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Starting scenario

@ Our problem: a capacitated VRP with time windows, with additional
key features.

@ Route cost depends on total route duration,
@ Variable starting time for each route,

@ Max allotted time for each route.
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Introduction

A classic solution method for the rich VRP:
Branch-and-Price

@ At each node of the branch-and-bound tree, the linear relaxation of
the set-covering formulation is solved via column generation.
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Introduction

A classic solution method for the rich VRP:
Branch-and-Price

@ At each node of the branch-and-bound tree, the linear relaxation of
the set-covering formulation is solved via column generation.

@ The pricing sub-problem is an elementary shortest path problem with
resource constraints (ESPPRC).

@ If the underlying graph may have negative cost cycles, the ESPPRC is
strongly NP-Hard!.

'Dror 1994.
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Exact Dynamic Programming for the ESPPRC 2

@ Each state associated to vertex i represents a path from the source s
to i.

2Developed by Feillet et al. 2004, based on Desrochers and Soumis 1988;
improvements are in Righini and Salani 2008.
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@ Each state associated to vertex i represents a path from the source s
to i.

@ Each state includes a resource consumption vector R whose
component R, represents the quantity of resource r used along the
path.

@ Each state has an associated cost C and the optimal solution
corresponds to a minimum cost state associated to the sink t.

e Extension of a state from i to j corresponds to adding the arc (i, ) to
a path from s to /.

@ We terminate when all states have been extended in all feasible ways.

2Developed by Feillet et al. 2004, based on Desrochers and Soumis 1988;
improvements are in Righini and Salani 2008.
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Exact Dynamic Programming for the ESPPRC

@ While extending states, we update the resource consumption values.

o E.g., if we extend to j we update the amount g; relative to capacity
q; = qi + dj:

where d; is the demand at ;.

@ To enforce feasibility with regards to capacity, we need to check if
q < Q.

@ To enforce elementarity, we introduce a dummy unitary resource Ely,
which is consumed when vertex k is visited.
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@ To accelerate the algorithm, we eliminate the states that are
dominated:
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Exact Dynamic Programming for the ESPPRC

@ To accelerate the algorithm, we eliminate the states that are
dominated:

State (C', R', (El)iey, ) dominates (C”, R”, (Elk)jcy. i) iff
C/ < Cl/
R < R
(Ekev < (El)fey

and at least one of the equalities is strict.
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Problem description

@ For each vertex we have:
e a time window [a;, bi],
e service time s;,
o delivery demand d;,
o a revenue (dual price) 7;.

@ There is a single vehicle available at any time for a duration S.

@ The total cost of a path P depends on total distance Dp and total
travel time Tp.

@ We aim to find the service start time T and path P that minimize
the total cost:

Cp(Ts) = aDp + BTp(Te) = > ;.
iepP
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ESPPRC with variable start time

Resources for DP

@ We need a service start time resource T;, so that the state at i/ is
feasible iff T; € [a;, bj];

@ a delivery demand resource Del;, requiring Del; € [0, Q];

@ a total spent time resource S;, requiring S; € [0, S];

o a dummy resource (Elx)i .\ requiring (Elx)" € [0,1], Vk € V.

@ A DP state for vertex i in our scenario is therefore

(Gi, T:, S, Del;, (Elg)icv)-
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ESPPRC with variable start time

Dominance rules: issue with time dependency

@ T;, S;, and the total cost of the subpath s-i C; clearly depend on the
starting time Ts.
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ESPPRC with variable start time

Dominance rules: issue with time dependency

@ T;, S;, and the total cost of the subpath s-i C; clearly depend on the
starting time Ts.
@ The DP state for i in our scenario then becomes

(Gi(Ts), Ti(Ts). Si(Ts), Deli, (Elk)ev)-

@ We must therefore take into account an infinite number of
Pareto-optimal states.
@ We can't apply directly normal dominance rules.

Hybrid methods for a type of VRPTW 5/2/2014 12 /28

YA, HK. Y.C., SM. (HEC -ULg)



ESPPRC with variable start time

Time functions

@ We will consider a path on a network with n vertices:

P:s=0—---—=i—-1—=i—---—=n+1l=t

@ Let us define the adjusted travel time: t;_1; = ti_1; + si—1
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ESPPRC with variable start time

Time functions

@ We will consider a path on a network with n vertices:

P:s=0—---—=i—-1—=i—---—=n+1l=t

@ Let us define the adjusted travel time: t;_1; = ti_1; + si—1

The minimum travel time from s =0 to i: ; := Z;::lo thok+1

The latest feasible start time from the source: /; := mini<j<;{b; — 0;}

The earliest feasible service start time at vertex i:
dj == max{a;, dj_1 + ti_1,i}.
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ESPPRC with variable start time

Time functions
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Time functions

e From the recursion T;(Ts) = max{a;, Ti—1(Ts) + ti_1,i} we can
derive:

Description of the service start time function

For all /, if 3; < [; + 6;,

51'7 if nggi_eiv

T:(Ts) =
(72) To+0;, if5—0,<T.<I

otherwise

T,'(Ts) = 5,’, for TS S /,'
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ESPPRC with variable start time

Time functions

e From the recursion T;(Ts) = max{a;, Ti—1(Ts) + ti_1,i} we can

derive:

Description of the service start time function

For all /, if 3; < [; + 6;,

§i7 if nggi_eiv

T:(Ts) =
(72) To+0;, ifd—0;<Ts<I;

otherwise
Ti(Ts) = &;, for T, < |;

@ They are piecewise linear functions from which the other
time-dependent functions derive directly.
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ESPPRC with variable start time

New Dominance Rules and Resource Extension

@ We can now define new labels and their resource extension functions:

—/,' = — min{/,-,l, b,‘ — 9,’}
di = max{a;, i1+ ti_1i}
Ai = max{Ai_1 + fti—1,;, (3 — 1)}
dj =0j—1+aci_1; —ni-1
Del; = Del;_1 + d;
ElL:{EEH k=i ey
El} otherwise

where 0; = 60;_1 + tj_1,; and A; is the minimum value of the function
Ti(Ts).
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Bidirectional DP

@ To accelerate the procedure, we start it simultaneously from the sink,
extending states backwards.
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@ |t suffices to invert the time windows with a constant M and change
direction of the arcs, then use monodirectional DP:

[a,-, b,‘] = [M — b,', M — a,-],(i,j) = (j, i)

@ States are extended until the total amount of time spent is smaller
than 5/2, i.e. we consider total travel time as a critical resource.

@ The earliest feasible service start time becomes the latest feasible
service end time: M — 5% = b;.

@ The latest feasible start time from the depot becomes the earliest
feasible arrival time at the depot: M — /,-b =e.

Y.A., HK., Y.C,, S.M. (HEC -ULg) Hybrid methods for a type of VRPTW 5/2/2014 16 / 28



ESPPRC with variable start time

Path concatenation

@ To see if we obtain a feasible path this needs to be true:

3Savelsbergh 1992.
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ESPPRC with variable start time

Path concatenation

@ To see if we obtain a feasible path this needs to be true:

5 < b

Del; + Del? — d; < Q
Eli +EIP <1,Yke V\{i}

Tp < S,

where Tp is the total travel time of path P obtained by
concatenation.

@ We need a concatenation theorem® to compute the actual total travel
time Tp - we can't sum the partial times directly.

3Savelsbergh 1992.
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Algorithm improvements

DP improvements*: Duplicate Elimination

@ During the phase of concatenation of forward and backward labels,
the same path can be generated multiple times.

*Described in Righini and Salani 2008.
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@ ThepathP=s— .- —j—i— k—---— t can be obtained by
concatenating different pairs of labels, e.g. (/f,1?") or (/Jf"", /jb"").

@ Before each concatenation at / we check the forward and backward
consumption of the critical resource, R™ and RPY.

@ We accept it only if they are as close as possible to half of the overall
consumption of the resource along the path, i.e. iff ®; := ]R‘:"‘,’ — RP‘}V
is minimum.

@ The test is performed in constant time since we need only to check
®y if R™ < RPY or ®; otherwise.

*Described in Righini and Salani 2008.
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Algorithm improvements

DP improvements: Decremental State Space Relaxation

e In State Space Relaxation® we project the state-space S used in DP
to a lower dimensional space 7T, so that the new states retain the cost.

*Developed by Christofides, Mingozzi, and Toth 1981.
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Algorithm improvements

DP improvements: Decremental State Space Relaxation

e In State Space Relaxation® we project the state-space S used in DP
to a lower dimensional space 7T, so that the new states retain the cost.
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e In State Space Relaxation® we project the state-space S used in DP
to a lower dimensional space 7T, so that the new states retain the cost.

@ When applying this to the elementarity constraints, the number of
states to explore is reduced, at the cost of feasibility.

e Decremental State Space Relaxation (DSSR) is a generalization of
both this method and DP with elementarity constraints.

@ We maintain a set © of critical nodes on which the elementarity
constraints are enforced at each iteration of DP.

@ If at the end of DP the optimal path is not feasible, we update ©
with the nodes that are visited multiple times.

®*Developed by Christofides, Mingozzi, and Toth 1981.
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@ In the implementation of DSSR we can make decisions with regards
to:

o initialization of the critical vertex set;
o which vertices we insert in the set at the end of an iteration;
e how many elementary paths we want to obtain for the CG procedure.

@ These decisions involve trade-offs (e.g. cost of an iteration vs number
of iterations).

@ We can associate parameters to these decisions, which we can then
tune. parameters.
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e For routing problems, we can classify them in three classes’.

o Decomposition approaches: we identify subproblems that are solved
independently, then combine their solutions. E.g. Cluster first-route
second approaches.

o Improvement heuristics: by solving a MILP, we improve an heuristic
solution.

e Branch-and-Price based approaches, classified in restricted master
heuristics, heuristic branching approaches, and relaxation based
approaches.
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@ The optimal solution of the master problem restricted to any subset
of generated columns provides an heuristic solution.

@ The columns can either be generated heuristically or by solving
exactly the pricing problem.

@ However, the master problem defined over a subset of columns is
often infeasible®, so we have to adopt techniques to recover feasibility
or devise ways to obtain a suitable set of columns.

@ Within the BP framework, we can use the RMH in a collaboration
scheme with a metaheuristic®, in order to obtain good solutions early
in the procedure.

8Joncour et al. 2010.
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Thanks for your attention.
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