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A one-sided model of the thermal Marangoni instability owing to evaporation into

inert gas is developed. Two configurations are studied in parallel: a horizontal liquid

layer and a spherical droplet. With the dynamic gas properties being admittedly

negligible, one-sided approaches typically hinge upon quantifying heat/mass transfer

through the gas phase by means of transfer coefficients (like in the Newton’s cooling

law), which in dimensionless terms eventually corresponds to the Biot number. Quite

a typical arrangement encountered in the literature is a constant Biot number, the

same for perturbations of different wavelengths and maybe even the same as for the

reference state. In the present work, we underscore the relevance of accounting for its

wavenumber dependence, which is especially the case in the evaporative context with

relatively large values of the resulting effective Biot number. We illustrate the effect

in the framework of the Marangoni instability thresholds. As a concrete example,

we consider HFE-7100 (a standard refrigerant) for the liquid and air for the inert

gas.

∗ H.Machrafi@ulg.ac.be



2

I. INTRODUCTION

When a vertical temperature gradient is imposed across a horizontal liquid layer, its
horizontally uniform state can become convectively unstable. This is generally known as a
Bénard instability. This instability can essentially be driven either by buoyancy (Rayleigh
instability) or by surface-tension gradients (Marangoni instability). This latter instability
mechanism was first pointed out in [1], and since then has become a key effect in the
studies of the Bénard instability [2],[3],[4] in the presence of a free interface. Rather than
by an externally imposed temperature gradient, Bénard instability can also be caused by
evaporation, when the liquid evaporates into an inert gas right above it. Due to the latent
heat of evaporation, this leads to a reduction of the temperature at the surface of the
liquid. Thus, as such, vertical temperature gradients occur naturally inside the system
(even in isothermal surroundings), e.g. [5], [6]. Evaporation is therefore potentially able to
induce thermal Rayleigh-Marangoni-Bénard instabilities, which has indeed been observed
experimentally and numerically [7], [8], [9], [10], [11]. From the viewpoint of a critical layer
thickness for the instability onset (the issue we shall focus upon in the present paper),
the Marangoni effect is often the dominating instability mechanism. Indeed, the critical
thicknesses prove to be rather small for reasonably volatile liquids [12], and the buoyancy
effects are expected to play no role there. Therefore, it is only the Marangoni instability that
will be considered in this paper and used for further interpretations. Apart from evaporating
horizontal layers, we shall here also be interested in a similar problem of the Marangoni
instability in evaporating spherical droplets. The critical droplet radii are likewise expected
to be small, so that gravity effects are not essential. Such a spherical droplet problem,
formally posed in the absence of gravity, would at the very least correspond to droplets in
microgravity.

The onset of instability is linked to physical properties and competing time scales in both
the liquid and gas phases. Often, the density and dynamic viscosity in the gas are small
and, besides, the diffusive time scales in the gas phase are small with respect to those in
the liquid phase. Therefore, the roles of the two phases in the instability mechanisms can
be very different and often the gas phase plays a more passive one. For this reason, the gas
layer is often not studied in detail and a one-sided model of the system is rather invoked,
for which the influence of the gas on the liquid is described through the introduction of
phenomenological boundary conditions at the liquid upper surface. A well-known example
of such a phenomenological relationship is the Newton’s law of cooling, which states that
the heat flux at the liquid upper surface is proportional, by means of a certain transfer
coefficient, to the difference between the temperature of this surface and the temperature
far away in the gas. The Biot number is essentially a dimensionless version of this transfer
coefficient. We note that in this way the same Biot number equally applies both to the base
(horizontally homogeneous, reference) state of the system and to perturbations. In other
words, it is constant (wavenumber-independent). This kind of approach to describe the gas
influence has been used quite often in the literature, both for horizontal layers [13], [14], [15]
and for spherical droplets [16]. In the case of evaporation (into ambient air), one arrives
again at a single constant effective thermal Biot number, now dependent on both mass and
heat transfer coefficients in the gas [17]. On the other hand, no heuristic transfer coefficients
and Biot numbers are adopted in the studies [18], [19] for evaporating spherical droplets.
Rather, a Biot number is deduced from an exact treatment of the spherically symmetric heat
and mass transfer problem in the gas. Yet, this same Biot number (up to linearizations) is
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subsequently applied to the problem of perturbations, hence once again implying a constant
(wavenumber-independent) Biot number.

Another type of Biot number obtained during the reduction of two-layer systems to one-
sided ones, is dependent on the wavenumber of perturbations and was introduced for instance
in [5], [6], [12], [20], [21]. Considering the wavenumber dependence of the Biot number is
physically more consistent, since this implies taking into account transfer through the gas
phase not only between the interface and the ambient as for the former (constant) type of
Biot numbers, but also between different interface spots. Overall, a wavenumber-dependent
Biot number is substantially different from constant ones, e.g. because it renders the problem
non-local. So, a question arises whether considering the wavenumber dependence in the Biot
number is of any practical importance. In the present work, it is therefore the purpose to
explore this question, which we shall do in the context of the Marangoni-instability onset.
A linear stability analysis will be carried out comparing the results based on the constant
and the wavenumber-dependent Biot numbers. With the intention to generalize this scope,
we pursue the study for both horizontal layers and spherical droplets.

It is clear that in such evaporating configurations, the reference state, upon which devel-
opment of the Marangoni instability is considered, is inherently transient. After all, neither
the layer thickness, nor the droplet radius remain constant in time. However, assuming
evaporation to be slow compared to the thermal time scale in the liquid, which we shall
legitimately do here, we arrive at a quasi-stationary formulation with respect to the size of
the system, treated as constant. Yet the reference state can still be transient with respect
to a possible evolution of the temperature and concentration fields from their initial values,
although stationary profiles thereof are eventually attained. Furthermore, in the droplet
case, it is only at this transient stage that an essential Marangoni instability can in fact be
expected, when there exists a non-trivial temperature profile inside the droplet [18], which
becomes merely constant when attaining stationarity [22]. The same actually goes for the
layer with an insulated bottom, which is a close counterpart of the droplet in this regard.
Thus, in the present paper, we generally deal with transient reference states, even if the
variation of the size of the system is neglected. The stability analysis is then carried out by
means of the frozen-time approach. In contrast, note that for the layer with a fixed temper-
ature at the bottom, a non-trivial stationary reference state is attained and the Marangoni
instability can exist at this stage too.

The paper is organized as follows. In section II, we continue with describing the config-
urations of the horizontal layer and the spherical droplet, as well as the basic assumptions.
These two configurations will be treated side by side throughout the paper. In section III,
the reference state is considered. Section IV is dedicated to the linear stability analysis, a
first step of which is a derivation of the wavenumber-dependent Biot number. The results
are discussed in section V, and the conclusions are summarized in section VI.

II. PHYSICAL DESCRIPTION OF THE SYSTEMS

The two evaporative systems that are considered in this paper are schematically represented
in Fig.1, namely a horizontal layer with an undeformable free surface and a spherical droplet
(for which gravity is neglected), respectively. In both these systems, we have a pure liquid
(here we consider the example of HFE-7100, a common refrigerant commercialized by 3M)
evaporating into ambient air maintained at Tamb, pamb and χamb, which are the ambient
temperature, pressure and vapor molar fraction (ambient humidity), respectively. Thus,



4

FIG. 1. (Color online) Sketches of the horizontal-layer (a) and spherical-droplet (b) systems.

the gas phase is composed of air (whose solvability in the liquid is neglected) and vapor.
In this work, we shall consider χamb = 0. The aforementioned ambient conditions are
formally imposed infinitely far from the droplet, whereas in the layer configuration they are
imposed at a certain transfer distance hgas from the interface. This transfer distance can
be described as a typical equivalent (effective) diffusion length in the gas phase at which
the diffusive transport is formally of the same magnitude as the convective transport in
a real setup, as determined by air currents which may be naturally present (e.g., due to
buoyancy) or deliberately created (ventilation or gas flow, see [20]). In some cases, it can
be roughly identified with the height of an open container [12]. At the bottom of the liquid
layer, we consider two types of conditions: an insulated bottom and a bottom with a fixed
temperature equal to Tamb. The insulated-bottom situation is a closer counterpart of the
droplet case. The quantities at the liquid-gas interface are marked by the subscript ‘Σ’, e.g.
TΣ and χgΣ for the interfacial temperature and vapor molar fraction, respectively. Local
thermodynamic equilibrium is assumed at the interface, so that χgΣ is determined by the
saturation conditions. Both systems defined possess a symmetry: a horizontal translational
one for the layer and a spherical (rotational) one for the droplet. The base (reference) states
of both systems clearly respect these symmetries: everything depends just on the vertical
coordinate z for the layer, and on the radial coordinate r for the droplet. Evaporation
(provided that χgΣ > χamb) then leads to the cooling of the liquid-gas interface (TΣ < Tamb)
for both systems. Marangoni instability is then expected to set in for a sufficiently thick
layer or large droplet, leading to a symmetry breakup. It is this Marangoni instability onset
that we are concerned with in the present paper.

The horizontal layer is characterized by a liquid thickness hliq, while the spherical droplet
by a droplet radius R. For convenience, we define a generic symbol, ℓ, for the characteristic
length:

ℓ ≡
{

hliq (layer)
R (droplet)

(1)

Note that the transfer distance yields, for the horizontal layer, an extra parameter hgas

with respect to the spherical droplet. However, as far as this extra parameter is concerned,
we shall rather work in terms of a dimensionless total height H ≡ (hliq + hgas)/hliq. We will
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show later on in this paper that, despite the “infinite gas layer” of the droplet, a qualitative
correspondence with the droplet system is observed for H − 1 = O(1), whereas the cases
H − 1 ≪ 1 and H ≫ 1 may be essentially different.

The other noteworthy assumptions made in the analysis are the following. We assume
that the evaporation process is slow with respect to the thermal diffusion time in the liquid.
In other words, the time scale of the interface regression ℓ/(dℓ/dt) is much larger than the
heat diffusion time scale ℓ2/κl, which is equivalent to the Péclet number ℓ(dℓ/dt)/κl being
small. Here, t is the time, κ is the thermal diffusivity, while the subscripts ‘l’ and ‘g’ at the
material properties refer to the liquid and gas phases, respectively. The implication of this
assumption is that the interface regression can be neglected, and the layer thickness and
the droplet radius treated as constant (quasi-stationarity) when studying the development
of the reference profiles (generally assumed transient) and of the Marangoni instability.
Likewise, in a regime of Marangoni convection, the contribution of evaporation to the velocity
field in the liquid is negligible against the Marangoni-induced velocity field. Furthermore,
on account of the generally satisfied inequalities κl ≪ κg and κl ≪ Dg, where D is the
diffusion coefficient, the characteristic times in the gas will be much smaller than the thermal
time in the liquid so that we can assume quasi-stationarity in the gas phase, while keeping
transience in the liquid. The inequalities κl ≪ κg and κl ≪ Dg mean also that for the
instability or convection developing in the liquid, we can neglect convective effects (with
respect to the diffusional ones) in the gas phase even when they are essential in the liquid.
Possible buoyancy convection in the gas does not appear to be an issue either, given a stable
stratification therein due to the interface being colder than the ambient medium (evaporative
cooling) and the vapor being in most cases heavier than air (as for our example with HFE-
7100). All these observations, together with the fact that the gas dynamic viscosity µg is
negligible against the liquid one µl, encourage the use of a one-sided model for our study,
with the gas phase being accounted for by an appropriate Biot number. We will show that
it is in fact important that this Biot number be defined as a function of the wavenumber.

It should also be mentioned that convective effects in the gas phase are not only associated
with Marangoni convection, but also with the velocity due to evaporation (Stefan flow). The
convective effect of Stefan flow is inessential for dilute vapors, but becomes important if the
vapor content is comparable with that of the inert gas. The same goes for the effect of
gas-density non-uniformity. In the present paper, we shall formally work in the dilute-vapor
limit and thus have a quasi-stationary pure-diffusion regime for mass transfer in the gas
phase of constant density, hence simply ∇2χg = 0 (∇2 being the laplacian) in terms of the
vapor molar fraction χg (see [25] and [26]). As κg and Dg are typically of the same order for
gases, for the gas temperature field Tg we also have simply ∇2Tg = 0.

III. REFERENCE STATE

In the present section, we consider the reference (base) states of the two systems involved,
whose linear stability will subsequently be studied. In the gas phase, the analysis can right
away be performed analytically thanks to the hypotheses outlined in the previous section.
This is what forms the subject of subsection IIIA, which is then made use of in subsection
III B in order to arrive at a one-sided formulation in the liquid. Finally, the computed time-
dependent reference profiles in the liquid are presented in subsection III C. Hereafter, the
subscript ‘ref ’ will be used to mark the dependent variables of the reference state.
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A. Gas phase

With the hypotheses described before and for the layer and the droplet configurations,
respectively, the reference molar-fraction and temperature fields in the gas are simply

χg,ref =

{ χgΣ,ref − (χgΣ,ref − χamb)
z − hliq

hgas

(layer)

χamb − (χamb − χgΣ,ref )
R

r
(droplet)

(2)

and

Tg,ref =

{ TΣ,ref − (TΣ,ref − Tamb)
z − hliq

hgas

(layer)

Tamb − (Tamb − TΣ,ref )
R

r
(droplet)

(3)

where the interface values χgΣ,ref and TΣ,ref are unknowns of the problem. They are related
by χgΣ,ref = psat(TΣ,ref )/pamb, where psat is the saturation (vapor) pressure as a known
function of temperature. Assuming ideal gases and using the Clausius-Clapeyron relation,
we obtain

χgΣ,ref =
psat(Tamb)

pamb

e
−LM

Rg

(
1

TΣ,ref
− 1

Tamb

)
(4)

where psat(Tamb) is considered known, L is the latent heat of evaporation, M is the molar
mass of our liquid, and Rg is the universal gas constant. With (2) and (3), the normal
gradients at the interface, which will be needed later on, can be expressed as

∂χg,ref

∂n

∣∣∣∣∣
Σ

=
χamb − χgΣ,ref

ℓδg
(5)

∂Tg,ref

∂n

∣∣∣∣∣
Σ

=
Tamb − TΣ,ref

ℓδg
(6)

for both configurations, where a unifying notation

δg ≡
{

H − 1 (layer)
1 (droplet)

(7)

has been introduced in addition to (1) for convenience. Note therefore that it is apparently
for H = 2 that the biggest quantitative correspondence for the reference solutions between
the two configurations can be expected. Also note that
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∂

∂n
≡

{
∂/∂z (layer)
∂/∂r (droplet)

(8)

The evaporation mass flux J (kg/m2s) or its molar counterpart J/M is a sum of a
convective (Stefan flow) and a diffusional part [20] (see also [27]). One has

J

M
=

J

M
χgΣ − ngDg

∂χg

∂n

∣∣∣∣∣
Σ

(9)

where ng = pamb/(RgTamb) (assuming ideal gases) is the gas molar density (assumed constant
throughout the gas and evaluated at ambient pressure and temperature). Thus,

J = − pambDgM

RgTamb(1− χgΣ)

∂χg

∂n

∣∣∣∣∣
Σ

(10)

Using Eq. (5), this yields the following result for the reference state evaporation flux:

Jref =
pambDgM

RgTamb

χgΣ,ref − χamb

1− χgΣ,ref

1

ℓδg
(11)

for both configurations.
Overall, in the framework of the present analysis in the gas phase, there actually remains

one undetermined quantity. Indeed, for the three interface quantities Jref , χgΣ,ref and
TΣ,ref , there are just two equations, Eqs. (4) and (11). Further progress can only be made
by considering the liquid phase.

B. Liquid phase

In the liquid, the transient reference profile satisfies

∂Tl,ref

∂t
= κl∇2Tl,ref (12)

where ∇2 = ∂2/∂z2 for the layer, and ∇2 = ∂2/∂r2 + (2/r)∂/∂r for the droplet.
At the liquid-gas interface, we have the following boundary conditions:

Tl,ref = TΣ,ref (13)

and

−λl
∂Tl,ref

∂n
+ λg

Tamb − TΣ,ref

ℓδg
= LJref (14)
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The latter expresses the energy balance at the interface −λl∂Tl/∂n + λg∂Tg/∂n = JL, for
the reference state, in which (6) has been introduced.

At the opposite end of the liquid domain (z = 0 for the layer and r = 0 for the droplet),
we impose

∂Tl,ref

∂n
= 0 (15)

implying an insulated bottom of the layer and no heat source in the center of the droplet
(for the spherically symmetric reference profile).

For the layer, however, we shall also consider an important alternative setup, with the
bottom temperature fixed at the ambient value:

Tl,ref = Tamb (layer only) (16)

at z = 0.
The initial condition expresses that the temperature is everywhere equal to its ambient

value:

Tl,ref = Tamb (17)

at t = 0.
Thus, the problem for the liquid temperature reference profile finally reduces to Eq. (12),

with the interface conditions (4), (11), (13) and (14), bottom/center conditions (15) or (16),
and the initial condition (17). Note that it has actually been reduced to a one-sided problem,
owing to the large value of diffusivities in the gas phase (as discussed in section II). The
solution is obtained numerically and the results are presented in the next subsection.

Before proceeding to the results, the following remark is made. The system of interface
conditions (4), (11), (13) and (14) is non-linear with respect to TΣ,ref . However, a lineariza-
tion can in principle be made under the assumption that the interface temperature remains
close enough to Tamb. In this way, the interface conditions can readily be reduced to a single
one,

∂Tl,ref

∂n
+

Bi0,amb

ℓ
(Tl,ref − Tamb) = −L

λl

Jamb (18)

where

Jamb =
pambDgM

RgTamb

psat(Tamb)/pamb − χamb

1− psat(Tamb)/pamb

1

ℓδg
(19)

is the evaporation flux that would take place if the interface were exactly at the ambient
temperature, and
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Bi0,amb =
1

δg

{
λg

λl

+
L2M2Dg

R2
gT

3
ambλl

psat(Tamb)

1− psat(Tamb)/pamb

}
(20)

is a Biot number (see [28]). Even though we here prefer not to use the linearized version (18)
when solving for the reference state, the expression for the Biot number (20) is important
for our purposes in the present paper. Indeed, an Ansatz similar to (18)-(20) is often
encountered in the literature (e.g. [17], [29]), in the case when mass/heat exchange with the
gas phase is modeled by means of Newton’s law of cooling. However, the problem is that this
same constant Biot number subsequently appears in the analysis of perturbations as well,
whereas our goal in the present paper is to show that the Biot number for perturbations
should actually be different and wavenumber-dependent.

Finally, note that in what follows we shall also use dimensionless versions of the variables
t, z, r and Tl, which in term of their dimensional counterparts are defined as tκl/ℓ

2, z/ℓ,
r/ℓ and (Tl − Tamb)/θT , respectively, where θT ≡ JambLℓ/λl is the temperature scale (while
ℓ2/κl and ℓ are obviously used as the time and length scales, respectively).

C. Numerical solution for the transient reference profiles

The problem formulated in the previous subsection is here solved for a concrete example
with HFE-7100 as the liquid and air as the gas. Furthermore, we choose Tamb = 298.15 K,
pamb = 1 atm and χamb = 0. The physical properties of HFE-7100 can be found in Table
I, for which we use those at the ambient conditions. Hence, the properties of the gas phase
are just taken to be those of air (χamb = 0). The diffusion coefficient Dg of HFE-7100 vapor
in the gas is calculated using a correlation from [30] (see [20] for more details).

TABLE I. Physical properties of the system (HFE-7100+air) at Tamb = 298.15K, pamb = 1atm,

χamb = 0.

Physical property Value

λg(W/Km) 2.62× 10−2

Dg(m
2/s) 6.98× 10−6

ρl(kg/m
3) 1.482× 103

λl(W/Km) 6.9× 10−2

κl(m
2/s) 3.94× 10−8

µl(Pa s) 5.8× 10−4

γT (N/Km) 1.14× 10−4

psat(atm) 2.65× 10−1

L(J/kg) 1.116× 105

In the stability analysis we are mostly interested in the temperature reference profiles
in the liquid (which is the driving factor of the Marangoni instability). These profiles are
presented in Figs. 2 and 3. The results for the horizontal layer are shown in Fig. 2 for H
values of 2, 11 and 101 both for the zero-flux and for fixed-temperature boundary conditions
at the bottom. Fig. 3 shows the corresponding results for the spherical droplet.
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FIG. 2. (Color online) Temperature reference profiles in the liquid in the horizontal-layer case at

different dimensionless times for H= 2 ((a) and (b)), H= 11 ((c) and (d)) and H= 101 ((e) and

(f)) for the fixed-temperature ((a), (c) and (e)) and the zero-flux conditions at the bottom ((b),

(d) and (f)).

From Fig. 2, we can see that as time passes a thermal boundary layer grows into the liquid
layer and that a linear profile is eventually attained when considering the fixed-temperature
condition at the bottom, with a slope (TΣ,ref − Tamb)/hliq (practically attained at t = 5).
The slope becomes smaller for higher H values, which is easy to understand noting that
the evaporation rate is smaller for higher H values and thus the cooling at the interface is
weaker. When considering the zero-flux condition at the bottom, the reference temperature
profile tends to a spatially uniform one in the liquid. This constant value can be understood
as the state in which the cooling due to evaporation is exactly compensated by the heat
transfer from the warmer ambient atmosphere. Fig. 3 shows that the reference temperature
profiles in the droplet exhibit qualitatively the same behavior as in the layer with the zero-
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FIG. 3. (Color online) Temperature reference profiles in the liquid at different dimensionless times

in the spherical-droplet case.

flux condition at the bottom, the temperature also tending to a constant value (which is
attained at nearly the same time as for the case H = 2), as expected.

IV. STABILITY ANALYSIS

In this section, we provide the tools to perform the linear stability analysis (frozen-time
approach). We start in subsection IVA by introducing the normal modes of perturbation.
Then, using the hypotheses formulated in section II, we consider first the gas phase (sub-
section IVB) in order to subsequently arrive at an appropriate one-layer formulation in the
liquid followed by the derivation of the instability criteria (subsection IVC).

A. Description of perturbations

For the horizontal layer, the linear perturbations upon the reference state for wl, Tl, χg,
Tg and J (the only dependent variables appearing in the analysis that follows, where wl is the
vertical component of the velocity field, noting also that actually wl,ref = 0) are represented
as

eσt+i(kxx+kyy) {Wl(z), Tl(z), Xg(z), Tg(z),Φ} (21)

respectively. Here, σ is the (generally complex) growth rate of the perturbations, k⃗ = (kx, ky)
is the wavevector (with the wavenumber k ≡

√
k2
x + k2

y) and x and y are the horizontal
Cartesian coordinates. The symbols in braces are the corresponding complex amplitudes
(functions of z, except for Φ). Note that in view of the symmetry, the complex amplitudes
depend just on k, and not on kx and ky separately.

For the spherical droplet, the corresponding representation of the perturbations for url,
Tl, χg, Tg and J (url being the radial component of the velocity field, url,ref = 0) is
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eσtY m
l (θ, ϕ)

{
Ul(r)

r
, Tl(r), Xg(r), Tg(r),Φ

}
(22)

respectively, the factor 1/r being introduced in the first term in braces just for convenience.
Here, σ is again the (generally complex) growth rate of the perturbations and θ and ϕ are
the polar and azimuthal angles of the spherical coordinate system. The spherical harmonics
Y m
l (θ, ϕ) = Pm

l (cos(θ))eimϕ satisfy the following equation:

L2Y m
l (θ, ϕ) = −l(l + 1)Y m

l (θ, ϕ) (23)

where

L2 =
1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1

sin2θ

∂2

∂ϕ2
= r2∇2 − ∂

∂r

(
r2

∂

∂r

)
with Pm

l (cosθ) being the associated Legendre polynomials. Here l = 0, 1, 2, ..., and m is
an integer such that −l ≤ m ≤ l. In view of the symmetry, the complex amplitudes are
functions of only l, and not of m. Note that l is here the (discrete) counterpart of the
wavenumber k.

It is worth mentioning that the formulae of the present subsection are identical in dimen-
sional and dimensionless forms provided that the dimensionless σ and k are defined in terms
of their dimensional counterparts as σℓ2/κl and kℓ (cf. the end of subsection III B).

B. Perturbations in the gas phase and the Biot number for the perturbations

In the present subsection, it is convenient to work in terms of dimensional variables. In
accordance with the hypotheses outlined in section II, the perturbations of χg and Tg satisfy
just the Laplace equation. In terms of the complex amplitudes, for the horizontal-layer
configuration, we have ∂2Xg/∂z

2 − k2Xg = 0 and ∂2Tg/∂z
2 − k2Tg = 0. The corresponding

equations for the spherical-droplet configuration are r2∂2Xg/∂r
2+2r∂Xg/∂r−l(l+1)Xg = 0

and r2∂2Tg/∂r
2+2r∂Tg/∂r− l(l+1)Tg = 0. The perturbations vanish (Xg = 0 and Tg = 0)

where the ambient conditions are supposed to be maintained, i.e. at the top fictive boundary
of the gas layer (z = hliq + hgas) in the first configuration and far away from the droplet
(r → ∞) in the second configuration. The solutions can then be written as

Xg =

{ XgΣ
sinh[k(hliq + hgas − z)]

sinh[khgas]
(layer)

XgΣ
Rl+1

rl+1
(droplet)

(24)

and
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Tg =

{ TΣ
sinh[k(hliq + hgas − z)]

sinh[khgas]
(layer)

TΣ
Rl+1

rl+1
(droplet)

(25)

where the subscript ‘Σ’ once again refers to the values at the interface (z = hliq for the layer
and r = R for the droplet).

The quantities χgΣ and TΣ are related by the Clausius-Clapeyron relation

χgΣ =
psat(Tamb)

pamb

e
−LM

Rg

(
1

TΣ
− 1

Tamb

)
≈ psat(Tamb)

pamb

e
LM(TΣ−Tamb)

RgT
2
amb (26)

where it is taken into account that the difference between the absolute temperatures TΣ

and Tamb is not expected to be large (“Frank-Kamenetskii transformation”), which is con-
sistent with neglecting the temperature dependence of the material properties of the fluids.
Linearizing and thus adapting (26) to the perturbations, we obtain

XgΣ =
LM

RgT 2
amb

χgΣ,refTΣ (27)

Similarly, adapting Eq. (10) to the perturbations, albeit without perturbing (1−χgΣ) in the
denominator (see [28]), and using Eq. (24) yields

Φ =

{ pambDgM

RgTamb

1

1− χgΣ,ref

k coth[khgas]XgΣ (layer)

pambDgM

RgTamb

1

1− χgΣ,ref

l+1
R
XgΣ (droplet)

(28)

Further analysis of perturbations must involve the liquid phase, which is accomplished in
the next subsection. However, an important intermediate step in this direction and at the
same time a final touch to the gas-phase consideration can be made by just invoking the
interface energy balance (cf. Eq. (14) and the text below it), which for the perturbations
writes as

−λl
∂Tl

∂n
+ λg

∂Tg

∂n
= ΦL (29)

Using Eqs. (25), (27) and (28) in Eq. (29) brings to an interface condition in the form

∂Tl

∂n
+

Bi

ℓ
Tl = 0 (30)

with
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Bi =

{
Bi0 khgas coth[khgas] (layer)

Bi0 (l + 1) (droplet)
(31)

being the Biot number for perturbations, where

Bi0 =
1

δg

{
λg

λl

+
pambL

2M2Dg

R2
gT

3
ambλl

χgΣ,ref

1− χgΣ,ref

}
(32)

is the value of Bi at k = 0 / l = 0 (uniform perturbation). Recall here also Eq. (7). Note
the dependence of Bi on the wavenumber (Bi is not merely equal to Bi0 as in [18], [19], if
we put it in our terms), showing the importance of which is the principal goal of the present
paper. Note also that the distinction between Bi0 and Bi0,amb, earlier defined in Eq. (20),
is just that the latter is a version of the former evaluated at the ambient conditions. On
account of Eq. (4), this can symbolically be written as

Bi0,amb = Bi0|TΣ,ref≡Tamb

Should the linearization (18) have been adopted, we would here arrive at the same ex-
pression (31), with a manifest k-dependence, but just with Bi0 replaced by Bi0,amb. This
would still contrast with the approach used elsewhere [17], [29], corresponding in our terms
to Bi ≡ Bi0,amb, even for the perturbations.

C. Perturbations in the liquid phase

In the present subsection, we shall work in dimensionless variables (see the ends of sub-
sections III B and IVA). Besides, the velocity is made dimensionless with the scale κl/ℓ.

Furthermore, we shall limit ourselves to looking for marginal-stability conditions (mono-
tonic instability), and hence set

σ = 0

First, we turn to the consideration of the velocity field, which is crucial here unlike the
situation in the gas layer. In the context of the linear stability analysis in both configurations
under consideration, the problem can actually be formulated in terms of the normal velocity
field component only (e.g. [4], [18], see also Appendix A). In particular, from the linearized
Navier-Stokes equations in terms of the normal-mode amplitudes, one obtains (for σ = 0)

(D2
z − k2)2Wl = 0 (layer)(

D2
r +

2
r
Dr − l(l+1)

r2

)2

Ul = 0 (droplet)
(33)

where Dz ≡ d/dz and Dr ≡ d/dr.
As the interface is assumed underformable and the evaporation-induced velocity in the

liquid is much smaller than κl/ℓ and the Marangoni-induced velocity (see section II), the
interface boundary conditions include Wl = 0 at z = 1 and Ul = 0 at r = 1. The imper-
meability and no-slip conditions at the bottom of the liquid layer are Wl = 0 = DzWl at
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z = 0, and the no-singularity condition in the center of the droplet is Ul = 0 at r = 0. The
solution of (33) satisfying these boundary conditions is

Wl = AW ∗
l (layer)

Ul = AU∗
l (droplet)

(34)

where A is a free coefficient and

W ∗
l = kz cosh(kz)− (1− z + kz coth(k)) sinh(kz) (layer)

U∗
l = rl − rl+2 (droplet)

(35)

The tangential-stress balance at the interface, including the Marangoni (thermocapillary)
stresses, can be expressed in terms of the normal velocity only as well (e.g. [4], [18], see also
Appendix B):

D2
zWl +Mak2Tl = 0 at z = 1 (layer)

D2
rUl +Ma l(l + 1)Tl = 0 at r = 1 (droplet)

(36)

where

Ma =
γT ℓθT
κlµl

(37)

is the (thermal) Marangoni number, γT ≡ −dγ/dT (> 0 for most fluids, including our HFE)
and γ is the surface tension. Recall that the contribution from the gas side is neglected in
(36) in view of a small gas viscosity (cf. section II). Note that Ma > 0 here.

Next, we turn to the heat-transfer equation ∂Tl/∂t+ v⃗l · ∇Tl = ∇2Tl, which is linearized
about the reference state and expressed in terms of the amplitudes to yield (for σ = 0)

WlDzTl,ref = (D2
z − k2)Tl (layer)

Ul

r
DrTl,ref =

(
D2

r +
2
r
Dr − l(l+1)

r2

)
Tl (droplet)

(38)

The effective interface heat-transfer condition (30) with (31) is now rendered in dimen-
sionless form, becoming

∂Tl

∂n
+BiTl = 0 at z = 1 / r = 1 (39)

Bi =

{
Bi0k(H − 1) coth[k(H − 1)] (layer)

Bi0(l + 1) (droplet)
(40)

where Bi0 is still defined by (32).
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At the other end of the liquid domain, i.e. at the bottom of the layer and in the center
of the droplet, we have the following conditions for the temperature:

Tl = 0 at z = 0 (layer FTB)

DzTl = 0 at z = 0 (layer TIB)

Tl < ∞ at r = 0 (droplet)

(41)

where FTB stands for the case of a “fixed temperature at the bottom” while TIB for the
case of a “thermally insulated bottom”.

The solution of problem (38) with (34) for Tl can be expressed as

Tl =
ekz

2k
A
(
C1 −

∫ 1

z
e−kz′W ∗

l (k, z
′)

∂Tl,ref (z
′,t)

∂z′
dz′

)
+ e−kz

2k
A
(
C2 +

∫ 1

z
ekz

′
W ∗

l (k, z
′)

∂Tl,ref (z
′,t)

∂z′
dz′

)
(layer)

Tl =
rl

2l+1
A
(
C1 −

∫ 1

r
r′−lU∗

l (l, r
′)

∂Tl,ref (r
′,t)

∂r′
dr′

)
+ r−(l+1)

2l+1
A
(
C2 +

∫ 1

r
r′l+1U∗

l (l, r
′)

∂Tl,ref (r
′,t)

∂r′
dr′

)
(droplet)

(42)

where W ∗
l = W ∗

l (k, z) and U∗
l = U∗

l (l, r) are given by (35), while Tl,ref = Tl,ref (z, t) (layer)
and Tl,ref = Tl,ref (r, t) (droplet) are the dimensionless (transient) reference temperature
profiles determined in section III. The integration constants C1 and C2 can be found using
the boundary conditions (39) and (41).

Finally, the tangential-stress balance (36) serves as the compatibility condition in the
present scheme. Substituting (34) and (42) with the determined values of C1 and C2 in
there, A cancels out, and we obtain the values of the Marangoni number for which there
exists a neutral monotonic perturbation (σ = 0)

Ma =
2(k coth(k) +Bi)(sinh(k)cosh(k)− k)

k
∫ 1

0
sinh(k z)W ∗

l (k, z)
∂Tl,ref (z,t)

∂z
dz

(layer FTB)

Ma =
2(k +Bi coth(k))(sinh(k)cosh(k)− k)

k
∫ 1

0
cosh(k z)W ∗

l (k, z)
∂Tl,ref (z,t)

∂z
dz

(layer TIB)

Ma =
2(Bi+ l)(2l + 1)

l(l + 1)
∫ 1

0
(r2l+3 − r2l+1)

∂Tl,ref (r,t)

∂r
dr

(droplet)

(43)

where recall that W ∗
l is given by (35), while Tl,ref was numerically determined in section III.

In this way, we obtain Ma as functions of the wavenumber (k for the layer, and l for
the droplet) representing the marginal condition (“marginal curve”), i.e. the boundary
in the parameter space between the decaying and growing perturbations. In all the cases
considered in the present paper, it turns out that the marginal curve corresponds to Ma > 0,
which is in agreement with the sign of Ma in (37). The critical Marangoni number for the
instability onset is then obtained by minimizing Ma at the marginal condition with respect
to k or l. Here, recall that 0 < k < ∞, whereas l has discrete values l = 1, 2, .... As the
reference temperature profiles are here generally transient (functions of t), while the frozen-
time approach is adopted for the linear stability analysis, the critical Marangoni numbers
hereby obtained are also function of t. On account of (37), for each concrete liquid case (e.g.
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HFE-7100), the results can equivalently be presented in terms of the critical values of ℓ, i.e.
of the layer thickness hliq or of the droplet radius R, which is what we shall do in section V.
Finally, remember that the Biot number Bi appearing in the results (43) is wavenumber-
dependent as given by Eq. (40) with Eq. (32). In section V, we shall see how this affects
the results as compared to a simplified treatment with just Bi ≡ Bi0 independent of the
wavenumber.

V. RESULTS

A. Stability of transient reference states

The results for the critical size of the system (thickness hliq for the layer, and radius R of
the droplet) as a function of (both dimensional and dimensionless) time are represented in
Fig. 4. The cases of a layer with a fixed temperature at the bottom (FTB), of a layer with
an insulated bottom (TIB) and of a droplet are shown.
The computation has been carried out for the HFE-7100 liquid with the properties shown in
Table I. The time is actually represented along the ordinate axis, and the results can also be
interpreted inversely, as the critical time for the instability onset as a function of the system
size. The results with the dimensionless time are also shown in order to allow connecting the
temperature profiles from Figs. 2 and 3 to the results in Fig. 4. As announced at the end of
section IV, the results are shown not only based upon the ultimate, wavenumber-dependent
expression (40) for the Biot number but also, for comparison, for Bi ≡ Bi0, the latter
mimicking the typical arrangement used in the literature. To appreciate the values of the
Biot number encountered here, let us mention that Bi0,amb ≈ 1.697/δg for the parameters
of Table I (Bi0 being slightly different and dependent on the configuration and indirectly
on time). In the layer case, the problem also depends on an additional parameter, the ratio
of the gas and liquid thicknesses H, and the study is carried out at fixed H values, the
results being shown for H = 2, 11 and 101. The states with growing perturbations present
within the frozen-time analysis are located on the concave side of the curve in each case, the
corresponding region indicated by “unstable” in Fig. 4.

We observe from Fig. 4 that in each case there is a minimum liquid thickness, below
which no growing perturbations occur at any time. In the case of a fixed temperature at
the bottom of the layer, this minimum liquid thickness is actually associated with a vertical
asymptote corresponding to the stationary reference state with a constant temperature gra-
dient eventually attained after the transients, as t → ∞ (see also subsection VB). In the
case of a layer with an insulated bottom, as well as in the case of a droplet, there is no such
vertical asymptote, and the system regains its stability at sufficiently large t values. This is
not surprising given that in these two cases the system eventually tends to a reference state
with a uniform temperature in the liquid, the heat needed for evaporation being supplied
by thermal conduction through the gas phase. The minimum liquid thickness for the latter
situation is referred to as a turning point [23] and the influence of the bottom boundary
condition on the appearance of such a turning point is discussed in [24] for a binary liquid
in the solutal Marangoni case. Note that the critical wavenumbers for the layer-case are
continuous, which makes it difficult to present them on the plots in Fig. 4. Therefore, sepa-
rate plots have been made in Fig. 5, representing the (dimensionless) critical wavenumbers
as a function of the liquid thickness, corresponding to the FTB and TIB cases in Fig. 4.
The wavenumbers are represented by markers connected with each other by a line. The
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FIG. 4. (Color online) Dimensional ((a), (c) and (e)) and dimensionless ((b), (d) and (f)) time

versus the system size at the critical condition for a layer with FTB ((a) and (b)), a layer with

TIB ((c) and (d)) (both for H = 2, 11 and 101), and a droplet ((e) and (f)), comparing the results

using the wavenumber-dependent Biot number with those using just a constant Biot number Bi0
as typically the case in the literature (e.g. [15],[18],[29]).

critical wavenumbers for the droplet-case are, however, discrete and shown for appreciation
in Fig. 4.

Now, as far as the principal objective of the present paper is concerned, namely the
importance of considering a wavenumber-dependent Bi instead of just Bi ≡ Bi0, we observe
quite an appreciable effect in the results of Fig. 4. The effect is especially pronounced
for large values of H in the layer case. Indeed, the k-dependence in Bi accounts for the
diffusional exchange through the gas phase between spots at different temperatures on the
liquid-gas interface, whereas Bi0 measures such a diffusional exchange between the interface
and the ambient atmosphere. For large H (large relative gas-layer thicknesses), the first
exchange clearly tends to dominate over the second one, hence a strong effect upon the
results. On the contrary, for moderate H, the effect is less pronounced, and so it is in the
case of a droplet, qualitatively similar to H = 2 for the layer. Note though a significant role
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FIG. 5. (Color online) Critical wavenumbers versus the layer thickness in the FTB (a) and TIB

(b) cases (both for H = 2, 11 and 101), comparing the results using the wavenumber-dependent

Biot number with those using just a constant Biot number Bi0. The direction of time along the

curves is symbolically indicated by the t arrows

of the studied effect on the critical wavenumber selection in the droplet case (Fig. 4). Note
also that if the gas properties were not treated in a simplified way as we did in the present
paper (negligible dynamic viscosity and unconditionally large diffusivity), it could be found
that the excitation of the mode l = 1 is actually accompanied by translational motion of
the droplet [31].

B. Pearson’s marginal curves in the layer FTB case

It is also instructive to illustrate the role of the wavenumber dependency of the Biot num-
ber in terms of the marginal condition as a whole, i.e. the marginal curve of the Marangoni
number as a function of the wavenumber, and not just in terms of the critical condition
(the minimum of this curve) as done in subsection VA. In doing so, we shall here limit
ourselves to the case of a layer with a fixed temperature at the bottom (FTB), and even
more specifically to the final steady reference state with a constant temperature gradient
across the layer (in particular, corresponding to the vertical asymptotes in the upper plot
of Fig. 4). Using

∂Tl,ref/∂z = −δθ = const

together with Eq. (35) in Eq. (43) for the layer FTB case, we arrive at the classical Pearson
marginal curve (cf. e.g. [1],[4],[21])

Ma = δ−1
θ 8k

(k cosh(k) +Bi sinh(k))(sinh(k)cosh(k)− k)

sinh3(k)− k3cosh(k)
(layer FTB) (44)

the form of which does not depend on whether Bi is k-dependent or not. Note that δθ ̸= 1
merely due to the fact that the Marangoni number is here defined using a temperature
scale θT not coinciding with the actual temperature difference across the liquid layer in the
reference state (cf. Eq. (37) and the end of subsction III B). We have δθ = (Tamb−TΣ,ref )/θT .
TΣ,ref is here dimensional and determined according to the procedure described in section III.
However, as in the present subsection we deal with the layer FTB case and a steady reference
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state thereof with a constant temperature gradient, this task is simplified. In particular,
Eqs. (11) and (14) can just be reduced to

(
λl +

λg

H − 1

)
(Tamb − TΣ,ref ) = L

pambDgM

RgTamb

χgΣ,ref − χamb

1− χgΣ,ref

1

H − 1
(45)

and thus TΣ,ref is here calculated from the system of equations given by (4) and (45).
The results are shown in Fig. 6 for the same cases as in Fig. 4 for the FTB-layer-case.

FIG. 6. (Color online) The Pearson-like marginal curves for steady reference states (linear tem-

perature profiles) of the layer with FTB. The same arrangements as in Fig. 4 are explored.

Here, one can once again appreciate the importance of considering a k-dependent Biot
number. However, now we can observe this not only for the critical values (the minima of
the curves), but also for the width of the instability interval at finite supercriticalities. This
points to the importance of the phenomenon for nonlinear regimes of Marangoni convection
too.

VI. CONCLUSIONS

A linear stability analysis has here been carried out for the Marangoni (thermocapillary)
instability in two different evaporative systems: a horizontal layer and a spherical droplet
of a pure liquid, both evaporating into ambient air. For the layer, two subcases have been
considered: a bottom with a fixed temperature (equal to the ambient one) and a thermally
insulated bottom. As a concrete example, the HFE-7100 liquid has been used. Transient
reference states evolving from an initially uniform temperature everywhere (equal to the
ambient temperature) have been considered.

The goal of the paper was to put into evidence the intricacies of the definition of the
effective transfer coefficients (the Biot numbers) at the liquid-gas interface arising in the
framework of one-sided formulations and representing the combined effect of evaporation
and heat transfer through the gas phase. Namely, it has been shown that the Biot numbers
suitable for the description of the horizontally/spherically uniform reference states may
no longer be suitable for perturbations, for which the appropriately defined Biot numbers
must in fact be wavenumber-dependent. Physically, such a wavenumber dependence comes
from the interaction between different regions of the interface, and not just between the
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interface and the ambient medium as for the “uniform” Biot numbers. Eqs. (31) or (40)
provide an example of how a uniform Biot number can be generalized into a corresponding
wavenumber-dependent one, which can also be considered as a possible practical recipe for
such a generalization when one proceeds from homogeneous-state transfer coefficients.

While the scope of the linear stability analysis chosen for illustrative purposes in the
present paper is limited to monotonic instability thresholds and a frozen-time approach, the
results nonetheless indicate that the wavenumber-dependent Biot numbers must be equally
important both in the more general context of linear stability theories and in the framework
of a nonlinear description of the ensuing convection.
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APPENDICES

A. Equations for Wl and Ul

The linearized dimensionless vector-form Navier-Stokes equations in the liquid can be
written as

∇⃗ · v⃗l = 0,

P r−1
l

∂v⃗l
∂t

= −∇⃗pl +∇2v⃗l (46)

where v⃗l is the velocity field, pl the pressure field, Prl = νl/κl the Prandtl number, νl the

kinematic viscosity, and κl the thermal diffusivity. Applying ∇⃗ × ∇⃗× to the momentum
equation, one obtains

Pr−1
l

∂

∂t
∇2v⃗l = ∇2∇2v⃗l (47)

on account of the identity ∇⃗ × ∇⃗ × Q⃗ = −∇2Q⃗, valid for a solenoidal vector field Q⃗ (with

∇⃗ · Q⃗ = 0), such as v⃗l.
In the layer case, it is straightforward to identify the vertical component of Eq. (47):

Pr−1
l

∂

∂t
∇2wl = ∇2∇2wl (48)

With the normal modes (21), this yields

−Pr−1
l σ

(
D2

z − k2
)
Wl +

(
D2

z − k2
)2

Wl = 0 (49)
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which for σ = 0 results in Eq. (33) for the layer.
In the spherical droplet case, we project Eq. (47) on the position vector r⃗ drawn from

the center of the droplet. Using the identity r⃗ · ∇2Q⃗ = ∇2(r⃗ · Q⃗) valid for a solenoidal

vector field Q⃗, and taking into account that both ∇2v⃗l and v⃗l are solenoidal and the fact
that r⃗ · v⃗l = rurl, we arrive at

Pr−1
l

∂

∂t
∇2(rurl) = ∇2∇2(rurl) (50)

With the normal modes (22) (see also Eq. (23)), this yields

−Pr−1
l σ

(
D2

r +
2

r
Dr −

l(l + 1)

r2

)
Ul +

(
D2

r +
2

r
Dr −

l(l + 1)

r2

)2

Ul = 0 (51)

which with σ = 0 becomes Eq. (33) for the droplet.

B. Deduction of the Marangoni condition

Neglecting the air viscosity, the dimensionless tangential stress balance at the interface
can be written in the layer case as

(
∂wl

∂x
+

∂ul

∂z

)
+Ma

∂Tl

∂x
= 0 (52)

(
∂wl

∂y
+

∂vl
∂z

)
+Ma

∂Tl

∂y
= 0 (53)

We can now apply ∂x and ∂y to Eqs. (52) and (53), respectively, sum the results up and
apply the continuity equation ∂xu+ ∂yv + ∂zw = 0 in order to find

(
∂2wl

∂x2
+

∂2wl

∂y2
− ∂2wl

∂z2

)
+Ma

(
∂2Tl

∂x2
+

∂2Tl

∂y2

)
= 0 (54)

Using Eq. (21) in Eq. (54) gives

(D2
z + k2)Wl + k2MaTl = 0 (55)

With Wl = 0 at the interface (as explained in the main text), we recover Eq. (36) for the
layer.

For the droplet, a similar procedure is performed. The conditions expressing the dimen-
sionless tangential stress balance at r = 1 in the spherical coordinates are
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(
r
∂

∂r

(uθl

r

)
+

1

r

∂url

∂θ

)
+

Ma

r

∂Tl

∂θ
= 0 (56)

(
r
∂

∂r

(uϕl

r

)
+

1

rsinθ

∂url

∂ϕ

)
+

Ma

rsinθ

∂Tl

∂ϕ
= 0 (57)

We can now apply 1
sinθ

∂θsinθ and 1
sinθ

∂ϕ to Eqs. (56) and (57), respectively, sum the results
up and apply the continuity equation

1

r2
∂

∂r
(r2url) +

1

rsinθ

∂

∂θ
(sinθuθl) +

1

rsinθ

∂

∂ϕ
uϕl = 0

in order to find

(
∂2

∂r2
(rurl)−

(2 + L2)(rurl)

r2

)
− Ma

r
L2Tl = 0 (58)

keeping in mind the definition of L2 following (23). Using the normal modes Eq. (22) in
Eq. (58) yields

(D2
r −

2− l(l + 1)

r2
)Ul +Ma

l(l + 1)

r
Tl = 0 (59)

With Ul = 0 at the interface as before, Eq. (36) for the droplet is finally recovered.
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