1st FARAH Day Liège, 17th October 2014

Evaluation of morphological and functional characteristics of Carnobacterium maltaromaticum isolated from vacuum-packaged beef with long shelf life

P. H. IMAZAKI^{*}, A. TAHIRI, F. NDEDI EKOLO, G. DAUBE AND A. CLINQUART

University of Liege, Faculty of Veterinary Medicine, Department of Food Science & FARAH, Liège, Belgium

* PH.Imazaki@ulg.ac.be

INTRODUCTION

A temperature near the freezing point of meat (~ -2 C), associated with vacuum packaging allows the preservation of this product up to several months, which makes possible the meat trade across the planet without resorting to freezing.

Carnobacterium maltaromaticum is a lactic acid bacterium (LAB), and many LAB are known for their bactericidal or bacteriostatic activity against other strains, species or genera.

OBJECTIVE

To perform a morphological and functional characterization Carnobacterium of *maltaromaticum* with a potential bioprotective

In this way, the presence of certain lactic acid bacteria adapted to a low temperature on fresh meat could extend the shelf life and improve the microbial stability and safety of this product.

effect isolated from vacuum-packaged beef with long shelf life.

MATERIALS AND METHODS

Longissimus dorsi Australian origin commercial shelf life = 140 days

> **Isolation of** Carnobacterium maltaromaticum

Morphological, biochemical and microscopic profiles and comparison to two reference strains: macroscopic and microscopic observations, Gram staining, catalase and oxidase tests, API 50 CH and API ZYM galleries.

Influence of different atmospheres on growth of *C. maltaromaticum* (on a sterile meat model)

irradiated

(sterile) minced

pork meat

inoculation

C. maltaromaticum

10⁵ CFU/mL (1% v/w)

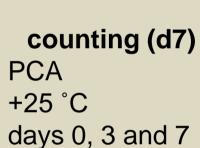
1) 100 % N₂

storage (7 d)

1) +4 °C

2) +8 °C

3) +12 °C



Microbiological stability of commercial beef inoculated with *C. maltaromaticum*

Packaging (d0)

2) 70 % O₂ : 30 % CO₂

3) 30 % O₂ : 70 % CO₂

atmospheres

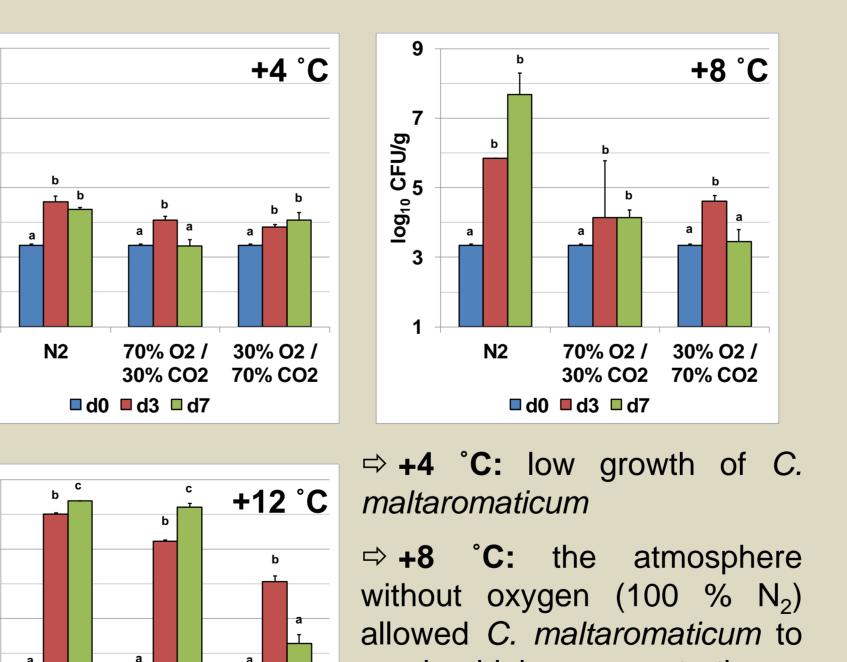
commercial	inoculation	vacuum-packaging	storage (7 d)	packaging (d7)	storage (7 d)	Counting (d14)
vacuum packed	C. maltaromaticum	(d0)	−1 °C	1) 100 % N ₂	+4 °C	total viable count (TVC)
psoas major	10 ⁵ CFU/mL (1% v/w)			2) 70 % O_2 : 30 % CO_2		lactic acid bacteria (LAB)
16 days after				,		Enterobacteriaceae (EB)
slaughter						Pseudomonas sp. (PS)
Slaughter						Brochothrix thermosphacta (BT)

RESULTS Influence of different

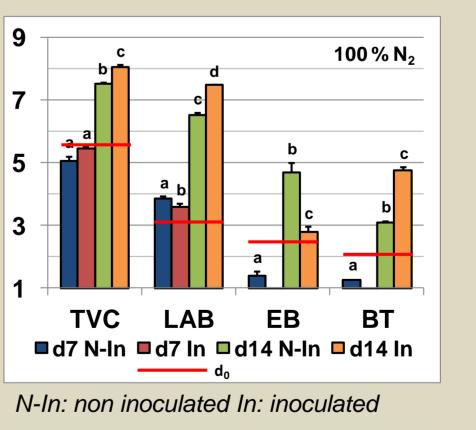
9

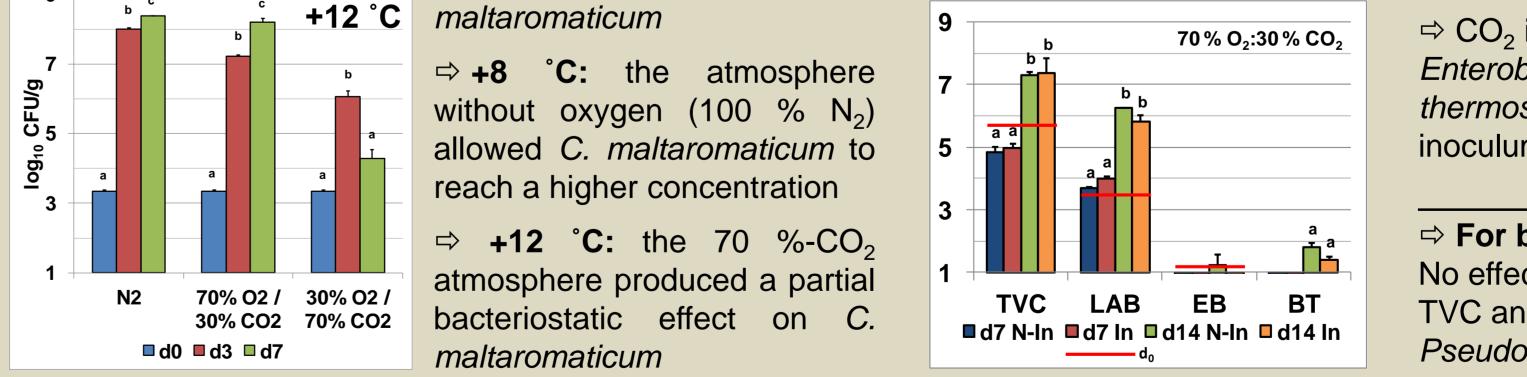
log₁₀ CFU/g

Morphological, biochemical and enzymatic profiles


⇒ Similar profiles to two reference strains: LMG 11393 and LMG 22902

 \Rightarrow **Colonies:** circular, convex, entire, $\emptyset < 1$ mm, smooth, translucent, unpigmented and odorless


⇒ **Cells:** Gram positive bacillus arranged in pairs, catalase and oxidase negative


⇒ **Substrates:** glycerol, D-ribose, D-galactose, D-glucose, D-fructose, D-mannose, D-mannitol, methyl-α-Dmannopyranoside, methyl-α-D-glucopyranoside, Nacetylglucosamine, amygdalin, arbutin, esculin ferric citrate, salicin, D-cellobiose, D-maltose, D-lactose, Dmelibiose, D-saccharose, D-trehalose, gentiobiose, Dturanose and potassium gluconate

⇒ Enzymes: esterase (C4), esterase lipase (C8), valine arylamidase, acid phosphatase, naphthol-AS-BIphosphohydrolase and β -glucosidase

Microbiological stability of beef inoculated with C. maltaromaticum

 \Rightarrow inoculum inhibited the growth of Enterobacteriaceae and favored the growth of B. thermosphacta

 \Rightarrow CO₂ inhibited growth of Enterobacteriaceae and B. thermosphacta: no effect of inoculum

⇒ For both atmospheres: No effect of inoculum on TVC and LAB. Reduction of Pseudomonas sp. (data not shown)

CONCLUSIONS

- ⇒ Morphological, biochemical and enzymatic profiles of the isolated strain similar to two reference strains
- \Rightarrow Slower growth of *C. maltaromaticum* under 70 % O₂:30 % CO₂ and 30% O₂:70% CO₂
- \Rightarrow Antimicrobial effect of *C. maltaromaticum* against *Enterobacteriaceae* under N₂
- ⇒ Perspectives: genotypic characterization of *C. maltaromaticum* and evaluation of its potential bioprotective effect

ACKNOWLEDGMENTS

This study was funded by the **General Operational Direction of** Agriculture, Natural Resources and **Environment (DGARNE) of the** Walloon Region (Belgium)

Project D31-1275 (CONSBBB)

