,κ) in the risk-free asset. The following week, the option is sold at a price C(M,τ−1, κ
(1+Rm)

),

the risk-free return is booked on the remaining part, and the portfolio is rebalanced. We estimate

the reverse quadratic regression by applying the TM specification to the returns of this portfolio.

Figure 3 reports the evolution of the difference between the intercept of the reverse regression

and the analytical portfolio alpha, i.e. c(τ,κ)−α(τ,κ) (Figure 3a), the reverse regression beta (Figure

3b), and the reverse regression gamma (Figure 3c), as a function of the time-to-maturity from 1 to

30 weeks. The values for γTM = 0.5, 1.0 and 1.5 are printed in green, red and blue, respectively.

Insert Figures 3a, 3b and 3c here

While the analytical replicating cost −α(τ,κ) increases with the option maturity, Figure 3a shows

that the regression intercept c(τ,κ) becomes closer to zero as time-to-expiration rises. Because of the

poor regression fit for near-maturity options, c(τ,κ) starts at a very negative level (from −6.24%

to −8.58%). As the regression significance level increases with maturity, the intercept gradually

approaches zero. In the cases illustrated in Figure 3, the two functions intersect at maturities equal

to 23 weeks (γTM = 0.5), 14.5 weeks (γTM = 1.0) and 10.5 weeks (γTM = 1.5). Figures 3b and 3c

indicate that the convergence of the coefficients for the linear and quadratic term asymptotically

converge to their theoretical values. The speed of convergence typically decreases after a 5-week

maturity. The linear coefficient (β(τ,κ)) remains very close to its target value of 1, with the distance

becoming lower than 0.01 when the maturity exceeds 20 weeks. As expected from the imperfect fit

of the second order approximation, the value of γ(τ,κ) remains more remote. The coefficient estimate

remains systematically upwardly biased with respect to its target value. This results from the small

variability of the observed squared market returns (σ(R2m) = 0.90% on a yearly basis) as compared
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to the returns (σ(Rm) = 17.13%). In this OLS setup, the smaller variation in the independent

variable translates into a larger standard deviation in the estimated coefficient.

To obtain a more rigorous analysis of the set of option maturities that support reasonable

coefficient values for the reverse quadratic regression, we apply equations (25) and (26) to our data

set. To reflect the volatility levels of the independent variables, the tolerance levels are adjusted by

setting tolβ = θ/t̂Rm and tolγ = θ/t̂R2m for different values of a constant θ. This yields naturally

tolα = θ

�
|R̄m|
t̂Rm

+ R̄2m
t̂
R2m

	
by applying equation (28). We set θ to 0.006, 0.004 and 0.002. These values

are chosen so as to produce usable maturity intervals and to analyze how they shrink as the tolerance

level decreases. The results are displayed in Table 2.

Insert Table 2 here

For each value of Γτ,κ and θ, the table reports the maturity intervals that respect the tolerance

level for each parameter. The last row displays the intersection between these intervals. Interestingly,

the intervals become thinner as the convexity of returns diminishes. The regression intercept yields

the most severe constraint on the upper bound of the interval because, as shown in Figure 3a, the

reverse regression intercept tends to become too large for longer maturities, while its theoretical

value is assumed to decrease. For θ = 0.006, a large set of option maturities is acceptable, while the

interval becomes an empty set for too low convexity and tolerance levels (Γτ,κ = 0.5 and θ = 0.002).

Overall, maturities between 18.9 and 26.8 weeks comply with most intervals: any maturity fits for

Γτ,κ = 1.5, all from 24.8 to 26.8 weeks for Γτ,κ = 1.0, and from 18.9 to 23.8 weeks for Γτ,κ = 0.5.

To summarize our results, the simulations indicate that, for reasonable values of the option

convexity gamma of the replicating option, maturities of around six months induce the best match

between the regression results and the Taylor series expansion of the option replicating strategy.
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6 Conclusion

There is a clear isomorphism between the returns of a market timing fund and the pattern of

a protective put or a covered call. Nevertheless, when performance measurement is involved, this

isomorphism has only been convincingly translated in the Henriksson and Merton (1981) model in a

companion paper by Merton (1981). Even though the Treynor and Mazuy (1966) approach remains

the other major regression-based model for the measurement of a market timer’s performance, the

literature has nevertheless produced only approximate performance corrections. Except in the work

of Detemple et al. (2010), who theoretically adjust performance for the fund’s specific risk, none of

the solutions proposed so far explicitly accounts for the fund’s linear sensitivity (beta) with respect

to the benchmark portfolio. This shortcoming can only lead to the adjustment being imperfect.

Our paper goes back to basics. Starting from the quadratic return specification underlying

the TM model, we identify a passive replicating portfolio with cash and options. The intuition is

straightforward: in a mean-variance world where options are priced using the Black-Scholes-Merton

formula, any passive portfolio manager could achieve this pattern. A manager’s performance is thus

reflected in the difference between the regression’s alpha and the replicating cost of her portfolio.

Starting from this rather simple idea, we have had to overcome two issues. The first relates to

the way to revert from the replicating portfolio to the fund’s returns. The resulting rebalancing

risk is largely alleviated by the quadratic character of the TM equation. The second issue relates

to the identification of the cheapest option; we demonstrate how this can be achieved by choosing

the option moneyness and maturity. No serious hindrance seems to endanger the practicability of

the replication approach. When returns are measured on a weekly basis, option maturities between

one quarter and one semester seem to provide a reasonable trade-off between the cost and the

effectiveness of the replicating strategy.

This research opens up the way to establishing a fresh view of the timing skills of managers active

in the mutual fund and the hedge fund industry. With the methodological framework developed in

this paper, we hope to provide new avenues for research in the performance of market timers.
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Figures

Figure 1: Target ratio
βTM
γTM

=
2∆τ,κ
Γτ,κ

as a function of option moneyness and maturity

This figure plots the contour lines of the target ratio βTM
γTM

= 2∆τ,κ
Γτ,κ

as a function of the option

moneyness (horizontal axis, expressed as a fraction of the spot underlying price), and maturity

(vertical axis, in weeks). We use the Black-Scholes-Merton option pricing formula with the inputs

of the average 3-month US Treasury Bill rate and the average volatility of the market index be-

tween January 1999 and September 2008, which are set to a weekly value of 0.066% and 2.289%,

respectively. The bottom left area corresponds to values of the ratio above 3.
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Figure 2: Evolution of α(τ,κ) as a function of option maturity
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This figure reports −α(τ,κ) = −wτ,κΘτ,κ − (1−wτ,κ)Rf in percentage terms, annualized, as a

function of option maturity for βTM = 1 and a target value of βTM
γTM

=
2∆τ,κ
Γτ,κ

equal to 2 (blue line),

1 (red line) and 0.67 (green line). The values of −α(τ,κ) are reported on the right axis. The dotted

lines represent the corresponding option moneyness expressed as a fraction of the spot underlying

price, whose values are reported on the left axis.
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Figure 3: Evolution of c(τ,κ), β(τ,κ) and γ(τ,κ) as a function of option maturity
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Figure 3a: evolution of c(τ,κ) − α(τ,κ)
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Figure 3b: evolution of β(τ,κ)
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Figure 3c: evolution of γ(τ,κ)

This figure reports the values of the regression parametersR(τ,κ)t = c(τ,κ)+β(τ,κ)Rmt+γ
(τ,κ)R2mt+
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ηt as a function of option maturity and corresponding moneyness for βTM = 1 and a target value of

βTM
γTM

=
2∆τ,κ
Γτ,κ

equal to 2 (blue line), 1 (red line) and 0.67 (green line). In Figure 3a, we also report

−α(τ,κ) = −wτ,κΘτ,κ− (1−wτ,κ)Rf (thin-dotted line) and the difference c(τ,κ)−α(τ,κ) (solid line).

In this figure, the values are shown in percentage terms. In Figures 3b and 3c, the thick-dotted lines

represent the corresponding target values.
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Tables

Table 1: Synthesis of option replication strategies

Quadratic exposure

γTM > 0 γTM < 0

Directional βTM > 0 Long call Short put

exposure βTM ≃ 0 Bottom straddle Top straddle

βTM < 0 Long put Short call

This table represents the types of strategy involving options that replicate all possible patterns

of the TM regression.
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Table 2: Maturity ranges with tolerance levels

Gamma Criterion θ = 0.6% θ = 0.4% θ = 0.2%

c(τ,κ) − α(τ,κ) [3.26, 33.1] [4.66, 23.8] [6.84, 16.1]

Γτ,κ = 0.5 β(τ,κ) ≥ 1.51 ≥ 2.96 ≥ 9.24

γ(τ,κ) ≥ 6.98 ≥ 11.2 ≥ 23.8

α ∩ β ∩ γ [6.98,33.1] [11.2,23.8] ∅

c(τ,κ) − α(τ,κ) ≥ 3.60 [5.22, 44.7] [8.31, 26.8]

Γτ,κ = 1.0 β(τ,κ) ≥ 1.41 ≥ 2.65 ≥ 7.22

γ(τ,κ) ≥ 6.71 ≥ 10.9 ≥ 24.8

α ∩ β ∩ γ ≥ 6.71 [10.9,44.7] [24.8,26.8]

c(τ,κ) − α(τ,κ) ≥ 3.37 ≥ 4.95 ≥ 8.87

Γτ,κ = 1.5 β(τ,κ) ≥ 1.20 ≥ 2.00 ≥ 4.75

γ(τ,κ) ≥ 5.30 ≥ 8.33 ≥ 18.9

α ∩ β ∩ γ ≥ 5.30 ≥ 8.33 ≥ 18.9

This table reports the maturity intervals for which the difference between the coefficients of the

reverse quadratic regression R(τ
∗,κ∗)

t = c(τ
∗,κ∗) + β(τ

∗,κ∗)Rmt+ γ
(τ∗,κ∗)R2mt+ ηt and their respective

target values falls below a specific tolerance level. We set tolβ = θ/t̂Rm, tolγ = θ/t̂R2m and tolα =

θ

�
|R̄m|
t̂Rm

+ R̄2m
t̂
R2m

	
with three possible values of θ. Tested option maturities range between 1 and 52

weeks. The last row represents the intersection between the intervals set for each coefficient.
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