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Abstract

There exist a lot of continuous nowhere differentiable functions, but these functions do
not have the same irregularity. Holder continuity, and more precisely Holder exponent, allow
to quantify this irregularity. If the Holder exponent of a function takes several values, the
function is said multifractal. In the first part of this thesis, we study in details the regularity
and the multifractality of some functions: the Darboux function, the Cantor bijection and a

generalization of the Riemann function.

The theory of wavelets notably provides a tool to investigate the Holder continuity of a
function. Wavelets also take part in other contexts. In the second part of this thesis, we
consider a nonstationary version of the classical theory of wavelets. More precisely, we study
the nonstationary orthonormal bases of wavelets and their construction from a nonstationary

multiresolution analysis. We also present the nonstationary continuous wavelet transform.

For some irregular functions, it is difficult to determine its Holder exponent at each point.
In order to get some information about this one, new function spaces based on wavelet leaders
have been introduced. In the third and last part of this thesis, we present these new spaces and
their first properties. We also define a natural topology on them and we study some properties.






Résumé

Il existe beaucoup de fonctions continues et nulle part dérivables, mais ces fonctions n’ont pas
toutes la méme irrégularité. La continuité héldérienne et plus précisément ’exposant de Holder
permettent de quantifier cette irrégularité. Lorsque ’exposant de Hélder d’une fonction prend
plusieurs valeurs, cette fonction est dite multifractale. Dans la premiére partie de cette thése,
nous étudions en détail la régularité et la multifractalité de quelques fonctions : la fonction de
Darboux, la bijection de Cantor et une généralisation de la fonction de Riemann.

La théorie des ondelettes fournit notamment un outil pour examiner la continuité holdéri-
enne d’une fonction. Les ondelettes interviennent également dans d’autres contextes. Dans
la. deuxiéme partie de cette thése, nous considérons une version non-stationnaire de la théorie
classique des ondelettes. Plus précisément, nous étudions les bases orthonormées d’ondelettes
non-stationnaires et leur construction a partir d’'une analyse multirésolution non-stationnaire.

Nous présentons aussi la transformée continue en ondelette non-stationnaire.

Pour certaines fonctions irréguliéres, il est difficile de déterminer son exposant de Holder en
chaque point. Afin d’obtenir tout de méme des informations sur celui-ci, de nouveaux espaces de
fonctions basés sur les coefficients d’ondelettes dominants ont été introduits. Dans la troisiéme et
derniére partie de cette thése, nous présentons ces nouveaux espaces et leurs premiéres propriétés.

Nous définissons une topologie naturelle sur ceux-ci et nous en étudions quelques propriétés.
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Introduction

Continuous but nowhere differentiable functions? Mathematicians of the early 19'" century
thought they did not exist. Moreover, AMPERE [2] tried to prove that any continuous function
is differentiable, except possibly at a finite number of points. In 1872, WEIERSTRASS [121]
showed that

400
T Z a" cos(b"mx)
n=0

where a € (0,1) and b is an odd integer such that ab > 1+ 37/2 is a continuous nowhere differ-
entiable function. A lot of such functions were then constructed (see [114] for some examples).
The mathematical community was extremely astonished about this discovery (see Sections 5.7
and 6.8 in [77]). Some mathematicians, as HERMITE and POINCARE, even rejected the relevance
of such functions, which they called “monsters” (see page 132 in [102]).

Such functions are irregular, but they can behave in many different ways. Holder continuity,
and more precisely Holder exponent, allows to quantify the irregularity (see [116]). This notion
provides a tool to analyse whether some regularity occurs in the irregularity of a function. On
the one hand, the Holder exponent of a function can be the same everywhere, which means that
this function has the same irregularity at every point. On the other hand, the Holder exponent
of a function can also be irregular. In this case, the function is said to be multifractal and its
behaviour is completely erratic.

Many mathematicians have been interested in the Holder continuity and in the multifractality
of irregular functions. From the Weierstrass function (see [49,65,121]) to Eisenstein series
(see [100]) recently, through the Takagi function (see [110,113]) and the Riemann function
(see [49,55,61]), many other functions have been investigated (see also [62] for other examples
and [70] for some space-filling maps).

A tool to study the Holder continuity of a function is given by the theory of wavelets (see [33,
55,59-61,68,92,115|). The behaviour of its wavelet coefficients (that are its coefficients in
an orthonormal basis of wavelets) or the behaviour of its continuous wavelet transform allows
to obtain its Holder continuity. Actually, Holder continuity can be completely characterized by
wavelet coefficients or by continuous wavelet transform. This technique established by JAFFARD
and MEYER has already proven its worth in the study of the regularity of some functions
(see [65,61,100] for some examples).

The theory of wavelets takes also part in other contexts. In the nineties, the notion of “non-
stationarity” appeared in the classical theory of orthonormal basis of wavelets (see [16,35,40,41,
98,119]). In the nonstationary setting, orthonormal bases of wavelets using Exponential-Splines
have been obtained in [35]. The problem of the construction of regular compactly supported or-
thonormal bases of wavelets in the general context of Sobolev spaces have been studied in [15,16].
Moreover, infinitely differentiable orthonormal bases of wavelets with compact support have been
considered in [41].



) Introduction

Typically, an orthonormal basis of wavelets of L?(R) is an orthonormal basis of L?(R) of
type
P —k), jkEL

where ¢ € L?(R). The nonstationary version of this definition consists in introducing a depen-
dence on the parameter j for the function ). More precisely, a nonstationary orthonormal basis
of wavelets of L?(R) is an orthonormal basis of L2(R) of type

2929002 —k), 4 k€,

where ) € L%(R) for j € Z.

As in the classical case, it is possible to construct such a basis from a procedure called
multiresolution analysis, with some adaptations to the nonstationary case. A family of scaling
functions can lead to a nonstationary multiresolution analysis (see [16,35,98]).

The present thesis is concerned with the Holder continuity of functions and the theory of
wavelets. This is the explanation of the title. It is mainly based on the papers [14,17,18,96,97].
It is divided into three parts.

Part I studies the Holder continuity of several functions. After some recalls about pointwise
and uniform Holder continuity in Chapter 1, we first determine the Holder exponent of the
Darboux function. Chapter 2 focuses on a well-known space-filling function, called Cantor’s
bijection. We explore the multifractal nature of this one-to-one correspondence between the
unit segment [0, 1] and the unit square [0, 1]2. Moreover, in the appendix, we construct another
bijection between [0, 1] and [0, 1]2 inspired by an idea of CANTOR. Finally, in Chapter 4, we study
the uniform Hélder continuity of a generalization of the Riemann function. To do so, we use
the known characterization of Holder continuity with continuous wavelet transform formulated
in Chapter 3. We also analyse the behaviour of this generalized Riemann function according to
its parameters.

Part IT mainly focuses on the theory of wavelets. We investigate the classical notions of
orthonormal basis of wavelets and of continuous wavelet transform in a nonstationary setting.
Firstly, in Chapter 5, we consider the construction of a nonstationary orthonormal basis of
wavelets in L?(IR) from a nonstationary multiresolution analysis. Under some additional asymp-
totic assumption, we present a necessary and sufficient condition about such a procedure. We
notably illustrate the results on the example of Exponential-Splines. Secondly, we propose
a nonstationary version of the continuous wavelet transform of a square integrable function in
Chapter 6. After having given some examples, we study the reconstruction of a square integrable
function from its nonstationary continuous wavelet transform.

Part III studies new spaces first introduced in the context of multifractal analysis. These
spaces provide a tool to investigate the regularity (and more precisely some information about
the Holder exponent) of a function from its wavelet leaders, that is to say from quantities using
the coefficients of the function in an orthonormal basis of wavelets. Since these new spaces do
not depend on the chosen orthonormal basis of wavelets, they can be considered as sequence
spaces. We present these new sequence spaces and their first properties in Chapter 7. Then,
in Chapter 8, we study them from the functional analysis point of view. We define a natural
topology on these spaces and study some of its properties.
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Let us end this introduction with some explanations about this thesis. Except for the begin-
ning of Chapter 1, we have included the proofs of new results and the proofs of known results
for which we have not found a proof in the literature. If a result is given without a proof, at
least one reference is mentioned to find the result and a proof of the latter.

The notations of this thesis are classical. The symbol N denotes the set of strictly positive
natural numbers and Ny := NU{0}. Both f and F~ f designate the (negative) Fourier transform
of the function f. For f € L*(R), we have

j&) =F f= /R e f (1) dz, € €R.

A list of symbols classified by section is given at the end of this thesis.
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Chapter 1

Continuous Nowhere Differentiable
Functions and Holder Continuity

There exist a lot of functions which are continuous, but nowhere differentiable (see [4,56,91]).
The most famous example of such functions is certainly the Weierstrass function W defined by

+o00
W(z) = Z a"cos(b"mx), xeR (1.1)
n=0

where a € (0,1) and b > 0 with ab > 1 (see [49,121]). Another well-known continuous nowhere
differentiable function is the Takagi function 1" defined by

R
T(x) = Z o dist(2"z,Z), xzeR
n=0
(see [113]). The graphics of W and T are represented in Figure 1.1. Amazingly, W and T are
not the first constructions of continuous nowhere differentiable functions. In fact, BOLZANO and
also CELLERIER earlier built such a function, without publishing their discovery (see [57] for
some historical information).

The Holder spaces allow to define a notion of smoothness or regularity for a function and, in
particular, they roughly provide an “intermediate level” between continuity and differentiability.
In this chapter, we first give the definition of Holder spaces and Hoélder continuity in this context.
The general definition is also considered in the pointwise case. We then introduce the notion of
Holder exponent. We finish with the Holder continuity of a detailed first example: the Darboux

function.

1.1 Holder Continuity and Holder Spaces
1.1.1 Pointwise H6élder Continuity
Let us begin with the definition of pointwise Hélder continuity (see [33,65,88,95,115]).

Definition 1.1.1. Let o € (0,1] and zyp € R. The function f is Hélder continuous of order o
at xq if there exist C,d > 0 such that

|f(x) = f(xo)| < Clx — xol* (1.2)

for all x € (zg — d, 29 + §). We denote by A%(zg) the space of Holder continuous functions of
order o at xg and it is called Holder space of order o at xg.

7
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Figure 1.1. Graphical representations of W (with @ = 1/2 and b =4) and of T
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The definition implies that f is bounded in a neighbourhood of z¢ if f € A%(zg) for some
a € (0,1]. Incidentally, if we consider the case a = 0, A%(xg) would simply be the space of
bounded functions in a neighbourhood of xy. The case a = 1 corresponds to the space of
Lipschitz functions at z.

Holder spaces are clearly embedded: if o, € (0,1] such that a > 3, we have A%(xy) C
G (zg) for all zp € R. This property will be proved in a more general case (see Proposi-
tion 1.1.12).

The following proposition investigates the links between differentiability, Holder continuity
and continuity at a point.

Proposition 1.1.2. Let zg € R.

(a) If f € A*(zo) for some « € (0,1], then f is continuous at x.

(b) If f is differentiable at xq, then f € A*(x¢) for all a € (0, 1].

Proof. The first item is evident and let us prove the second item. By hypothesis, there exists
d € (0,1) such that

(D)(ag) - L@ S 0)|

r — X
and then
[f(2) = f(@o)| < (L+[(Df)(@o)]) [z — w0l

for all x € (xg — 8,20 + ). So f € Al(xp), which suffices using the embedding of pointwise
Holder spaces. [ |

The converse of each item of the previous proposition is false. On the one hand, the function
T+ —X(0,1)(z)/log(z) is continuous at 0, but there exists no o € (0,1] such that it belongs
to A*(0). On the other hand, the function x — |z| belongs to A%(0) for all « € (0, 1], but is not
differentiable at 0.

1.1.2 Uniform Ho6lder Continuity

Let us go on with the uniform Holder continuity (see [33,80,92,95,115]). Before that, let
us make the following remark about Definition 1.1.1.

Remark 1.1.3. If f is moreover bounded on R in Definition 1.1.1, Condition (1.2) holds every-
where. Indeed, for z € R such that |z — z¢| > §, we have

7(@) = Fao)] < 250 (0)] < == sup|f )l — ol
yeR y€R

Then, the bounded function f belongs to A%(z) if and only if there exists C' > 0 such that
[f (@) = f(z0)| < Clz — 2o

for all z € R.
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Definition 1.1.4. Let o € (0, 1] and f be a bounded function on R. The function f is uniformly
Hoélder continuous of order o (on R) if there exists C' > 0 such that

[f (@) = f(@o)| < Clz — 2ol

for all x,z9 € R. We denote by A%(R) the space of uniformly Hélder continuous functions of
order @ (on R) and it is called uniform Holder space of order a (on R).

In comparison with Definition 1.1.1, the constant C' does not depend here on zy. If we
consider the case a = 0, A°(R) would be the space of bounded functions. The case a = 1
corresponds to the space of uniformly Lipschitz functions.

Remark 1.1.5. If f is uniformly Hélder continuous (of order a € (0,1]) on R, then f is clearly
Holder continuous (of order «) at each point in R. The reverse is false. For example, the

function f defined by
1
zsin | —) ifz#0
fz) = (90)

0 ifr=0

is Holder continuous of order 1 at each point in R, but is not uniformly Hélder continuous of
order 1. Indeed, it is easy to check that f € A'(0). If zg > 0, there exists § > 0 such that
rg— 6 >0 and

1 1 1
@)= fGaol < fo = aolsin () |+ b fin (1) = sin (-]
i) T i)
T 1
< o —xo| + |7 / —200$<—> dt‘
2 t t
11
< Jo—wol +zf |~~~
1
< <1+—)|x—xol
|o|

for all € (xg — J, 29 + 6). The case 2o < 0 is similar. Then, f € A'(xg) for all zg € R. Let us
now show that f ¢ A'(R). Let C' > 0 and let us set

1
Ty = ————, neN.
" 7T(n—i—%)

There exists N € N such that 2(2n + 1) > C for all n > N. For such n, we have

2 2n+1

- > Clrop — Tan1,
7T(2n+%)(2n+%) 20 nl

|f($2n) - f($2n+1)| =

hence the conclusion.

Uniform Holder spaces are also embedded, and this comes from the hypothesis of bounded-
ness in the definition of uniform Hélder continuity. This is the object of the following proposition.

Proposition 1.1.6. If o, 8 € (0,1] such that a > 3, we have A%(R) C A%(R).
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Proof. Let f € A%(R). By hypothesis, there exists C' > 0 such that
[f(z) = f(zo)| < Clz — 20|

for all x,z9 € R. If |x — zy| < 1, we have
£ () = f(wo)| < Clw = o]

and if |z — x| > 1, we have

|f(x) = f(wo)| < 2sup|f(y)| |z — wo|’
yeR

because f is bounded. With C' := max{C,2sup,cg | f(y)|}, we thus have
(@) = f(wo)| < Ol — o]

for all z, 79 € R and f € AP(R). ]

Let us investigate the links between differentiability, uniform Hélder continuity and (uniform)
continuity.

Proposition 1.1.7. Let f be a bounded function.

(a) If f € A*(R) for some a € (0,1], then f is uniformly continuous (and so continuous) on R.

(b) If f is differentiable on R and if Df is bounded, then f € A*(R) for all « € (0, 1].
Proof. (a) By hypothesis, there exists C' > 0 such that
|f(x) = fzo)| < Cla — 20|*

for all ,z9 € R. Let ¢ > 0 and let 7 := (¢/C)/*. We have |f(z) — f(x0)| < € for all z, 29 € R
such that |x — xg| <7 and so, f is uniformly continuous on R.
(b) By Proposition 1.1.6, it suffices to show that f € A'(R). For all x,z9 € R, we have

[f (@) = f(zo)| =

€T
[ D1y at| < sup D10 o - o
T teR
because D f is bounded. Hence the conclusion. [ |

Remark 1.1.8. The condition “D f is bounded” is also necessary. More precisely, if f is differ-
entiable and uniformly Holder of order 1, then D f is bounded. Indeed, there exists C' > 0 such
that

<C

‘f(w) — f(@o)

T — X

for all z,zp € R with x # z( and taking the limit for z — x(, we have |Df(x¢)| < C for all
g € R.
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1.1.3 Extension

Let us now consider Hdélder continuity of order strictly bigger than 1. Before that, let us
make the following remark.

Remark 1.1.9. Let a > 1 and f be a function defined on R. If there exists C' > 0 such that
[f (@) = f(zo)| < Clo —x0[*

for all x,xg € R, then f is constant on R. Indeed, for x,xg € R with x # x(, we have

‘f(.%') — f(xO)’ < C|$ _ x0|a—1‘
|z — x|
Consequently, f is differentiable and D f = 0 on R, hence the conclusion.
Let us give the general definition of Holder continuity (see [65,95,115]).

Definition 1.1.10. Let o > 0 and g € R. The function f is Hélder continuous of order «
at xq if there exist C,0 > 0 and a polynomial P of degree strictly smaller than « such that

[f(z) = P(z — 20)| < Cla — x| (1.3)

for all z € (g — J,x0 + d). We still denote by A%(x) the set of Holder continuous functions of
order o at xg and this set is called Holder space of order o at xg.

Definition 1.1.10 is clearly a generalization of Definition 1.1.1. Indeed, taking z = zg in
Inequality (1.3), we directly have P(0) = f(x¢) and so, the independent term of P is f(x).

Remark 1.1.11. In the following, we write the polynomial P of Definition 1.1.10 as
«
P(zx) := Zpkxk, reR
k=0

where « is the greatest natural number strictly smaller than « and py € C for k € {0,...,a}
(which eventually depend on zp). We already know that py = f(x¢). Moreover, P is unique.
To show that, let us assume that there exists a polynomial ) of degree strictly smaller than «
such that

f(2) = @z — 20)| < Clo —20[*

for all z € (g — d,x0 + ). Let us write
[e3
Q(z) =) qua*, z €R
k=0
with g, € C for k € {0,...,a}. For z € (xg — d,29 + J), we have
|P(z — x0) — Q(z — 20)| < 20z — 20|

Taking x = x, we directly have gy = Q(0) = P(0) = pg. For x # x¢, we first have

‘P(x —x0) — Q(z — xo)
r — X

o
k-1 < 20|z — xo|*7!

(Pr — qr)(x — 20)
k=1

and then ¢; = p; taking the limit for z — xo. Step by step, we get qx = pr for k € {2,...,a}

since a < a.
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These pointwise Holder spaces remain embedded.
Proposition 1.1.12. If a > 8 > 0, we have A%(xq) C A?(x¢) for all 2y € R.

Proof. Let f € A%(xp). There then exist C,d > 0 and a polynomial P of degree strictly smaller
than « such that
|f(x) = P(z — z0)| < Cla — x0|*

for all x € (g — 0,20 + ). Let us set

B8
P'(x) = Zpkwk, zeR.
k=0
If B = q, it is evident since P’ = P on R and |z — z|* < |z — 20|? for all z € (zo — 1,20 + 1).
If B> a, we have

|[f(@) = P(z — o) < |f(x) = Pz —wo)| + Y pwlle —aol* < [ C+ D Ipul | |2 — ol
k=F+1 k=p+1
for 2 € (g — &', 20 + &) with & := min{d, 1}. Hence f € A®(x0). |

We know that if a function is differentiable at zy € R, then it belongs to A%(z¢) for o € (0, 1].
The following result shows that a Hélder continuous function of order strictly bigger than 1 at zg
is differentiable at zg.

Proposition 1.1.13. Let zy € R. If f € A%(xg) for some o > 1, then f is differentiable at xg.

Proof. By hypothesis, there exist C,d > 0 and a polynomial P of degree strictly smaller than «
such that
f(z) = P(z — z)| < Clz — x|

and then
f(@) = f(=o)

m
_ < Ol — a—1 _ k—1
P p1| < Clz —wo|* "+ [prllz — o

k=2
for all € (zg — d,z0 + 0) \ {x0}, with the notations of Remark 1.1.11. Consequently, f is
differentiable at xzo and (Df)(zo) = p1. ]

We know that pg = f(z). With the previous proof, we see that p; = (Df)(zo). In fact, if
f € A%(z) is « times continuously differentiable on a neighbourhood of z(, we can show that
the polynomial P in Definition 1.1.10 is the Taylor’s polynomial of degree @ at xy. This is the
object of the following proposition.

Proposition 1.1.14. Let xg € R, ¢ >0, p € N and o > 0.

(a) If f is p times continuously differentiable on (xg—¢e,x9+¢), then f € AP(xg). In particular,
the polynomial in Definition 1.1.10 is the Taylor’s polynomial of degree p — 1 at xg.

(b) If f € A%(x¢) is « times continuously differentiable on (xg — €,z + €), then the polynomial
in Definition 1.1.10 is the Taylor’s polynomial of degree o at xg.
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Proof. (a) By Taylor’s formula, for all z € (zg —&/2, 20 +¢/2), there exists 6 between z and xg

such that .
p— k
(D DP ) (60
Z f xO —(L’)k—i-( f')( )(x_xo)p
k=0 p:
and then
p—1 k
(D T 1
Z f 0 (z —@0)*| < ~ sup I(DPf)W)| |z — zo”.
k=0 D yelzo—e/2,m0+¢/2)

Consequently, f € AP(x¢) and, by the uniqueness of polynomial in Definition 1.1.10 (see Re-
mark 1.1.11), we have the conclusion.
(b) By hypothesis, there exist C,d > 0 and a polynomial P of degree strictly smaller than «
such that
/() — Pz — 20)| < Cla — zf°

for all x € (zg — 0,29 + J). Let us use the same notations of Remark 1.1.11. By the previous
item and the uniqueness of polynomial in Definition 1.1.10, we have

P(x — x0) = po(x — x0)* +

for x € R and it only remains to show that p, = (D%f)(zo)/a!. Let us set n := min{e, §}. By
Taylor’s formula, for all x € (xg — 1,20 + 1) \ {zo}, there exists § between = and xg such that

F() = Pla - x0) = ((D‘—f)”) - pg) (& — x0)®

a!
and then Dasi(s
‘( 7f)( )_pa SC’(L‘—.%’()‘OHQ
al -
Since o — a > 0, we have the conclusion. [ |

Uniform Hoélder continuity can also be defined for order strictly greater than 1 (see [80,92,
95]). We will not need it in this thesis and therefore, we will not consider the general definition.

1.2 Holder Exponent

The embedding of Holder spaces allows to define a notion of regularity, known as Holder

exponent.

Definition 1.2.1. The Hélder exponent of the function f at g € R is

hy(zg) :=sup{a >0: f € A%(xo)}.

Following this definition and the previous section, if f is differentiable at x¢, then h¢(zg) > 1.
Moreover, hy(xo) < 1 implies that f is not differentiable at xg and hy(xg) > 1 implies that f is
differentiable at xg. However, there exist functions which are not differentiable at x¢ and with
an Holder exponent at g equal to 1; the function x +— |z| with the point 0 is a trivial example.
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Figure 1.2. Graphical representation of R.

Let us note that the Holder exponent of a function at a point can be infinite. This is the case
for infinitely continuously differentiable functions. By convention, we set h¢(zo) := 0 if there
exists no a > 0 such that f € A%(xy).

Let us mention the cases of the Weierstrass function and the Takagi function. On the one
hand, W belongs to A" (z) and hy (z) = w for all z € R where w := —log(a)/log(b) (see [65]).
Let us remark that it shows directly that W is a continuous and nowhere differentiable function
since w < 1 (in fact, b > 1/a > 1 with the hypotheses on a and b, see Expression (1.1)). On the
other hand, T belongs to A!(x) and hr(z) = 1 for all x € R (see [110]). In comparison with W,
it does not imply that T is nowhere differentiable. We can note that the Holder exponent of W
or T remains the same at each point. The Weierstrass function and the Takagi function are then

monofractal functions.

Definition 1.2.2. The function f is monofractal if there exists h > 0 such that hy(x) = h for
all x € R. Otherwise, f is multifractal.

Let us now consider the Riemann function R defined by

= sin(mn?z)
R(x) :227, zeR.

n2
n=1

The graphic of R is represented in Figure 1.2. We know that hr(0) = 1/2 and hr(1l) = 3/2
(see [61,68] for the complete result) and so, R is a multifractal function. More information
about R is given in Chapter 4, where we study the uniform Holder continuity of generalized
Riemann function.

The Hélder exponent of a continuous nowhere differentiable function is everywhere smaller
(or equal) than 1. Therefore, in this context, we consider rather the restricted pointwise and

uniform Hoélder exponent.
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Definition 1.2.3. (a) The restricted Holder exponent of the function f at xo € R is
Hy(wo) 1= sup{a € (0,1 : f € A%(zo)}.

(b) The restricted uniform Holder exponent of the bounded function f (on R) is
H¢(R) :=sup{a € (0,1] : f € A*(R)}.

We clearly have h¢(xg) > Hy(xg) > Hf(R) for all 9 € R. Moreover, h¢(xg) = Hy(zo) if
zog € R with h¢(xg) € (0,1]. For example, Hy (R) = —log(a)/log(b) (see [65]), Hr(R) =1
(see [110]) and Hr(R) = 1/2 (see [55]).

A way to calculate restricted pointwise Holder exponent is given by the following formula
(see [69] for example). Other methods to determine Holder exponent will be exposed later.
Proposition 1.2.4. Let 9 € R and let f € A*(xzg) for some a € (0,1]. We have

1 _
H o0) — tim g 128 = )]
T—0 log |z — x|

Proof. By hypothesis, there exist C' > 0 and § € (0,1) such that
[f (@) = f(z0)| < Clz — 2o/

(1.4)

and then
log |/ (@) — f(x)] . log(C)
log |z —xzo|  — log|z — x|

+ o

for all z € (g — 0,20 + 0) \ {zo}. Consequently, we have
log |/ (@) = f(z0)| _ 1og(C)

z +a
z€(wo—b,x0+6)\{z0}  log |z — x| log(0)
and |
lim inf —& |f(z) = f(@o)l > Hy(xo).
=10 log |z — o]

Let us show that this inequality is an equality. By contradiction, let us assume that there exists
a € (0,1] such that
1 _
L log|f(@) — f(ro)]
=10 log |z — o]

Then, there exists 6 € (0,1) such that
[f(z) = f(@o)| < |z —20|®

for all z € (g — 0,20 + 6) and so f € A*(xg). Hence a contradiction since a > H (). ]

> o > Hf(xo).

Remark 1.2.5. Since the function f defined by

1
— ifz#0
T
0 ifz=0

fz) =

is not continuous at 0, there exists no a € (0, 1] such that f € A%(0) and then H;(0) = 0 by
convention. However, we have

b Jog 1 () = ()

-1
0 log |« — 0]

and thus, Equality (1.4) is not verified.
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Figure 1.3. Graphical representation of D.

Let us end this chapter by the investigation of the Holder continuity of the Darboux function.
In next chapters, we will study other functions: the Cantor’s bijection is considered in Chapter 2
and the generalized Riemann function in Chapter 4. Other examples can be found in [62,71].

1.3 A First Detailed Example: the Darboux Function

DARBOUX [31,32] showed that the function D defined by
D) = = sin((n+ 1) x) R
() = Z% — a7 S

is continuous, but nowhere differentiable on R. The graphic of D is represented in Figure 1.3.
Let us prove that D and T have the same Holder exponent, which is everywhere equal to 1.

Proposition 1.3.1. We have D € A'=2%(R) for all § € (0,1/2) and then Hp(R) = 1. Moreover,
hp(z) =1 for all z € R and D is a monofractal function.

Proof. Let us fix z,x9 € R. We have

N z +o00 1
|D(z) — D(zo)] < ) (n+1) / cos((n—l—l)!t)dt‘—i—Q > -
n=0 o n=N+1
N +o00
< ]w—xOIZ(n+1)+2 Z gt
n=0 n=N+1
< 3N?|x — x| + 227N



18 Chapter 1. Continuous Nowhere Differentiable Functions and Hélder Continuity

for all N € N. Let us also fix 6 € (0,1/2). There exists § € (0,1) such that
1
2 le==20l” < | — x|

for x,z9 € R with 0 < |z — 29| < ¢ because /2=t — 0 if t — +o00. For such = and zg, there
exists a unique NV € N such that

1
N<+—FF <N+1

o — x0|®

and then )
227N <892 le—wl? < 8|z — x].

So, we obtain
[D(x) = D(wo)| < 3z — 20!~ + 8l — o] < & — wo|' ¥ (3+ 86%)

if |z — x| < d. Moreover, since D is bounded on R, we directly have

2 —
|D(z) — D(z0)| < (ﬂ ilelﬂg) ]D(t)!) |z — xo|* 20
if |x — xg| > 4. Finally, we have shown that for all § € (0,1/2), there exists C' > 0 such that
|D(2) = D(0)| < Cla — o'~

for all , 29 € R. Consequently, D € A'~2%(R) for all 6 € (0,1/2) and hence Hp(R) = 1.
Since D is nowhere differentiable on R, hp(xz) < 1 for all z € R. We know that hp(z) >
Hp(R) =1 for all x € R. Thus, we obtain hp(z) =1 for all z € R. ]



Chapter 2

Cantor’s Bijection(s)

At the end of the 19" century, CANTOR spent a lot of his time on proving the existence of
one-to-one mappings between sets. In particular, as borne out by the epistolary relation with
Dedekind (see [34,38]), he was concerned about finding such a correspondence between the set
of natural numbers and the set of positive real numbers. Even if, following DEDEKIND, this
work was only of theoretical interest, CANTOR [24] showed in 1874 that there does not exist
any bijection between the set of all natural numbers and the unit interval. Such a result was
the precursor of the notion of cardinality and paved the way for the set theory.

Once this problem solved, CANTOR addressed to DEDEKIND a question that can be resumed
as follows: “Can a surface (e.g. the unit square) be put into relation with a curve (e.g. the unit
segment)?” (see [34,38]). At the time, such a question was surprising and even considered as
an absurdity, because mathematicians were convinced that two (independent) variables cannot
be reduced to one.

In 1877, CANTOR [25] proved that there exists a one-to-one correspondence between the
points of the unit line segment [0,1] and the points of the unit square [0,1]%2. About this
discovery, he wrote to DEDEKIND (see [34,38,46,120]): “Je le vois, mais je ne le crois pas !” (“I
see it, but I don’t believe it!”). With such a result, the notion of dimension had to be reconsidered
and this helped to clarify the confusion between dimension and cardinality.

The bijection between [0,1] and [0,1]? constructed by CANTOR is defined via continued
fractions. It is therefore challenging to have any intuition about its regularity. When looking at
its definition or at the graphical representation of each component, it is not hard to convince
oneself that the behaviour of such a function is necessarily “erratic”. It is well known that most
of the “historical” space-filling functions are monofractal with Holder exponent equal to 1/2
(see [70,71]). Is it still the case of Cantor’s bijection?

In this chapter, after some preliminaries about the space of sequences of natural numbers
and the theory of continued fractions, we first recall the construction of Cantor’s bijection based
on continued fractions and give a graphical representation of the two components of this map.
We then investigate the regularity (continuity and Hélder continuity) of this application. In
particular, we explore its multifractal nature showing that its Holder exponent lies in an interval
which contains 1/2. We finish by an appendix with another construction of a bijection between
[0,1] and [0,1]?, also based on a idea of CANTOR. The results presented in this chapter are
mainly from [96,97].

19
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2.1 Some Preliminaries

In this chapter, we set £ :=[0,1], D:= ENQ and I := E\ D.

2.1.1 The Space of Sequences of Natural Numbers

The space of the (infinite) sequences of natural numbers is denoted by N := NN, Since this
space is a countable product of metric spaces, we define the usual distance d by

o0

=Y 2

= b il +1

for two elements a := (a;)jeny and b := (b;)jen of N. We will implicitly consider that N is
equipped with this distance and that F, D and I are endowed with the Euclidean distance.

Remark 2.1.1. Considering a and b as two infinite words on the alphabet N (see [85]), we
can also use the following ultrametric distance on N: for a,b € N/, let a A b denote the longest
common prefix of a and b, so that the length |a A b| of this prefix is equal to the lowest natural
number j such that a; # b; minus 1. A distance between a and b is given by

0 ifa=>5
d'(a,b) := { 9—landbl it q £b

The distances d et d’ are equivalent. More precisely, we have the following inequalities.

Proposition 2.1.2. We have
1
—d' <d<d.
d=ds
Proof. Let a,b € N. If a = b, we clearly have d(a,b) = d'(a,b). Let us assume that a # b

and let us set J := |a A b|. We then have a; = b; for all j € {1,...,J} and aj41 # bj41. On
the one hand, we have

+00 ‘
> 277 =d(a,b)
j=J+1

and on the other hand, we have

_ — byi1]
d(a,b) > 2~ ¢/+1) 2741 = by Lo a,b
(a,b) 2 1+!aJ+1—bJ+1!_4 (a,b).

For the sake of completeness, let us recall the following result (see [75]).

Proposition 2.1.3. The space (N, d) is a separable complete metric space.
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2.1.2 Continued Fractions

Let us recall the basic facts about the continued fractions (see [23,76,112]). Here, we state
the results for E, but they can be easily extended to the whole real line.
IfneN,let a:= (aj)je{l,...,n} be a finite sequence of strictly positive real numbers. Let us

set 1
a1l :=— and J|ay,...,apm|:= ,
[ 1] a1 [ ! m] a1 + [a27 v 7am]

for any m € {2,...,n}. In the following and unless stated otherwise (as in Proposition 2.1.14

for example), we will only consider the case where the elements of a are natural numbers.
Definition 2.1.4. A continued fraction is an expression of the form

1

[a17a27"'7an] -
al +
ay + ——

where ay,as,...,a, € Nand n € N.

Proposition 2.1.5. For any a € N" with n € N, [a1,...,ay] belongs to D \ {0}. Conversely,
for any x € D\ {0}, there exist n € N and a € N" such that x = [ay1, ..., ay).

The representation of a rational number as a continued fraction is not unique, as shown by
the following remark. This will be used in the proof of Proposition 2.3.6.

Remark 2.1.6. If a € N with n € N is such that a, > 1, we have
[a1,...,an] = [a1,...,a, — 1,1].

Let us now define the notion of convergent. For all @ € N* with n € N and for each integer
j € {—1,...,n}, let us define recursively the quantities p;(a) and g;(a) as follows: we set
p-1(a) =1, q-1(a) := 0, po(a) := 0, go(a) := 1 and

{ pj(a) :=ajpj-i(a) + pj—2(a) (2.1)

gj(a) := ajgj-1(a) + gj—2(a)
for j € N.

Definition 2.1.7. For @ € N" with n € Nand j € {1,...,n}, the quotient p;(a)/q;(a) is called
the convergent of order j of a.

Convergents are closely related to the continued fractions.

Proposition 2.1.8. Let a € N" with n € N. For j € {1,...,n}, we have

[al, PN ,CL]'].
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Furthermore, we have

gj(a)pj—1(a) — pj(a)gj-1(a) = (—1)]: forje{l,...,n}
gj(a)pj-2(a) - pj(a)gj-2(a) = (=1)"la; forj €{2,...,n}

As a consequence, we also have

pjil(a) — pj(a) _ (_1)j or1J n
e
= . orj .,n
gji—2(a) gi(a)  gj(a)gi_2(a) forj € {3,...,n}

Of course, we can define the numbers p;(a) and g;(a) for an element a of V. The convergents
allow to introduce the notion of infinite continued fraction, thanks to the following result, which
is simply a consequence of the previous proposition and of the property:

lim ¢;(a) = +oo. (2.2)

j—4o0

Corollary 2.1.9. For any a € N, we have

p2(a) < pa(a) c < p2j(a) < p2j-1(a) c < ps3(a) < pi(a)

g2(a)  qu(a) @j(a)  qj-1(a) g3(a)  qi(a)
for all j € N. As a consequence, the sequence

(Pj(a)>
qj(a) jEN
converges.
Definition 2.1.10. If a € N/, we say that
[a1,...] = lm [a1,...,a,]

n—-+4o0o

is an infinite continued fraction.

If @ is an element of N' or N with n € N, we will sometimes simply write [a] instead of
[a1,...] or [a1,...,ay] respectively.

We know that the rational numbers (of E \ {0}) can be represented by a finite continued
fraction. The following result considers the case of irrational numbers (of E\ {0}).

Theorem 2.1.11. We have x € [ if and only if x is represented by an infinite continued fraction,
i.e. there exists a € N such that x = [a]. Moreover, this infinite continued fraction is unique.

If the real number z € E \ {0} is equal to the continued fraction [a], we say that [a] is a
continued fraction corresponding to x. We know that if x € I, then a € N and [a] is the unique
continued fraction corresponding to z. If x € D\ {0}, then a € N* with n € N and [a] is not
the single continued fraction corresponding to x (see Remark 2.1.6).

Let us mention the quite particular case of ultimately periodic continued fraction (see [23,
76)).
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Definition 2.1.12. A sequence a € N is ultimately periodic of period k € N if there exists
J € N such that aj; = a; for any j > J. In this case, the corresponding continued fraction [a]
is also called ultimately periodic of period k.

The quadratic numbers (of F), i.e. the numbers (of E) which are zeros of a polynomial with
integer coefficients, are characterized by their particular corresponding continued fractions. This
is the object of the following result.

Theorem 2.1.13. An element of I is a quadratic number if and only if the corresponding
continued fraction is ultimately periodic.

Let us now give a brief introduction of the notion of the metric theory of continued fractions
(see [76,112]). Let us first recall the following result.

Proposition 2.1.14. If x € E \ {0} can be written as x = [a1,... 0y, nt1] With n € N,
ai,...,an, € N and r,41 € [1,+00), the following relation holds:
= Pa(@)rns +pa-i(a)
qn(@)rni1 + gn-1(a)

where a := (a;)jeq1,..n}-

For any a € N, we know that [a] corresponds to an irrational number x € I. For each j € N,
the term a; can be so considered as a function of x: a; := a;(x). Let us fix j € N and write
x=la1,...,aj_1,r;] with 7; € [1,400). It is easy to check that, for any k € N, we have

: . 1 1
a;j =k if and only if k——i—1<TjSE
if 7 is odd and
aj =Fk ifandonlyif k<r;<k+1
if j is even. Thus, a; is a piecewise constant function. Moreover, a; is non-increasing if j is odd
and non-decreasing if j is even. The functions a; and ao are represented in Figure 2.1.
Let x = [a] be an irrational number. For n € N, we set

I,(z) :={y € I:3beN suchthat y=[b] and b; =a;Vj e {1,...,n}}.
We will say that I,(x) is an interval of rank n. For any n € N, I,,11(x) C I,(xz) C I and

() In(z) = {z}.

neN
Indeed, using Proposition 2.1.14 with r,+1 =1 and rp4+1 — +00, we get
In( ) _ (pn(a') : pn(a) +pn—1(a)> NI,
an(a)” gn(a) + gn-1(a)

if n is even (if n is odd, the endpoints of the interval are reversed). Every interval of rank n is

partitioned into a countable infinite number of intervals of rank n+ 1. We will denote by |I,(z)|
the Lebesgue measure of I,,(x). Using Proposition 2.1.8, we have

1

I,(z)| = . 2.3
0= @@ + g 2
Thanks to Property (2.2), we directly obtain

lim |I,(z)| = 0. (2.4)

n—-+00
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Figure 2.1. The graphics of functions x +— aq(x) and = — ag(z) if ai(x) = 1. This illustrates
the fact that I;(x) is partitioned into a countable infinite number of intervals of rank 2; in this
case, Is(x) C [1/2,1] N1, since aj(x) =1 if and only if x € [1/2,1] N I.
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2.2 Cantor’s Bijection

Cantor’s bijection on I (see [25]) is a one-to-one mapping from I onto I2. It is constructed
as follows. If x € I, let [a] be the corresponding continued fraction and let C; and Co be the
applications defined by

Cl(.%') = [al,ag,...,a2j+1,...] and CQ(.%') = [ag,a4,...,a2j,...].
These applications are represented in Figure 2.2. Theorem 2.1.11 implies that the application
C:1—1I?% z (Ci(z),Ca(x))

is a one-to-one mapping. It is called Cantor’s bijection. If ) denotes the quadratic numbers
of I, C is a one-to-one mapping from @ onto @? by Theorem 2.1.13. Since the cardinals of E
and I are equal, C can be extended to a one-to-one mapping from E onto E2.

2.3 Continuity of Cantor’s Bijection

Let us study the continuity of Cantor’s bijection on I.
Proposition 2.3.1. Cantor’s bijection C is continuous on I.

Proof. For any n € N and any « € I, C; maps the interval I,,(z) onto I,(C1(z)) where
m = n/2 if n is even and m = (n + 1)/2 if n is odd. This shows that C; is a continuous
function on I. Indeed, let zp € I and € > 0. With Property (2.4), there exists M € N such that
[In(Ci(xo))| <e. If € Inp(zg), we have |z — xo| < |Iopr(x0)| and

|C1(z) = Ci(zo)| < [ (Co(z0))| < e
Obviously, the same argument can be applied to C» and we have the conclusion. [ |

In fact, Cantor’s bijection is even an homeomorphism between I and I?. To show that, we
first define a map from I onto N. For x € I, we write o(x) := a if a € N satisfies © = [a]. The
application o is clearly a bijection from I onto N by Theorem 2.1.11.

Proposition 2.3.2. The application o is an homeomorphism from I onto N

Proof. Let xo € I and € > 0. There exists N € N such that 27~ < ¢. For x € Iy(z¢), we have
|z — 20| < [In(x0)| and

d(o(z),0(x0)) < d'(o(x),0(x0)) <27V <e.

So, ¢ is continuous on I.
Conversely, let ag € N and ¢ > 0. With Property (2.4), there exists N € N such that
|In(c7 (ag))| < e. For a € N such that d'(a,ag) <27, we have 07 (a) € In(c7(ap)) and

o™ (@) — o7 (ao)| < |In(07 (a0))| < e

1

So, o~ 1 is continuous on N. ]
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Figure 2.2. Graphical representations of C; and Cs.
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Remark 2.3.3. We obviously have [] = oc~! on N.

Since (N, d) is a separable complete metric space (see Proposition 2.1.3), we have reobtained
the following well-known result (see [75]).

Corollary 2.3.4. The space I is a Polish space.
Proposition 2.3.5. Cantor’s bijection C is an homeomorphism between I and I>.

Proof. Since the application

(a,b) e N XN = ¢c:=(¢j)jen €N

where
; if 7 is odd
o= { G0rr 15
bj/2 if j is even
is an homeomorphism, we have the conclusion, using Proposition 2.3.2. [ |

Netto’s theorem (see [108]) guarantees that such a function C can not be extended to a
continuous function from E to E?. The following result gives additional information.

Proposition 2.3.6. Any extension of Cantor’s bijection to E is discontinuous at any rational

number.
Proof. Let z € D\ {0}. There exists k € N and a € N* with aj, > 1 such that
T = [al,...,ak] = [al,...,ak—l,l].

Let b € N. For n € N, let us set z, := [a1,...,a0%, 7], Yn = [a1,...,a — 1,1,7,] with
rn :=n + [b]. By construction, z,, and y, are irrational numbers for all n € N and

lim r, = +oo.
n—-+4o0o

By Proposition 2.1.14 and Proposition 2.1.8, we have

o = Tl PE@@e) +pe-i(o(@a) _ prlo(ar,. - ak]))
oM™ = B Ty 0 ) + as 1 0(a)  anlo(lar, - ae]) 29
since pg(o(x,)) = pr(o([a1, ... ax])) and gx(o(zy)) = qr(o([a1, ..., ax])) for all n € N. Similarly,
we have

lim TnPk1(0(Yn)) + 0K(0(yn))  prti(o(lar, ..., a; —1,1]))

lim gy, = = =z.

oo " koo Tgrey 1 (0(yn)) + (0 (yn))  aeri(o((ars . ak — 1,1])))

Let us assume that k is odd, the other case is similar. We have
ngffmc(wn) = nllgloo([al,as,---7ak,bl7b3,---]7[a27a47---,ak71,n7b2,b4,---])

= ([ala"',akablyb?n"']a[a27"'7ak—1])
and
nll)rfooc(yn) = nli)rfoo([ahai}r"aak_17n7b27b47"']7[a27a47"'7ak*1717b17b37"'])
= ([(Zl,(l;g, sy Qg — 1], [a2aa4a sy Qk—1, 1ab15b3) .. ]) )

using a similar development as Expression (2.5). Thus, these two limits are not equal, while
both sequences (x,)nen and (yn)nen converge to x. Hence the conclusion. [
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2.4 Holder Continuity of Cantor’s Bijection

In this section, we give some preliminary results about the Hoélder continuity of Cantor’s
bijection.

Theorem 2.4.1. Let x = [a] be an element of I and y € I,(z) \ In+1(x) with n € N. We have

e | /2143 .
- > log(ag; 1) - > log(agj—1+1)+ 5, C2(n)
=1 log|Ci(z) —Ci(y)| .~ j=1
n+3 - log |z — y| - n
1 1 g Yy 1
— Z log(a; +1) + —Ci(n) - Zlog(aj)
n n n )
j=1 J
where
o)) (n) - 10g(2) + log ( max pt2 +2 apys+2
' 2 ant2+1 angg+1
and

n 2 agm 2
Ca(n) := log(2) + log <max{a2( /243t ) G221 +5 * }) .
2 agrn/21+3 T 1 agpn 2145 +1

Proof. By hypothesis, we have
Yy = [al, ey Oy, bn+1, bn+2, .. ]

with by,41 # an41. Let us suppose that n is even, the other case is similar. We will bound |z — y|
and |Ci(x) — Ci(y)| with terms depending on a and n only.
Since y € I,,(x), we have |z — y| < |I,(z)| and

1 1 1
—y| < |1 = < 2.
o=l S ) = i < o (26)
qn(a)
using Equality (2.3). Moreover, since
(@) = angn-1(a)+ gn-2(a) > angn-1(a)
> ap(an-1qn—2(a) + go—3(a)) > an - - az(azqi(a) + qo(a))
2 Ay -+ Q1
thanks to Equality (2.1), we get
1
—y| < . 2.7
R Er (2.7)
The same reasoning can be applied to
Cl(x) = [al,ag, ey Ap—1,0n+41,- - ]
and
Cl(y) = [al, ag,...,anpn—1, bn+1, bn+3, .. ]
to obtain .
[C1(x) = C1(W)] < [Lnf2(C1(2))| € 55— (2.8)

ayasg - .-y g
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pn(a) pn(a) +pn71(a)
(In(a) Yy z T (Jn(a) + %L*l(a)
| 1 11 |
I 1 11 !
1 1
1 [
I 1
n 1 (. I,(x)
I 1
] L
n+1 Irl+1(y) : : : ]'rL+1(Z) = 7L+1(x>
T T
wro 1
I T T
v T
I L L

N

~
+
w
—
I
~—
3
+
w
-~
8
~—

Figure 2.3. Tllustration of the choice of z with I;,11(2) = In41(z) # Lh4+1(y) in the case y < x.

For the lower bound of |x — y|, let us remark that Ip,11(x) N I,4+1(y) = 0, but the distance
between I,,11(x) and I,,11(y) can be zero. However, for any fixed j € N, there exists a countable
infinite number of intervals of rank n + 1 4 j in between I, 114;(x) and I,,1144(y), i.e. there
exists a countable infinite number of z € I such that 2’ € I,,14(2) implies ¢ < 2/ < y or
y <z <. If 2 =[] is such an element, we have

1 1
2=yl > |Lus(2)] > > . (2.9)
! n+3(c)(qnt3(c) + an2(c)) ~ 245, 5(c)
The relations
dn+3(€) = cng3dnr2(c) + any1(c) < (cns + 1)gn2(c)
< (eng3 + Dlent2gnti(e) + qnlc)) < (cnyz + 1)+ (a1 +1)
lead to 1
1 z)| > .
s 2 S T (s + 17
Now let
. n+2 ifx<y
o= n+3 ify<zx
and we can choose z such that ¢; := a; for any j € N except for the index jo for which
Cj, = aj, + 1, so that z > z in case x < y and z < x in case y < z. Moreover, I,,;1(z) =

Ini1(x) # Inya(y), so that x < z < yin case ¢ < y and y < z < z in case y < z. Figure 2.3
gives a sketch of this last situation. We therefore have

1
a1 + 1)+ (ant2 + 1)*(ants +2)°

|z =yl = [Ints(2)] > 2 (2.10)

or
1

(a1 + 1) (ant2 + 2)*(anys + 1)

2=yl > [Tnss(2)] 2 5
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depending on the value of jo. Without loss of generality, let us assume that jg corresponds to
the largest integer in such inequalities, i.e. m + 3 here.

There also exists w = [d] such that I, 51 3(w) lies between I, 5, 3(C1(z)) and 1,5, 3(C1(y))-
Moreover, we can choose w such that d; := ag;j—1 for any j except for one index jj € {n/2 +
2,n/2 + 3}, for which dj(’) = agj 1+ 1. Without loss of generality again, let us suppose that j
is equal to n/2 + 3. We thus have

1
|Cl($) - C1(y)| > |In/2+3(w)| > 2(&1 I 1)2((13 + 1)2 ce (an+3 + 1)2(an+5 + 2)2'

Putting Inequalities (2.7), (2.8), (2.10) and (2.11) together and taking the logarithm, we get

(2.11)

n/2

-2 Z log(agj,l)
7j=1

< log |C1(z) = C1(y)]

n+3 o lo "T - y’
An+y3 + 2 &
—log(2) — 2 log(a; +1) — 2log | ———
o(2) =2 losto; +1) 2o (2227 )
and
n/2+3 i+ 9
—log(2) — 2 Z log(agj—1 4+ 1) — 2log e 1
log | C1(2) ~ C1(w)] _ = o
logle —y|  ~ u ’
—2) "log(a;)
which are the desired results. [ ]

Of course, the same reasoning can be applied to Cs, leading to the same result.

Theorem 2.4.2. Let x = [a] be an element of I and y € I,(z) \ In4+1(x) with n € N. We have

[n/2] [n/2]4+3

1
—Zlogagj - Z og(ag; + 1) + 02()
log [Ca(z) = Cay)| .~ j=1
3 - loglz—yl T
—Zlog a; +1)+ Cl( ) EZlog(aj)
j=1

7=1
where C1(n) is defined as in Theorem 2.4.1 and

n +2 agy +2
Co(n) = log(2) +log <maX{a2L /2]+4 ,G2L /2]+6 }) ‘
2 a2in/2)+4 T 1 agpnj2j46 +1

To obtain a generic result about the regularity of Cantor’s bijection, we need a direct con-
sequence of the ergodic theorem on continued fractions (see [107]). We say that a property P
concerning sequences of A/ holds almost everywhere if for almost every x € I (with respect to
the Lebesgue measure), the sequence a € N such that x = [a] satisfies P. The following result
can be obtained from the main theorem of [94].

Theorem 2.4.3. Let k € Ny. For almost every sequence a € N, we have

lim Zlog a; + k) lim Zlog azj + k)= lim Zlog azj—1 + k) = log(ky)

n—+oo N n—>+oo n n—+oo N
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where Ky, is defined by
oo log(j+k)

1 log(2)
Kg 1= 1+ ——
=1l < g+ 2))

j=1

The result %2?21 log(a;) — log(ko) if n — 400 was proved in [76] and the constant kg is
called the Khintchine’s constant. Here, we will be interested in the values

log (ko) ~ 0.987849056 - - - and log(k1) ~ 1.409785988 - - -

Using Theorem 2.4.1 and Theorem 2.4.2 as n goes to infinity (or equivalently as y tends
to z), Theorem 2.4.3 and Proposition 1.2.4, we get the following result.

Corollary 2.4.4. For almost every x € I, we have

log (ko) log(m)}
2log(k1)’ 2log (ko) |

Thus, the Holder exponent of C; and Cs lies between 0.35 and 0.72 almost everywhere.

hC1 ('I)’ hCQ (x) €

In fact, thanks to Theorem 2.4.1 (and Theorem 2.4.2), we can exactly determine the Holder
exponent of C; (and of Cy) at some points of I. For example, let a® a® a® e N be the
sequences defined by

. { 27 if j is even (2) . oj 3) { 1 if j is even

,oay = and a;
1 ifjisodd J J 27 if 7 is odd

for any j € N. Using Theorem 2.4.1, it is easy to check that
1
hey([aM]) =0, he,([@®)]) = 5 and he, ([a®)) = 1.
We then obtain the following corollary.

Corollary 2.4.5. The functions C1 and Co are multifractal. Consequently, C is multifractal.

Let us finish this section with some improvements of Corollary 2.4.4 under some conditions.
Actually, we can refine the bounds of Theorem 2.4.1 and Theorem 2.4.2. Indeed, taking the
notations and conventions of the proof of Theorem 2.4.1, we have

1 1
Y <lz—yl<
22 a0 = VS B
and
L clew -a) <
S SIS B
QQi/Q+3(d) Qi/g(a/)

with Inequalities (2.6) and (2.9), where a’ := (a2j—1)jen. We then have

210g(gn/2(a’)) - log |C1(z) — C1(y)| < log(2) + 21log(gn/2+3(d))
log(2) +2log(gn+3(c)) = loglz —y| - 2log(gn(a)) '

Of course, we have similar inequalities for Co. What happens when taking the limit as n — +o00?

(2.12)

Is it possible to obtain the Holder exponent of C; (and of Cg) at 27 On the one hand, we have
the following result (see [76,84,101]).



32 Chapter 2. Cantor’s Bijection(s)

Theorem 2.4.6. For almost every sequence b € N, we have

7T2

1
li —1 b)) = ——.
n—rtoo i 0g(4n(0)) 121og(2)
The real number 72/(12log(2)) is called the Lévy’s constant. On the other hand, since
gn+3(a) < gnys(e) < 2¢u13(a) (using the definition of ¢ and Equality (2.1)), we have

. .1
L = log(gnis(c) = lim - log(gn(a)) (2.13)

and similarly, we also have

lim 108(gn/25(d) = lim > log(gus(a’)) (2.14)

n—-+00 % +3 n—-+oo 1

(if all these limits exist). It only remains to compare Expressions (2.13) and (2.14), which is
not evident. In any case, from Inequality (2.12) and from the above, we have the following
proposition.

Proposition 2.4.7. Let x = [a] be an element of I and let a' := (azj—1)jen. If we assume that

2

1 1 T
li —1 n = li —1 (@) = ——rus 21
Jim -~ log(gn(a)) = lim —log(gn(a’)) 1210g(2)’ 21
then we have 1
hC1 ('I) = 5

There is of course a similar result for Co. With Theorem 2.4.6, we can hope that Equal-
ity (2.15) is satisfied for almost every sequence @ € N and thus we can make the following

conjecture.

Conjecture 2.4.8. For almost every x € [0, 1], we have

he, ((L‘) = hc2(x) = %

Let us give an idea to attempt to prove Equality (2.15) and then Conjecture 2.4.8.
Let 7 be the left shift operator on NV, i.e. the application defined by

7((bj)jen) := (bj+1)jen

We denote by 7 the m'™ iterate of 7 for m € N and by 7 the identity. The next lemma based
on the properties of the convergents of a sequence can be useful (see the proof of Theorem 8.3
in [112] for example).

Lemma 2.4.9. For allb € N and n € N, we have

n—1 j
log(an (b)) = — 3 _ log <M> -
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Using this formula, we then have
log qn(b)) = —— Z log([77 (b)]) + R, (b) (2.16)
for all b € N and n € N, where
1 Pn— (T](b))
= — log([ TJ — log <]7 .
; Z < (7 5)

The limit of R, (b) as n — 400 is given by the following lemma (see again the proof of Theo-
rem 8.3 in [112] for example).

Lemma 2.4.10. For all b € N, we have

im Ry (b) = 0.
Let « = [a] € I. By definition, we have Ci(z) = [a’| where a’ := (agj—1)jen. Using
Equality (2.16) with a’, we obtain
1 1 .
—log(ga(a’)) = —Ezlog([T](a')])Jar(a/)
=0
1 n—1
= —=31 2 ! 2.1
nz_: og([r(a)]) + Sn(a) + Rn(a’) (2.17)
where . .
I : I8 [7 ()]
=S —log([r(a)])) = =S log [ =W}
= 5 (ot on(r' ) = 1 X ls (=

Thanks to Lemma 2.4.10, we know that
lim R,(a’)=0.

n—-+o00

We also have the following theorem, which is a consequence of the main result of [94].

Theorem 2.4.11. For almost all b € N/, we have

1 Ulog(t) 2
I log([7% (b dt=——"
n—too 1 Z og( ~ log(2) /0 t+1 121og(2)

From Equality (2.17), we then have

2
™ .
Jim - log((a)) = log@) T nl, Snl@)
and it only remains to show that
lim S,(a)=0, (2.18)

n—-+0o
which is not evident. In fact, it is difficult to reasonably compare [7%/(a)] and C1([7%(a)]). The
sequences which define these two continued fractions only have the first element in common. Un-
fortunately, this observation is not sufficient to obtain Equality (2.18) and then Conjecture 2.4.8.
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2.5 Appendix: Another Cantor’s Bijection

Actually, the application C (with the use of continued fractions) was not the first idea of
CANTOR to construct a one-to-one mapping between [0,1] and [0,1]%. In 1877 (the same year
as the construction of C), CANTOR first proposed the following example, based on the (unique)
proper decimal expansion of the real numbers. If x and y both belong to the unit segment [0, 1),

let us write

+«>x +a>y

k k

T = E 1ok =0.z122--- and Y= E 10F =0.y1y2- -
k=1 k=1

(where g, yr € {0,...,9} for k € N) with proper expansions (i.e. there does not exist kg € N
such that xp = 9 for all k > kg). Let € be the map defined as

400 o +o0 y
k k
€ :[0,1)* = [0,1); (z,9) — Z 1oz 1 + T0% = 0.z1y122Y2T3Y3 - - -
k=1 k=1

DEDEKING objected that such a function is not surjective, since a number of the form

l 5 400 9 400 5
L k 2 : 1+2k
zZ = E W + E W + 1Ol+2k = 0.2122 ce Zl92l+292l+49 s
k=1 k=1 k=1

(where 2z, € {0,...,9} for k € N) with [ € N has no preimage under ¢ if [ is even, there is
no z such that € (z,y) = z and if [ is odd, there is no y such that € (z,y) = z. CANTOR then
overcame this problem by replacing the decimal expansion in % with the expansion in terms
of continued fractions. His work was published in [25], with a praragraph explaining why his
first idea could not work and omitting any reference to DEDEKIND (see [38] for some historical
references).

In this last section, we go back on Cantor’s first idea. We start from the map % relying on
the decimal expansion and use the Schréder-Bernstein theorem to define the desired bijection
between [0,1]? and [0,1]. This theorem was first conjectured by CANTOR and independently
proved by BERNSTEIN and SCHRODER in 1896 (see [19,27,109], let us also notice that other
names, such as DEDEKIND, should be added to this list). In other words, Cantor’s first idea
could have led to the craved mapping, but he did not have such a result at the time he was
working on the topic. It would be conjectured by himself a few years later in [26]. Before
building the bijective map, we recall the Schréder-Bernstein theorem and give a classical proof
that will be used in the sequel.

2.5.1 A “Practical” Proof of Schroder-Bernstein Theorem

There exist several proofs of Schroder-Bernstein theorem (see [53]): the most classical ones
use Tarski’s fixed point theorem, or follow the idea of DEDEKIND [36] or KONIG [78]. The
advantage of the one we present below (which is largely inspired by ideas of [20,104]) is that it
explicitly shows how to build a bijection between two non-empty sets, starting from injections
between these sets.

Theorem 2.5.1 (Schroder-Bernstein). Let A and B be non-empty sets. If there exist an
injection from A to B and an injection from B to A, then there exists a bijection from A
onto B.
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Proof. Let f be an injection from A to B and g be an injection from B to A. We define the
sequences (A )nen, of subsets of A and (B, )nen, of subsets of B as follows:

Ap == A\ g(B)
B, = f(Ap), form e Ny . (2.19)
Ay =g(Bp-1), forneN

If Ag = 0, then g(B) = A and thus g is surjective. The application g—!

is then a bijection
from A onto B. Therefore, we can assume that Ag is not empty.

None of the elements of the sequences (Ay,)nen, and (By)nen, are empty and thus

UAa#0, (U Ba#0 and f{ [J 4a) #0.

neNg n€Np neNp
Moreover, we have
FlU4a) el s
n€Np n€Np

and the restriction f of f to Unen, An is clearly a bijection from (J, cn, An onto U, cn, Bn-
If B =U,en, Bn, then A={J
to B.
Let us now assume that B\ |

neN, An because f is injective and thus f is a bijection from A

neN, Bn 7 0. Since g is injective, we have

g B\ | Bn| cA\ | 4n

neNp n€Ng

and A\ U, en, An 7 0. Let us denote by g the restriction of g to B\ |, ey, Bn and show that g
is a bijection from B\ |, ¢y, Bn onto A\ U, cn, An- It is clear that g is injective. Since

A Y 4 = (A\Ao)ﬂ<ﬂ(A\An)>

n€eNg neN

— 4(B)n (ﬂ <A\g<Bn1>>>

neN

gB)N [ A\yg U By, )
n€eNp
g is also surjective.
It only remains to put the pieces together in order to construct a bijection from A onto B.
Since f is a bijection from Unen, 4n onto U, cx, Bn and g~ ! is a bijection from A\ Unen, An
onto B\ U,cn, Bn, the application h defined by

f(a) ifa € U Ap

h(a) := n€No
(@) §7Ma) ifacA\ | A,
n€Ng

is a bijection from A onto B, hence the conclusion. [ |
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Remark 2.5.2. Let us note that the definition of the map A given above is non-constructive
(see [117]): there is no general method to decide whether or not an element of A belongs to
UneNo A, in a finite number of steps. However, in the specific case we will consider, the problem

becomes simpler.

2.5.2 A Bijection between the Unit Square and the Unit Segment Based on
the Decimal Expansion

Let us build a bijection between the unit square [0,1]? and the unit segment [0, 1] starting
from the function % (see [97]). Since the construction is entirely based on the proof of the
previous theorem, we will use the notations of this proof.

Let us set A :=[0,1]2, B :=[0,1] and let f be the function defined by

400
: 2
; 102k Tt Z 102k = 0.21y122y223y3 - - - if (z,y) € [0,1)
+o00
9 Uk ,
Flz,y) = > 1021 + —0% = 099199293 - if (z,y) € {1} x [0,1)
ER
k .
Z Took1 + Z To% = 0.21922923 - - - if (x,y) € [0,1) x {1}
k=1 k=1

where (zg)reny and (yx)ken are the proper decimal expansions of the real numbers x and y
of [0,1). In fact, we have f(z,y) = € (z,y) for (z,y) € [0,1)?, so that f is simply an extension
of € to [0,1]%. Let g be the function defined by g(t) := (¢,0) for t € B. It easy to check that
both f and g are injective.
Let us construct the sequences (A, )nen, and (By,)nen, step by step as in Expression (2.19).
For n = 0, we have
Ao = AN\ g(B) = [0.1] x (0,1]

and
By = f(Ag) = {1} U{t € [0,1) : to # 0 for some k € N}

where (t)ren is the proper decimal expansion of the real number ¢ belonging to [0, 1).
For n = 1, we directly have A; = g(By) = By x {0}. In order to construct By = f(Ay), let
us take (z,0) € A;. We have xo # 0 for some k € N by definition of By and thus

+o00 9
> Jgaret = 0-909090- ifo=1
fa0 =3 1%
k=1
We can then write
400 sk
Fl,0)=>" TarT = 0-510520550 -

k=1

where (si)ken is a sequence satisfying only one of the two following conditions:
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(a) sp =9 forall k € N,

(b) (sk)ken is the proper decimal expansion of a real number of [0,1) and sox # 0 for some
k e N.

We will denote by ¥ the set of sequences which satisfy one of the two previous conditions. We
therefore have
+o00
By = {t €0,1):t= Z% with (sg)ren € 2} .
k=1
For n = 2, the argument is similar. We have Ay = ¢g(B;) = B; x {0}. If (z,0) € Ag, then
xop, = 0 for all kK € N and x4,_1 # 0 for some k € N. Consequently, we have

400
Tok—1
fla,0)=>" Loti=g = 0:210002300025000 - -
k=1

and so
+o0 sk
k=1
Going on in this way, we obtain A,, = B,,—1 x {0} and

—+00

Sk .
B, = {t €0,1):t= ZW with (s1)ken € 2} ,
k=1

for all n € N.
Since Ag # 0, B\ Unen, Bn # 0 (we have 0 ¢ By, for any n € Ny) and g~ '(x,y) = « for
(z,y) € A\ U,en, An, we have proved the following proposition thanks to Theorem 2.5.1.

Proposition 2.5.3. The function f* defined by

) fla,y) if (zy) e | An
f ('I’y) = n€Ng
T otherwise

is a bijection from [0, 1]? onto [0, 1].

Remark 2.5.4. As expected, we have f* = f almost everywhere on [0, 1]? (with respect to the
Lebesgue measure), since the set [0,1]? \ [, ey An is included in the segment [0, 1] x {0}, which
is a negligible set in R2. Therefore, we have f* = € almost everywhere.






Chapter 3

Continuous Wayvelet Transform
and Holder Continuity

The continuous wavelet transform, initially introduced by GROSSMANN and MORLET [48] in
the eighties, is a tool to study the Hoélder continuity of a function. More precisely, the behaviour
of the continuous wavelet transform of a function gives the (pointwise and uniform) Holder
continuity of this function. This description, established twenty years ago, is especially due to
JAFFARD and MEYER [59-61,68,92| and also HOLSCHNEIDER and TCHAMICHIAN [55].

In this brief chapter, we recall the notions of wavelet and of continuous wavelet transform,
firstly in the general setting and secondly in the context of bounded and continuous functions
(with a particular wavelet). We then present the tool given by the continuous wavelet transform
to characterize Holder spaces.

3.1 Continuous Wavelet Transform

Let us first recall the notions of wavelet and continuous wavelet transform (see [30,33,54,
55,61,69,115|).

3.1.1 General Setting

In the literature, the word “wavelet” is used for several types of functions depending on the
context. We take here the following definition.

Definition 3.1.1. The function 1 is a wavelet if ¢» € L'(R) N L*(R) and if 1 satisfies the
admaissibility condition:

£ UG € LY(R). (3.1)

€]

Using the wavelet 1, the continuous wavelet transform of a function f € L?(R) is the func-
tion Wy f defined by

Wyl (a,b) = /R F(2) Bap(@) de = {ftby), 0 € R\{0}, bER

where

Van(@) = 1y (9“" - b) . zeR.

a a

The admissibility condition plays an important role in the reconstruction of a function from
its continuous wavelet transform (see Theorem 3.1.3). Moreover, it implies that 1)(0) = 0 because
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¥ € LY(R). Indeed, by contradiction, if we suppose that \1&(0)] > C with C > 0, there exists
€ > 0 such that X
per | o
€] 4[¢]
for £ € (—e,¢) \ {0} by continuity of ¢ and we then have a contradiction with Condition (3.1).

Remark 3.1.2. The general setting of the continuous wavelet transform is the space L?(R).
Since a wavelet is an integrable function (in our definition), we can calculate the continuous
wavelet transform of a function which belongs to L°°(R) (and which is not necessarily in L?(R)).
This will just allow to investigate the Holder continuity of bounded (and continuous) functions
from the continuous wavelet transform of these functions.

A square integrable function can be reconstructed from its wavelet continuous transform.
This is the object of the following result, which will be proved later in the more general context
of nonstationary continuous wavelet transform (see Theorem 6.2.1).

Theorem 3.1.3. Let v be a wavelet such that

[DEOP .
/R £ dé = 1. (3.2)

For all f,g € L*(R), we have

dadb
J[ e stenWog@n T = (1.,
Moreover, for f € L?(R), we have
. da
i (f0- [ ([ wes@nista) il <o
rej)-iqoo {a’eR:e<|a/|<r} L2(R)

There exist some variants of this reconstruction formula. For example, we can recover f from
Wy, f(a,b) with a > 0 only and b € R. In this case, Condition (3.2) is slightly more restrictive.

Theorem 3.1.4. Let ¢ be a wavelet such that
o (g2 o (=€)
d¢ = dé = 1.
e e

For all f,g € L*(R), we have

J[ o weran WD)
(0,400)xR

Moreover, for f € L?(R), we have

50 /(/w¢fab>wab<>db> da

Another possibility consists in the introduction of another wavelet with some specific prop-

dadb

=(f,9)-

—0.
L2(R)

lim
e—0t
r—+400

erties. In the next section, we will come back on this idea in the particular case of a wavelet
which belongs to the Hardy space

H2(R) := {f € L*(R): f =0 a.e. on (—00,0)}.
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3.1.2 The Particular Setting of Continuous and Bounded Functions

In the next chapter, in order to study the Holder continuity of generalized Riemann function,
we will use a particular wavelet which belongs to H?(R). The generalized Riemann function is
not square integrable, but it is continuous and bounded on R. As announced in the previous
subsection (see Remark 3.1.2), its continuous wavelet transform can be investigated. An exact
reconstruction formula exists in such a situation: if the wavelet 1 belongs to H?(R) and if f
belongs to a certain class of continuous and bounded functions on R, we can recover f from Wy, f
using a second wavelet satisfying some additional properties. This result is given below. It is just
mentioned in a remark of [55] without a proof of this particular setting. We propose here a proof
strongly inspired by Proposition 2.4.2 in [33] and Theorem 2.2 in [55] with some adaptations to

our case.

Theorem 3.1.5. Let ¢ be a wavelet which belongs to H?(R). Let ¢ be a differentiable wavelet
such that x — xp(z) is integrable on R, such that Dy is square integrable on R and such that

- Z(swg)d—f -
0

If f is a continuous and bounded function on R and is weakly oscillating around the origin, i.e.

such that
1 x+r
— / f@) dt‘ =0,
X

2r Jo_,

1. (3.3)

lim sup
=400 2cR

then we have
) T 400 da
s = 2 ([ wastad) pusteran) &

e—0t — 0 a
r——+00

for all x € R.

Proof. Let us fix x € R and r > € > 0. We write
r —+o0 1
ey i= [ ([ Wet@d) uate) ) o
€ — 00

Then, we have
fer(@) = (Me,p * f)(2)
by Fubini’s theorem, where M, ,. is defined by

o [ ([0 (50) @) L rem

Since M., € L'(R) and the support of v is included in [0,4+00), we have

0 ifE<0

~ r— R 1 e
Ms,r(é) = a 7/)(05)90(615)5 da = 51[)(0,)@(0,)% da if§ >0
3

€

Moreover, we have

Me,r(é) = m(gg) - m(rg) (34)
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for all £ € R, where m is defined by
= . 1 .
ba)pla)zda  ifE>0

= 1 ’
w(—a)cﬁ(—a)a da if&<0
—£

It is easy to check that m(0) =1, m =0 on (—o00,0) and that m is continuous only on R\{0}.
Since we have the three following properties: 1[1 is bounded, ¢ is differentiable and Dy € L%(R),

+oo 1/2 +00 |7, 2 1/2 C’
m©)l < ([ lapaPda) (/ﬁ Md) < &n

for all £ > 0, by Cauchy-Schwarz inequality, where C’ is a positive constant. Then, m is bounded
and there exists C' > 0 such that

we obtain

¢
(1+[€)>?

for all ¢ € R. So m € LY(R) N L?(R) and we can define M by M (&) := m(—¢)/x for all £ € R.
By definition, M is continuous and bounded on R.
Moreover, m is differentiable on R\{0} and

Im(§)] <

—H(Oee) iTE>0
0 if&<0

Since ¢(0) = 0 and z — zp(x) is integrable on R, we have

/R () (e_mf —1) da /R zo(z) ( /0 fjeint dt> da

for all ¢ € R, where C” is a positive constant. Consequently, Dm € L?(R) because 1) € L?(R).
So M € L'(R) since we can write M as the product of two square integrable functions: for all

P(&)] = = < "¢

z € R, we have
1

V1+a?

where the second factor is square integrable, because m and Dm are square integrable on R.

M(z) = (Vi+a?M@),

Moreover, by the Dirichlet condition for Fourier inversion theorem (since m and Dm are piecewise

continuous), we have

/ M (z)dx = M(0) = m(07) +m(07) =1
R

using Equality (3.3) where m(0%) = limg_, g+ m(§).
By definition of M and by Fourier inversion theorem in Equality (3.4), we have

M., (t) = % @M (é) _ %M (;))

for all ¢ € R and we then obtain

fer(z) = % (/R éM (x;t> f(®) dt—/R%M (x;t> f(t)dt).
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Using the continuity of f, the first integral converges to f(z) as e tends to 0T by Lebesgue’s
theorem. The second integral converges to 0 as r tends to +o0o because f is bounded and weakly
oscillating around on the origin, and M € L'(R) is of integral equal to 1 (see Lemma 6.3.3
page 142 in [54]| for the proof of this property). The conclusion follows. [ |

An example of wavelet which belongs to H2(R) is the Lusin wavelet ¢, defined by

Yr(z) == m zeR. (3.5)

It is clear that ¥, € H%(R) because

. | —2¢et ifg>0
wL(f)_{o if ¢ <0

In the next chapter, we will use the Lusin wavelet in order to study Hoélder continuity of gen-
eralized Riemann function. We will see that this choice of wavelet will allow to obtain a simple
explicit expression of the continuous wavelet transform of the studied function (in comparison

with other wavelets as the derivatives of a gaussian function for example).

3.2 Characterization of Holder Spaces

Thanks to the previous reconstruction formula, the Holder continuity of a function can be
characterized with its continuous wavelet transform (see [55,61,69]). This is the object of the
following theorem. We will use it in the next chapter (see also [55,61,100] for other examples).

Theorem 3.2.1. Let o € (0,1), let ¢ be a wavelet such that x — x%(zx) is integrable on R
and let f be a function as in Theorem 3.1.5.

(a) We have f € A“(R) if and only if there exists C > 0 such that
Wy f(a,b)] < Ca®
for all a > 0 and b € R.
(b) Let xg € R. If f € A%(xq), then there exist C' > 0 and n > 0 such that

Wy f(a,b)] < Ca® <1+ (M))

a

for all a € (0,n) and b € (xg —n,x0 +n). Conversely, if there exist o/ € (0,«), C > 0 and

n > 0 such that
enzee 1042

for all a € (0,n) and b € (xg —n,z0 +n), then f € A*(zo).

The proof of this theorem (sometimes with some minor variants) can be found in [33,55,61,
69,115]. Holder spaces with exponent greater than 1 can be also characterized with continuous
wavelet transform.

Remark 3.2.2. Let us note that the necessary conditions in Theorem 3.2.1 do not need all the
hypotheses on the function f: the continuity and the weak oscillation around the origin of f are
not useful for these implications.






Chapter 4

(GGeneralized Riemann Function

In the 19*" century, RIEMANN introduced the function R defined by

= sin(mn’z)
R(z) = Z ———, z€R,

n=1 n’
in order to construct a continuous but nowhere differentiable function (see [37| for some historical
information). The regularity of this function has been extensively studied by many authors.
In 1916, HARDY [49] showed that R is not differentiable at irrational numbers and at some
rational numbers. Decades later, GERVER [44| and other people [55,58,93,103,111]| proved
that R is only differentiable at the rational numbers (2p + 1)/(2¢ + 1) (with p € Z and ¢ € Ny)
with a derivative equal to —1/2.

Moreover, the Holder continuity of R was also investigated. Based on a work with LITTLE-
wooD [50], HARDY [49] showed that R is not Holder continuous with exponent 3/4 at irra-
tional numbers and at some rational numbers. Using the continuous wavelet transform (of R),
HOLSCHNEIDER and TCHAMITCHIAN [55] established that R is uniformly Holder continuous
with exponent 1/2 and gave some results about its Holder continuity at some particular points.
With some similar techniques, JAFFARD and MEYER [61,68] determined the Holder exponent
of R at each point and proved that R is a multifractal function.

A generalization of R is given by the function R, g defined by

= sin(mnfx)
Ra,ﬁ(x) = Z T, x € R, (41)
n=1

with @ > 1 and 8 > 0. Other generalizations of R are possible; for example, we can replace the
element n” in the definition of R, s by a polynomial with integer coefficients (see [29,103]).

The function R, g defined in Expression (4.1) is clearly continuous and bounded on R. If
B € (0,a—1), it is easy to check that R, g is continuously differentiable on R (because the series
of derivatives converges uniformly on R). If 3 > o+ 1, LUTHER [86] proved that R, g is nowhere
differentiable. If 8 € [« — 1, a + 1), several partial results about the differentiability of R, g are
known (see [86,103]). Moreover, some results are also known for the cases 5 = 2 (see [49,61]),
B = 3 (see [45]) and B € N (see [28]). Concerning the Holder continuity and also the Holder
exponent of R, g, several particular cases have been studied (see [21,28,61,68,73,118|).

In this chapter, we study the uniform Hélder continuity of R, g with 3 > o — 1. We apply
some obtained results to the more general case of nonharmonic Fourier series. We then present
the graphical representation of Ry g for some particular values of 3. We analyse the particular
and amazing behaviour of R, 5 as 3 increases. The results presented in this chapter are from [17].

45
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4.1 Holder Continuity of Generalized Riemann Function

In 2010, JOHNSEN [73] showed that if 5 > a — 1, then R, g is uniformly Hélder continuous
with an exponent greater or equal to (o —1)/5. In order to complete and generalize this result,
we use some techniques different from the ones of JOHNSEN. Our approach is based on the
continuous wavelet transform of R, g related to the Lusin wavelet presented in the previous
chapter, and follows the approaches used to obtain the Holder continuity of R in [55,61,69].
This method has two advantages: we can consider both cases § =a—1 and § > a — 1 to study
the uniform Holder continuity of R, g and then show the optimality of the obtained exponent.
In other words, we calculate the uniform Holder exponent of R, g for 5 > a — 1. These results

are summarized in the following theorem.

Theorem 4.1.1. For > o — 1, we have

Hr_,(R) =

a,,é’(

B

The generalized Riemann function and the Lusin wavelet satisfy the conditions of Theo-
rem 3.2.1. Indeed, we know that R, g is continuous and bounded and that the Lusin wavelet 1)y,
belongs to H?(R). Moreover, R, p is weakly oscillating around the origin because

1=t 1 2 cos((z — r)mnf) — cos((x + r)mn) Cla+B)
2r /I,, Rap(t) dt' = 2r Z::l Tneth = mr

for all x € R and r > 0, where ( is the well-known Riemann zeta function defined by

—+00

(=Y ni Re > 1.

n=1

The function & — x®Yr(x) is clearly integrable for a € (0,1). Besides, it is easy to find
a differentiable wavelet ¢ such that x — zp(z) is integrable on R, such that Dy is square
integrable on R and such that
+00 . i 1
| et =3,
The function .
T — 721
m(x +1)3
is a suitable example (of ¢).
To prove Theorem 4.1.1, we first need to determine the continuous wavelet transform of R, 3
related to the Lusin wavelet 1 given in Expression (3.5), as in [55,61,69] where the case
o = [ = 2 is treated.

Proposition 4.1.2. We have

too eiwnB (b+ia)
Wy, Ra gla,b) = iam Z

n=1

— (4.2)

for all a > 0 and b € R.
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Proof. We can write

Ra3(w) = 5 (Tasla) = Tus(x))

DO =

for £ € R with

+oo eiﬂnﬂz
Top(x) = —Z'Z

n=1

and Top(x) :=Thp(—2).

nOé

In other words, R, g is the odd part of Tj, .
Let us fix a > 0 and b € R. We have

Wy Top(a,b) = /RToc,B(l") %EL (xT—b> dr = %/R% dx.

For n > 0 and r > 0, let us denote by ~,, the closed path formed by the juxtaposition of the
two following ones: the first path describes the segment [—r 4+ in, r + in] and the second one the
half-circle of center in and radius r included in H := {z € C: 3z > 0}. The function T, g is
holomorphic on H because the series converges uniformly on every compact set of H. As the
point b + ia is situated inside the curve described by =, , for n € (0,a) and r > a, we obtain

a .. . To5(2)
Wy, Tagla,b) = — lim lim — = dz
v Ta5(a,b) Trotoon—0t [ (z — (b+1ia))?

= 2ia (DT, 3)(b+ia)
+oo eiﬂnﬂ(bqtia)

= 2iam - 3

no—~

n=1

thanks to Cauchy’s integral formula. Similarly, the continuous wavelet transform of Tvaﬁ is given
by

~ _ 1— [x—=b _a . To5(2) _
Wy, Topla,b) = /RTaﬂ(—x) a?/)L < > dr =— lim lim /y = (=b—ia))? dz=0
n,r

a T r—++00 n—0t

by homotopy invariance, because the point —b — ¢a does not belong to H. We thus have the
conclusion. ]

Let us now analyse Wy, R, g in order to study the uniform Hélder continuity of R, g with
Theorem 3.2.1. We have

_ B
e—amn

400
Wy, Ra,p(a,b)| < QWZ na—B = Wy, Ra s(a,0)| (4.3)
n=1

for a > 0 and b € R. The function f, 5 : x> 277 e=o” is differentiable on (0, +o0) and
Dfap(x) = emama? ph—a-l <(B —a) — awﬁxﬁ) , x>0.

Then, f, s is decreasing on (0, +00) if 8 € [a — 1,a) and on (((8 — a)/awB)/?, +00) if B > «.
The next developments are mainly based on the classical comparison principle between series
and integral (when the general term is decreasing).

We note that f, g is integrable on (0,4+00) only if § > a — 1. We therefore split the study
of the uniform Hélder continuity and the calculus of the uniform Holder exponent of R, g into
two cases: f>a—1land f=a—1.
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a—1
Proposition 4.1.3. If § > a — 1, then R, 3 € A  (R) and

a—1

B

HRa,B (R) =

Proof. 1. Let us first consider the case § € (o — 1,c). The function f, g is decreasing on
[1,4+00) and we have

400 e,aﬂnﬁ 400 efaﬂzﬁ
Wy, Rapla,b)| <am|e " + 22 s <am|e —i—/l p dz
n=
for a > 0 and b € R. For the second term of the right hand side of the last inequality, we obtain

+oo ,—arzf +o0o —amxh 1 a-1 1 — a—1
/ e a—f dx < / ‘ a—p3 dr = ETFT_lr (7—’_/@ Oé> (ZT_l
1 T 0 Z

for @ > 0, where I' is defined by

400
I(x):= / et lat, x>0,
0

a—1
as usual. For the first term, we note that the function a — e~%"a'~ "7 is bounded on (0,400)
because o — 1 < 3. Then, there exists C, g > 0 such that

a—1

|W¢LRQ75(CL, b)| < Caﬂ a B

a—1
for all @ > 0 and b € R, which implies R, 3 € A # (R) using Theorem 3.2.1.
Let us show the optimality of this exponent (a—1)// related to the uniform Hoélder continuity.
Let C > 0 and n > 0; we have

too  _mnfa +oo ,—amzP
e e 1 a1 B—a+1
Wy, Rapla,0)| = aﬂ'z B > aﬂ'/ —F dr = 3 (ar) # T <T,aﬂ'>
n=1 1

for a > 0, where I' is the incomplete Gamma function defined by
+oo
D)= [ et it (ny) € (0,400 x [0.400)
y

Since I'((8 —a+1)/8,ar) = T((B—a+1)/8) and a” — 0 as a — 07, there exists A > 0 such
that, for all a € (0, A), we have

a—1
Wy, Ra,p(a,0)] > Ca 5 ™.

Hence the conclusion, using Theorem 3.2.1.

2. Let us now consider the case 8 > a and let us write N, := [((8 — a)/axB)/P] + 1. If
a > 1, then N, =1 and we can proceed as in the previous case. Let us therefore suppose that



4.1. Holder Continuity of Generalized Riemann Function 49

a € (0,1]. We have

Na efmrnﬁ +oo efmrnﬁ
’W¢LRQ,5(a7b)’ < am + Z

INA
IS
3
VRS
=
=
|
Q
+
b—‘\
e+
8
Rm|
Ol 2
A
RN
U
S
N~

1 ) B—a+1 ar too e,amﬁ
> +a? a B +/ dzx
0 zo=h

1 B—
< aFr ((57:6“>6+1) +%w%—1r<71+g_a>

a—1
We then have R, g € A # (R), using Theorem 3.2.1.
Let us show the optimality of the exponent related to the uniform Holder continuity. Let
C > 0 and n > 0; we have

AN
Q
3
~
A/
TN
Sy
Al
Sy
Q

+o0 e_wnﬁa
[ Wy, Rapla,0)] = awz
n=1

+o0 e_ﬂnﬁa

na—>8

> am
n=Ng,
+o0o efaﬂzﬁ
> aﬂ/ dzx
xo—h
a
1 a—1 [0 _ B=atl 1
= —(a’]‘(‘) B e uu B du
B aﬂNf

B

a—1 _ _ 1/8
> %(m)_l“ B ;Hrl’((Bﬁa) +(aw)1/5>

for a > 0. As in the case § € (o — 1, «), there exists A > 0 such that, for all a € (0, A), we have
a—1
’W¢LRa75(a7O)’ > Ca7+n7
hence the conclusion, using once again Theorem 3.2.1. [ |

Remark 4.1.4. In fact, taking b = 2k with k € Z, we can show that R, g € AQT_I(QIC) and that
the exponent cannot be improved because Wy, R 5(a,2k) = Wy, Ras(a,0) for all a > 0. In

other words, we have
a—1

B
Since this quantity is strictly smaller than 1, R, g is consequently not differentiable at 2k.

Hg, ;(2k) =

Proposition 4.1.5. We have Ry o—1 € A'(R) for all 6 € (0,1) and Hg, ,_,(R) = 1.
Proof. We have

+oo ,—amx®~! 1
Wy, Raa-1(a,b)| < am (6‘” +/ < dﬂ:) =am (e‘” + ﬁ]_ﬁ(aw))
) _

T
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for a > 0 and b € R, where F; is the exponential integral defined by

+oo -t
Eq(x) ::/ ; dt, x>0.
1

Since we have ) ) )
3 e *lIn (1 + 5) < Ei(z)<e ®ln <1 + ;) (4.4)

for all z > 0 (see [1] page 229), we obtain

1 1
< —aTm
Wy, Ra,a—1(a,b)| < ame (1 + o In <1 + _aﬂ'))

for a > 0 and b € R. Let us fix § € (0,1). There exists A > 0 such that, for all a € (0, A), we

have
1 In(1+2)

<1
)

and then

5 5
Wy, Raa—1(a,b)| < ame " (1 + <1 + i) ) <arm (1 + 20 (1 + <i> )) .
aT aT

There also exists A’ € (0, A) such that, for all a € (0, A"), we have
|W¢LRQ,O,,1(CL, b)| < C(/Saliéa

where Cj is a positive constant (depending only on §). Since the function

1 1
ars ale " <1 + In <1 + —>>
a—1 am

is bounded on [A’, +0), we also have

Wy, Raya—1(a,b)] < Cia'™*
for a € [A’, +00), where Cf is another positive constant. We thus obtain
Wy, Raa-1(a,b)| < Csa'™?

for all @ > 0 and b € R where Cs5 := max{C}, C¥}, which implies Ry qo—1 € A'7°(R) using
Theorem 3.2.1.

Let us now show that this exponent of uniform Holder continuity is optimal. Let C > 0; we
have

+oo —amz®~1
e am us _ 2
Wy, Ra,a—1(a,0)] > (177/1 — dx = — 1E1(a71') > a72(04 Y e “"lIn <1 + E)

for all @ > 0 thanks to Inequality (4.4). There so exists A > 0 such that, for all a € (0, A), we
have
|W¢LRQ,O{,1(CL, 0)| > CCL,

hence the conclusion using one last time Theorem 3.2.1.
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4.2 Extension to Nonharmonic Fourier Series

A part of Theorem 4.1.1 can be adapted for particular nonharmonic Fourier series. Let us
first recall the notion of nonharmonic Fourier series (see [66,86,122]).

Definition 4.2.1. Let a := (a,)nen be a sequence of complex numbers and let X := (A, )nen be
an increasing sequence of positive numbers which converges to infinity. A nonharmonic Fourier

series (related to the sequences a and ) is a function Sg » defined by

—+00
Saa(®) =Y a, ™, 2 cR,
n=1

if the series converges.

If the series Z;:g a, is absolutely convergent, then the above series (related to Sq ) con-
verges uniformly on R. We will assume that this is the case in what follows. Such a function
Sa,x is then continuous and bounded on R. As for R, g, we can calculate the continuous wavelet
transform of S, x (related to the Lusin wavelet).

Since A, > 0 for all n € N, S, x is a holomorphic function on H and we have

+o0o
Wy, Sax(a,b) = —2a Z Gnn gihn(btia)

n=1

for a > 0 and b € R, similarly to Equality (4.2). If we assume that there exist Cy,Cy,C3 > 0,
a > 1and g > 0 such that

C
lan| < —; and CQTLB <A\, < anﬁ
n

for all n € N, we then obtain

+o0 6—C’zanf8
lwsta,)\(a, b)‘ < 2aC1Cs Z W

n=1

for a > 0 and b € R, i.e. an expression similar to the one obtained for [Wy, Ry 5(a,b)| in
Expression (4.3). Using the same development as in the study of the uniform Hélder continuity
of Ry p with a > 1 and 8 > o — 1, we get the following corollary.

Corollary 4.2.2. With the previous assumptions on a and A, we have Sq ) € AQT_I(R) if
B>a—1and Sex € A'O(R) forall § € (0,1) if B=a — 1.

For example, we obtain the uniform Hélder continuity of the function S, x with A,, = n3+n?
and a, = n~® for n € N where a € (1,4) for example. By the previous corollary, we have
Sax € AQT_I(R) since n3 < A, < 3n3 for n € N. In fact, this example is a part of another
generalisation of Riemann function (see [29]).
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Figure 4.1. Graphical representations of Ry and R; 3.
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Figure 4.3. Graphical representation of Ry 1.

4.3 Behaviour of R, 3 as [ Increases

If we fix o > 1, we know that the uniform Holder exponent of R, g decreases as /3 increases,
thanks to Theorem 4.1.1. Moreover, we know that this exponent is exactly the Holder exponent
of R, at the origin. This phenomenon is clearly illustrated in Figure 4.1, Figure 4.2 and
Figure 4.3 in the case oo = 2.

As 3 tends to infinity, we note that the graphical representation of R, g looks like to the one
of the function s : z — sin(7zx) (in a certain sense to establish), with some noise, fluctuations or
oscillations all around. In fact, s is simply the first term of the series defining R, g. In the next
two propositions, we give a convergence result and show that the fluctuations have a constant
amplitude (i.e. independent of ). To do so, let us recall the usual definition of the mean of an
integrable function over a bounded interval.

Definition 4.3.1. Let a,b € R be such that a < b and let f be an integrable function on (a,b).
The mean of the function f over the inverval (a,b) is defined by

=i [ S

Proposition 4.3.2. Let o > 1. For all a,b € R such that a < b, we have

. a,b _ a7b
5£1>I-|I—1oomRaw3 = Ms
Proof. We have
b +o00 B . ﬁb 9
[ (Raste) —sintra e = |3 W o < 2¢(at )~ 1)

and we know that ((x) — 1 as * — 400, hence the conclusion. ]
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Proposition 4.3.3. Let a > 1 and let § € N. The function R, g is periodic of period 2 and we
have

1
/ (Rap(z) — sin(rz))? de = ((2a) — 1.

-1

Proof. The periodicity of R, g is easy to check. Let us calculate the integral. By developing

x — Ry g(x) — sin(nzx) in Fourier series, we have

+o0
+ Z Ay, cos(mmax) + by, sin(mma))

m=1

aog

R, g(x) — sin(mzx) = 5

in L2([-1,1]) where ag = a,, = 0 and
1
by = 2/0 (Ra,p(x) — sin(mx)) sin(mma) dx

+00 1 1
— nZ:Q ﬁ/o <cos(x7r(n5 —m)) — cos(zm(n® + m))) dx

1
—— if m = kP for one k € N\{1}
ma/ﬁ

0 otherwise

for all m € N. Consequently, by Parseval formula, we obtain

1
/ (Ra,p(x) — sin(mx) *dx = Z b2, = Z k‘20‘ =((2a) — 1,

1
as expected. [ ]

The two previous propositions are illustrated in Figure 4.4. Let us end this section with a
simple remark about the behaviour of R, g as o tends to infinity.

Remark 4.3.4. Proposition 4.3.2 is also “satisfied” for a: we have

lim mRb = m2P
a—+0o0

for all 8 > 0 and all a,b € R such that a < b. Moreover, by Proposition 4.3.3, we have

1
lim (Rap(z) — sin(nz))? dz =0

a——+00 1

for all 3 € N. In fact, a stronger result holds: for any fixed 8 > 0, R, g converges uniformly
on R to s as « tends to infinity because we have

+oo
| Rays) — sin(ma)| < 3~ = ¢(a) ~ 1
n=2

for all z € R.
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Chapter 5

Nonstationary Orthonormal Basis
of Wavelets

The classical theory of wavelets in L?(R) is now a well known topic and tool in various con-
texts (functional analysis, signal analysis, multifractal analysis,...). Typically, an orthonormal
basis of wavelets of L?(R) is an orthonormal basis of L2(R) of type

21202 - k), k€L,

where the square integrable function 1) is called the “mother wavelet”. Many examples are known
and the usual method to obtain such bases consists to use a standard procedure (see [33,87,92])
starting from a multiresolution analysis (or a scaling function). The question arising naturally
is whether every orthonormal basis of wavelets can always be obtained from a multiresolution
analysis with such a procedure. The answer is negative (see the example given by JOURNE
in [52,87]) and necessary and sufficient conditions have been proposed by several authors in [11,
47,52,81,82].

In several contexts, to answer precise problems which can not be solved in the standard
setting, a generalization of the classical definition of multiresolution analysis and orthonormal
basis of wavelets have been proposed (see [15,16,35,119|). This new point of view is concerned
with the introduction of a “nonstationary” situation, in the sense that the mother wavelet is now
admitted to depend on the scale j. The proposed definition (either in the L?(R) case, see [35],
or in the Sobolev case, see [16]) is the following: a nonstationary orthonormal basis of wavelets
of L?(R) is an orthonormal basis of L?(R) of type

272020 k), j ke,

where the square integrable functions 1)), j € Z, are again called the “mother wavelets”. Several
explicit examples are known, even in the more general case of biorthogonal wavelets, and all of
them have been constructed from a nonstationary multiresolution analysis in a very similar way
to the stationary case (see [12,15,16,35,41,119]). More precisely, the papers [12,15,16,35,119|
involve Exponential-Splines while the paper [41] is concerned with Splines. On the one hand,
the paper [41] shows that it is possible to construct an infinitely differentiable orthonormal basis
of wavelets with compact support in a nonstationary setting (it is known that this is not possible
in the stationary case). On the other hand, some of the constructions of [15,16,119] lead to
functions of the same type, but starting from a different point of view. Firstly, the paper [119] is
concerned with L?(R) and with signal analysis purposes, involving reconstruction of exponential
polynomials. Secondly, the papers [15,16] focus on the problem of the construction of regular

29
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orthonormal compactly supported basis of wavelets in Sobolev spaces, as a generalization of
Daubechies’ compactly supported wavelets.

Similarly to the stationary case, a natural question arising in the nonstationary context
is whether every nonstationary orthonormal basis of wavelets can always be obtained from a
multiresolution analysis, with the introduction of some natural dependence on the scale. The
purpose of this chapter is to try to answer this question.

In this chapter, we first give the definition of nonstationary orthonormal basis of wavelets
of L?(R) and a theoretical characterization of such bases. We then consider the construction of
such bases from a nonstationary multiresolution analysis of L?(R) and we present a necessary
and sufficient condition about such a building procedure (under some additional asymptotic as-
sumption on the mother wavelets). Finally, we show the non existence of “regular” nonstationary
bases of wavelets in the Hardy space H2(R). The results presented in this chapter are mainly
from [18].

5.1 Nonstationary Orthonormal Basis of Wavelets

Let us first recall the notion of nonstationary basis of wavelets of L?(R) (see [16,35,98]).

Definition 5.1.1. Let ¢\9) ¢ L?(R) for j € Z. A nonstationary orthonormal basis of wavelets
of L?>(R) is an orthonormal basis of L2(R) of type

202N . —k), jkelZ.
The functions 9), j € Z, are called the mother wavelets of this basis.

Remark 5.1.2. The mother wavelets 1) are not wavelets in the sense of Definition 3.1.1. They
are just square integrable functions.

The study of two series involving a sequence of square integrable functions allows to de-
termine whether this sequence leads to a nonstationary orthonormal basis of wavelets. It is
the object of the following “theoretical” characterization of nonstationary orthonormal bases of
wavelets. This result will be useful in the following, especially for the theorem concerning the
construction of a nonstationary orthonormal basis of wavelets starting from a nonstationary
multiresolution analysis. The proof is inspired from the stationary case (see [47,52]) and is
presented in Section 5.5.

Theorem 5.1.3. For j € Z, let 1)) € L?*(R) such that Hq/z(j)HLg(R) =1

(a) If we have
D@ =1 (5.1)
JEZ
for almost all £ € R and

+oo
tpg(§) = Y _ WP~ (27€) #=9)(21 (€ + 2m)) = 0 (5.2)

J=0

for almost all ¢ € R and for all p € Z and q € 2Z+1, then {27/2pU)(27 . —k) : j,k € Z} is
an orthonormal basis of L?(R).
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(b) Conversely, if {20/24\)(27 . —k) : j,k € Z} is an orthonormal basis of L?*(R) and if there
exist o, A > 0 such that

[a+ieeiera < a (53
for all j € N, Equalities (5.1) and (5.2) are satisfied almost everywhere on R.

Contrary to the stationary case, some additional dependences on the scale j appear. More-
over, Condition (5.3) has also been added and will be called it Additional asymptotic condition
in the following of this chapter. We mainly use it to show the integrability of some series on
the scale index j of mother wavelets (see Expressions (5.13) and (5.19)). It is inspired from
Condition (5.6) (see [16]).

Remark 5.1.4. In [98], at the same time, independently, the authors got the same result with
the following additional condition instead of Condition (5.3): the series

+oo
Zgjh[)(—j)(gj I? (5.4)
j=1

converges in L{ (R\{0}). In fact, this condition is weaker than Condition (5.3) and is actually

loc
also visible in the proof of Theorem 5.1.3 (see the end of the proof of Lemma 5.5.4).

Let us already analyse the convergence of the series appearing in Theorem 5.1.3. The second
series (i.e. the series t,, in Equality (5.2)) converges in L!(R) thanks to Cauchy-Schwarz’s
inequality and ||| r2m) = 1 for all j € Z. Tt then converges almost everywhere on R by
Levi’s theorem. By contrast, it is difficult to show that the first series converges almost every-
where because the sum is over all the integers. We wait for Section 5.5 and more precisely for

Proposition 5.5.5.

5.2 Nonstationary Multiresolution Analysis

A classical method to construct a nonstationary orthonormal basis of wavelets of L?(IR) con-
sists to start from a nonstationary multiresolution analysis (or from scaling functions) of L?(R)
(see [16,35,98,119]).

Definition 5.2.1. A nonstationary multiresolution analysis of L>(R) is an increasing sequence
(Vj)jez of closed linear subspaces of L?(R) such that

(a) (V5 ={0} and | JV; = L*(R),
JEL jez

(b) for j € Z, there exists o) € V; such that {27/2p0)(27. k) : k € Z} is an orthonormal basis
of Vj.

The functions ), j € Z, are called scaling functions.

In fact, the second point of this definition can be weakened as follows: for j € Z, there exists
gV) € Vj such that {297/2gU)(27 . —k) : k € Z} is a Riesz basis of V. For fixed j € Z, it means
that
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. . . 2
) S
(a) for each f €V}, there exists a unique sequence (ci)rez € €°(Z) such that
F() = Z ck2j/2g(j)(2j - —k)
kEZ
in L2(R),
(b) there exist A;, B; > 0 such that

43 el <

keZ

2

chgjﬂg(j)(gj - —k)
keZ

<B; Y lal

L2(R) keZ

for all sequence (ci)rez € 2(Z).
Thanks to Lemma below (see [16]), it then suffices to define () by
. (7
() = =
> 16 (€ + 2km)

keZ

for almost every & € R and {27/2¢0\) (27 . —k) : k € Z} is an orthonormal basis of V.

Lemma 5.2.2. Let g € L>(R) and j € Z. The functions 27/2¢(27 - —k), k € Z, are orthonormal
in L*(R) if and only if

> _1g(€+2km)P =1

keZ
for almost every £ € R.

Without going into the details, let us give some information about the construction of a
nonstationary multiresolution analysis of L?(R) from scaling functions (see [16]).

Proposition 5.2.3. For j € Z, let ©U) e L?(R). Let us assume that, for each j € 7, the
functions 29/2pU) (27 . k), k € Z, are orthonormal in L*(R). Let us set

V; == span {2//2p()(20 - —k) : k€ Z}, jeZ.

(a) We have V; C V1 for all j € Z if and only if, for all j € Z, there exists a 2m-periodic and

locally square integrable function m(()jH) such that
NG i+1 A
¢ (26) = mg "V (©)gU(©) (5.5)

for almost every £ € R.
(b) The union of (V;)jez is dense in L*(R) if and only if
Jim eV 7)) =1
for almost every £ € R.
(c) If there exist A,« > 0 such that

/R (1+ €N [P ()2 de < A (5.6)

for all j € — N, then the intersection of (V;);ez is reduced to {0}.
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The functions m((]j), j € Z, are called filters. Let us mention that, for all j € Z, they satisfy

the equality ‘ ‘
m (€))% + Im§ (€ +m)> =1 (5.7)

for almost all £ € R. Equation (5.5) is often called the scaling equation. Condition (5.6) is
similar to Additional asymptotic condition (5.3).

The following result allows to construct a nonstationary orthonormal basis of wavelets
of L3(R) from scaling functions (and filters).

Theorem 5.2.4. For j € Z, let 1) € L?(R). Let us assume that the spaces

Vj :=span {29/2p0) (20 - —k): k€ Z}, jEL

form a nonstationary multiresolution analysis of L*(R). For j € Z, let us define 1)\9) € L*(R) by

1&(]-)(5) — /2 mg”l)(é/Q + ) ¢(j+1)(5/2)

for almost every £ € R, where m(()jH) is a filter coming from Scaling equation (5.5). Then,

{20/24\0) (27 . —k) : j, k € Z} is an orthonormal basis of L*(R).

Under Additional asymptotic condition (5.3) (of the theoretical characterization of nonsta-
tionary orthonormal bases of wavelets), the following result gives a necessary and sufficient
condition to obtain a nonstationary basis of wavelets from a nonstationary multiresolution anal-
ysis. Again, we generalize the proof of [52] to the nonstationary case, which is presented in
Section 5.6.

Theorem 5.2.5. For j € Z, let )\9) € L?(R). Let us assume that {27/2¢\0) (27 . k) : j, k € Z}
is an orthonormal basis of L*(R).

(a) If the mother wavelets ¥, j € Z, come from a nonstationary multiresolution analysis, then

+o0o
Dy() = 3 SRV @0 (¢ + 2km)P = 1 (5.8)

n=1keZ
for almost all £ € R and for all j € Z.

(b) Conversely, if D;j = 1 almost everywhere on R for all j € Z and if we assume that Additional
asymptotic condition (5.3) is satisfied, then the mother wavelets %), j € Z, come from a
nonstationary multiresolution analysis of L?(R).

For j € Z, the function D; is sometimes called the dimension function of the mother
wavelet 9) (see [22]). For all j € Z, the double series in Expression (5.8) converges in L'([0, 2])
because [|17)|| r2(r) = 1 and then almost everywhere on R by Levi’s theorem and by periodicity.

Additional asymptotic condition (5.3) is mentioned because we use the theoretical charac-
terization of wavelets in the second part of the proof of Theorem 5.2.5 (and more precisely in
Lemma 5.6.2). In fact, it is not necessary if the nonstationary orthonormal basis of wavelets
verifies Equalities (5.1) and (5.2) of Theorem 5.1.3.

In the second part of Theorem 5.2.5, it actually suffices to have D; > 0 almost everywhere
on (0,27) for all j € Z. This is the purpose of the following proposition.
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Proposition 5.2.6. Forj € Z, let 1) € L?(R). Let us assume that {27/2¢)0)(27.—k) : j k € Z}
is an orthonormal basis of L?(R). Let also assume that Additional asymptotic condition (5.3) is
satisfied. For all j € Z, we have D; = 1 almost everywhere on R if and only if we have D; > 0
almost everywhere on (0, 27).

We give the proof of this proposition later, since it uses some considerations of the proof of
Theorem 5.2.5 (see Section 5.6).

5.3 The Example of Exponential-Splines

In this section, we illustrate the previous results with the example of the Exponential-Splines.
The Exponential-Spline of parameter A € C" (n € N) is the function Ny defined by
N . |

M) =11 VT

/=1
for almost every & € R (see [35,79]). The classical Spline corresponds to the case A = 0.
Except this particular case, the usual structure of (stationary) multiresolution analysis cannot
be applied to construct a (stationary) orthonormal basis of wavelets of L?(R) from Exponential-
Splines (because N, cannot be expressed in terms of its 2-dilates). The nonstationary setting
allows it (see [35,79]).
Let us consider in details the case of the Exponential-Spline M, := N;, with p € R\{0}.
By definition, we clearly have

M,(2) = ¢ xoy(2), =R

and
sp—& sin <%§)
. e ———2 flH#£pu
Mu(g) = %ﬁ
1 ifé&=p

For all j € Z, it is easy to check that {2j/2M27jM(2j -—k) : k € Z} is an orthonormal family
of L%(R). Let us set

Vj :=span {21/2My-; (27 - —k) : k € Z}

for j € Z and let us show that (V});ez is a nonstationary multiresolution analysis of L?(R) with
Proposition 5.2.3.

(a) For all j € Z, we have V; C V41 because we have the following scaling equation:

N i fo— (i 2_(]+1) — N
My-5,(2€) = es(@ gy o (#) M27(1+1>M(5)

for almost every & € R.
(b) For almost every £ € R, we directly have

sin(277£5%)

R

lim [My-;,(277¢)| = lim

j——+o0o Jj—+oo

and the union of Vj, j € Z, is therefore dense in L%(R).
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(c) Let o > 0; the function £ — (1 + \5])0]M2_j“(5)]2 is integrable on R only for « € (0,1). We

have
2

sin®) " g (5.9)

t

[+ 1ty ©F =2 [ 1+ i - 21
R R

and then, Proposition 5.2.3 does not allow to show that the intersection of Vj, j € Z, is

reduced to {0}. However, [35] studies the dimension of the intersection of Vj}, j € Z, and
proves that it is well reduced to {0} since p is a real parameter.

Consequently, (V;);ez is a nonstationary multiresolution analysis of L*(R). If we define the
square integrable function ) by

for almost every ¢ € R and for all j € Z, the family {27/2¢0)(27.—k) : j, k € Z} is a nonstationary
orthonormal basis of wavelets of L?(R) by Theorem 5.2.4.

Remark 5.3.1. The previous example shows that Condition (5.6) is only sufficient, but not
necessary to have the triviality of the intersection of V;, j € Z, defined in Proposition 5.2.3.

Let us now show that the nonstationary orthonormal basis of wavelets constructed from the
scaling functions My-;,, j € Z, satisfies Equalities (5.1) and (5.2) of Theorem 5.1.3. To get
that, we use the following equalities.

Lemma 5.3.2. For all x € R, we have

+

sin? 2]x . sin? (2~ 33: .
g 2 = sin®(z) and E — = = 2% — sin?(x).
e 247 2—2j

Proof. The two series are clearly convergent. Let us first remark that

1
sint(y) = sin?(y) — 1 sin?(2y)

for all y € R. Then, we have

+Zsm (27x) I i sin(2z)\ 2 i sin(27+12)\ >
= lim —) - —
22 J—+oo | 4 27 ; 27+1
2
sin(2/+1x)
= i 2 _
J—1>rfoosm (x) < 5771
= sin®(z)

for all x € R. Similarly, we also have
Jr

si 2 33: ) Sin(Q_Jx) 2 . 9 9 . 9
Z 52 JEIEOO ((27]) —sin“(z) | = z* — sin“(z)

=1

for all z € R. [ ]
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Firstly, for almost every £ € R, we have

. J 11 —29
sin? (—“—2 2 5)

e (276)
S D @eP =Y Sk L)

23
=/ jez <—’f4—5) jez

setting 0 := (u — £)/4 and using Lemma 5.3.2. Secondly, for all p € Z and ¢ € 2Z 41 and for
almost every £ € R, we have

. 20—P_92J¢ .9 (29-P_23 (€42qm)
+0oo Sln2 —_— S1n e E—
ci2an 4 4

tpq(§) = Z 20-Pp—27¢ 20—Pp—27 (£4-2gn)
§=0 1 - 1
1 sin® 210
= H(T%ﬂ) — sin? COS + Z 22]
~ —sin?(f) cos?(0) + sin?(6) — sm4(9)
; 06 — %)

setting 0 := (27Pp — &) /4 and using again Lemma 5.3.2. Consequently, thanks to Theorem 5.1.3,
we have again proved that {27/2¢0)(27 . —k) : j, k € Z} is a nonstationary orthonormal basis of
wavelets of L(R).

Remark 5.3.3. The functions 1), j € Z, satisfy the Equalities (5.1) and (5.2) of Theorem 5.1.3
and are the mother wavelets of a nonstationary orthonormal basis of wavelets of L2(R). How-
ever, they do not verify Additional asymptotic condition (5.3) by an argument similar to Ex-
pression (5.9). Moreover, they do not verify Condition (5.4) (i.e. the other condition proposed
in [98]). Indeed, for J € N and for a,b > 0 such that a < |u| < b, we have

J nd (2 p— t>
> | BP@OR v de = Z R (1) - ey

p—a 4 gibtu . 4
4 sin 4 SIn

42 / (y) dy / 2(y) dy
2Ju y gj%‘u Yy

and the general term of this sum does not tend to 0 if j — 400 since 0 belongs to one of the two

domains of integration of the previous integrals. Consequently, this example shows that both
Conditions (5.3) and (5.4) of Theorem 5.1.3 are only sufficient, but not necessary.

Let us end this section with the computation of the dimension D; of the mother wavelet p)
for all j € Z. We know that they verify the two equalities of Theorem 5.1.3. If we show that
D; = 1 almost everywhere for all j € Z, then the mother wavelets come from a nonstationary
multiresolution analysis of L?(R) by Theorem 5.2.5, what we already know since we use the
scaling functions My-;,, j € Z, to construct YU), j € Z. For all j € Z and for almost all ¢ € R,
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we have

—+00

Di(€) = Y > U2 (& + 2km))P?

n=1kcZ
. i
oo sin* <2"—“—2 1 . 2"%”)

D) DR i s
n—1kez <2" (24—“5 _ 7”))

+o0o . 4
B sin®(2"6) 1
= 4 Z 922n Z (20 — k)2’

n=1 keZ

setting 6 := (277u — &)/4. The first series is equal to sin?(d) — sin*(d) = sin?(260)/4 by
Lemma 5.3.2 and the second series to 1/sin?(26), using the summation by residues. Thus,
we obtain D;(&) = 1.

5.4 Smooth Nonstationary Orthonormal Basis of Wavelets in the
Hardy Space H?*(R)

We know that there exists no “regular” orthonormal basis of wavelets in the Hardy space
H2(R) (see [10,52]). TIs there such a result in the nonstationary case? The answer is given by
the following result.

Theorem 5.4.1. There is no sequence (1)) ;cz of functions which belong to H?(R) such that
(a) [¥)] is continuous on R for all j € Z,
(b) there exist o, A > 0 such that

A

Wj)(é“)! < W

forall € >0 and j € Z,
(c) there exist B, B,n > 0 such that
[ < BE°
for all £ € [0,m) and j € N,
and such that {27/2¢U)(27 . —k) : j k € Z} forms an orthonormal basis of H*(R).

The proof of this theorem is given in Section 5.7, because it is based on some results used
in the developments of the proofs of Theorem 5.1.3 and Theorem 5.2.5 (see the two following
sections). The first steps are similar to the stationary case (see [52]).

5.5 Proof of Theorem 5.1.3

Before proving Theorem 5.1.3, let us make some observations, similarly to the stationary
case in [52].
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5.5.1 Auxiliary Results and Notations

The following proposition gives a way to check that the functions 1 x(-) := 29/2¢0) (27 . ),
j, k € Z, form an orthonormal basis of L*(R) (see for example [33,52]).

Proposition 5.5.1. Let {e; : j € N} be a family of elements of a Hilbert space H such that
llejll2 =1 for j € N. Then, {e; : j € N} is an orthonormal basis of H if and only if

+oo
D 1{Fe) P =111 (5.10)
j=1
for all f € H. Moreover, if Equality (5.10) is verified for all f € D where D is a dense subset
of H, Equality (5.10) holds for all f € H.

In our case, since we assume that ‘|¢(j)||L2(R) =1 for all j € Z, the family {¢; : j, k € Z}
is an orthonormal basis of L?(R) if and only if

Do P =117

J.kEZ

for all f in the dense subspace
D= {f € L*(R) : f € L®(R) and supp(f)is a compact subset of R\{O}}

of L?(R). The fact that the support of f is a compact of R\{0} is used to have the convergence
of some series (see Expression (5.14) in the proof of Lemma 5.5.4 where a > 0). The following
lemma returns to the density of D in L?(R).

Lemma 5.5.2. The set D is dense in L2(R).

Proof. Let f € L*(R) and ¢ > 0. Since f € L?(R), there exists p € D(R) such that

. T
If = pllrzm) < \/;6-

Let us set py, := %(p — PX[-L i]) for m € N. There exists M € N such that

T
lox- 1 1yllr2@) < \/;6

for m > M. Consequently, for m > M, we obtain

y 1 z
1f = pmllrz®) < E(Hf = Pllee@ + llox 1 1yllem) <e
Since par € D by construction, we have the conclusion. [ |

Let us then calculate the quantity

I'=Y"|{f.¥jx) >, feD.

7,kEZ
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For f € D, we have

3,kEZ
_ 1 )2 Fley 2 ik
(%)QMEZ [ 29 fe e e G0
= Z 27 /f 27¢) ) (€)

J,kEL

For j € Z, let us set Fj(€) := f(27€)4p0) () for almost every ¢ € R. By construction, Fj €
LYR) N L*(R) and supp(F}) is a compact subset of R\{0} for j € Z. We use the following
lemma for F; (see [30,52] for example).

Lemma 5.5.3. Let FF € L'(R) N L?(R) such that supp(F) is a compact of R\{0}. Then, the

series
> F(-+ 2knm)
keZ

converges almost everywhere on R to a 2wr—periodic and square integrable function ® and we

[ 2 F@ de = 530 1F()

For j € Z, we set ®;(&) := >, Fj(§ + 2kn) for almost every £ € R as in the previous
lemma. We then have
I = 271' (92 Z /
- 27‘1’ 9.2 Z 2 ‘F

J,keZ
73,k€EZ

have

- % 2 [0 B

- Ly / F2i6) 09(€) 3 F(27(€ + 2m)) B0) (€ + 2k de.

keZ

Taking care of the convergence of series (see later), we get

I=1y+1
with
hi= 5 [ 1R L0k de
JEZ
and 1
vim5r S0 [ TR0 3 F@ €+ 2km)) T + 2hm) e (5.11)
jez VR keZ\{0}

Let us look at the convergence of the series Iy and I;. To do that, we use the following
lemma.
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Lemma 5.5.4. Under Additional asymptotic condition (5.3), the series
Do YIS+ 2km)] |99 ()P (5.12)
JEZ keZ\{0}

converges almost everywhere on R and defines an integrable function on R for all f € D.

Proof. Since f € D, we can assume that supp(f) C {£ € R\{0} :a < €] < b} for b > a > 0.
We write 8 := diam(supp(f)).

(a) If 2727 > &, then at most one of the points 2/¢ or 2/(¢€ 4 2km) belongs to supp(f) for
¢ € R\{0} and k¥ € Z\{0}. Hence, in the sum on j in Expression (5.12), we only consider
j < jo where jg is the largest integer number which verifies 27027 < 6.

(b) We have f(27(¢ + 2km)) # 0 for at most 1 + §/2727 integer number k. Using the definition
of jo and the fact that f € D, we have

7 5 l@Ernml < 2 (14 g5 ) Il < (24 55 ) Il

kez\{0}

IN

5 .
;||f||Loo(R)

for all j < jo and almost all £ € R\{0}.
(c) If f(27€) # 0, then we have 274 < || < 277b.
Hence, for almost all £ € R\{0}, we have
L » 5 - Jo »
> Y PN E+ 2 DO < I By D Xa-saz-m (€D D).

JEZ keZ\{0} J=—00
It only remains to show that the series

> xpaza(l- DD )P (5.13)

j=—o00
is integrable on R. Indeed, the sequence (g;)en of integrable functions on R defined by
Jo o
91(€) = D Xpp-iap-an) () [ (€)1
j=—J
for almost every £ € R is clearly increasing. Moreover, using Condition (5.3), we have
/ 95(€) dg Z / Xz a2 UED () L ey ag
J =
R (1 + &)

Jo

1 a),7(9) 2
< 3 ey Ja+len o de

1
< Ajzoo (= (5.14)

Thus, by Levi’s theorem, the series in Expression (5.13) and then in Expression (5.12) are
integrable on R and converge almost everywhere on R. [ |
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Proposition 5.5.5. Under Additional asymptotic condition (5.3),

(a) the series I is convergent,

(b) the series I converges if and only if

YD) € Lig(R\{0}). (5.15)
JEZ
Proof. (a) Since
2PV (E)[PV (€ + 2km)| < [$V(E) + [P (€ + 2km) (5.16)

for all kK € Z\{0} and for almost all £ € R, I; is convergent thanks to Lemma 5.5.4.

(b) With the previous item, I converges if and only if Iy converges. We then have to show
that Iy converges if and only if the series in Expression (5.15) is locally integrable on R\{0}. If
we suppose that I is convergent for all f € D, let K be a compact of R\{0}. Taking f such
that f ‘= XK, We have

1 . o . 1 s ,

In= — 2 D (2-76)12 d :_/ G (2=ieV 2 d

0= 5 [IFOF 0@ opd =5 [ S0 eora
JEZ JEZL

and then the series in Expression (5.15) is locally integrable on R\{0}. Reciprocally, if we

suppose that the series in Expression (5.15) is locally integrable on R\{0}, we have

1 . o 1. o
=5 [1F@F S OO dE < ol ey [ YW@ IOP de
R jez supp(f) jez,
since f € D and we have the conclusion. [ |

The series of Equality (5.1) of Theorem 5.1.3 directly appears in the definition of Iy. The
series of Equality (5.2) also appears in I; when we write I; as follows:

11:%/ D D P P (E+ 20m)) b (€) de
R ez qe27+1

Let us get this. For every k € Z\{0}, there exist unique ¢ € Ny and ¢ € 2Z+1 such that
k = 2¢q. Then, from Expression (5.11), since I; is convergent, we have

oy = [ SFOUI@Y T e+ 22k SN DE + 2km) de

JEZ keZ \{0}
+o0
= F© 9 (2¢) F(&+277228qm) P9 (296 + 22¢qm) dE
R
JEL q€27Z+1 £=0

- 400
/R FO Y0 DD mh(2frg) hlr-0 (26277 + 2gm)) f(& + 2P 2qr) dE

q€27+1 £=0 pEZ

= [X 3 2o 7@e fere + 2am) de

pEZ qe2 7 +1

Before proving Theorem 5.1.3, let us recall some elements about the notion of Lebesgue point
(see [106]).
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Definition 5.5.6. Let F' be a measurable and locally integrable function on R. The real x is
a Lebesgue point for F if

To+0
lim — F(z) - F dxr = 0.

Proposition 5.5.7. If F' is a measurable and locally integrable function on R, then almost
every real number is a Lebesgue point for F'.

This previous proposition will be useful to prove the necessary condition of Theorem 5.1.3.

5.5.2 Proof of the Sufficient Condition of Theorem 5.1.3

We are now armed to prove Theorem 5.1.3. We proceed as in [52|, with some adaptations
to the nonstationary case. The sufficient condition is relatively simple.

Using Equalities (5.2) and (5.1) and the previous considerations on I, Iy and I, we succes-
sively obtain

S W) P =T =l = 5 [ 1FQF X 109 I6R de = 11 Baqe

J,kEZ JEZ

for all f € D . Hence the conclusion by Proposition 5.5.1.

5.5.3 Proof of the Necessary Condition of Theorem 5.1.3

Let us now show the necessary condition of Theorem 5.1.3. Let us assume that {27/24() (27
—k) : 4,k € Z} is an orthonormal basis of L?(R).

Equality (5.1)
Let us begin with Equality (5.1). Because the series I converges by hypothesis (and Propo-

)=y WP

JEZ.

sition 5.5.1), the function

is locally integrable on R \{0} thanks to Proposition 5.5.5. With Proposition 5.5.7, it suffices to
show that S(&p) = 1 for some Lebesgue point &y # 0 of S. Let 6 > 0 such that [{y — d,&0 + 0] C
R\{0}. We denote by I, Iéé) and Ig) respectively the quantities I, Iy and I; when we take
f = fs where

A 1
fs(§) == NGT X[¢o—5,¢0+0](§)
for almost every ¢ € R. By construction, fs € D. On the one hand, we have
1, 1 [ot+d g 1
= s tim) P = sl 7o) = %HJ%H%P(R) = %/ o5 46 =5
J,kEZL So—

and on the other hand, we have
fo+d q 1 &o+6

16) — 10 4 p0) _ / D) (27€) 2 d + 1O =
0 1 2 -6 25]622 T 25 )
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Consequently, taking the limit as § — 0T, we obtain

-5 or lim I
(€0) + 2m lim, 1,

since &y is a Lebesgue point of S. It only remains to prove that limg_,g+ I }6) = 0. We adapt the
proof of Lemma. 5.5.4 as follows.
Let us consider &y > 0 (the case {y < 0 is similar). Using Inequality (5.16), we have

o |1} |</Z S 20 |f5(2E)| | 5(20 (€ + 20m))| [H9) (©)]2 de.

JEZ keZ\{0}

Let jo be the largest integer number which verifies 2707 < §. Since & — ¢ > 0, that HﬁgHLoo(R) =
1/4/26 and that
V¢ esupp(fs) = £=277(% —0)

with j < jg, we obtain

6
om |10 < L / o Z X2 60523 ey (€) [ ()2 d,
0—

.]_700
as in the proof of Lemma 5.5.4. For fixed 9, we also know that the series

Jo

> Xe-ieo—s)2-3 orey () [P ()2

]_700

is integrable on R. As [277(& — 6),277 (&0 + 6)] C [277(& — ),277 (& + 0] for § < &' with
d € (0,&), we have

5 n
2| 1) < / o Z N5 23 (60s5)(€) |09 (€) 2 dE — 0

]*—oo

if § — 07 by Lebesgue’s theorem. Thus, limg_,q+ I}é) =0and S(&) = 1.

Equality (5.2)

Let us now prove Equality (5.2). Let pg € Z and qp € 27Z +1. With Proposition 5.5.7 again,
it suffices to show that ¢, 4,(£o) = 0 for some Lebesgue point & of the integrable function t,, 4,.
First, from HfH%Q( = I = Iy + I (by Proposition 5.5.1) and Ip = || |2, (®) (by Equality (5.1),
now acquired with the previous paragraph) for f € D, we get I; = 0. Then, we have

/Z Y. 2 F) G2 (€ +2m)) ty(€) dE =0 (5.17)

pEZ q€2Z+1
for all f,g € D thanks to the polarization identity because the application
(f,9) GDXDH/Z Yo oorf F(20) G(2P(€ + 2q7)) tp g (€) dE € C
pEZ q€2Z +1

is a sesquilinear form.
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Let us assume that {y # 0 and &y + 2gom # 0. Let § > 0 be such that 0 ¢ [y — 9, & + 0] and
0 ¢ [0+ 2q0m — 0,&0 + 2gom + §]. Let us define the functions f5 and gs by

R 1 ) R
fs(&) == 5 X120 (€0-) 270 (o +4)] (§) and gs(§) := f5(§ — 2P°2qom)
for almost every £ € R. By construction, we have f5,95 € D and f5(§)§5(§ + 2P02¢yT) =
(1/28)X[2v0 (¢0—8),270 (¢+6)) (§) for almost all & € R. With Equality (5.17) for f = f5 and g = g,
we then obtain

opo  [o+d

0 =2 / F5(2P08) Gs(2P0 (€ + 2q07)) tpgq0 () dE + J5 = == tpo.ao (§) d€ + Js
R 20 &o—0

where

Js = / DD 27 f5(20€) §5(27 (6 + 2qm)) 1 o (€) dE.
R ez qe27+1
(p,9)#(po,q0)

Since &y is a Lebesgue point of ¢, 4,, we have
0 = 2"tpy 40 (&) + 51—i>%1+ Js

and it only remains to prove that lims_,5+ J5 = 0 to have the conclusion.

Let us suppose that §, > 0 (the case { < 0 is similar) and § < 7. Let us fix £ € R and
q €27 +1. Tf f5(2P€)gs(2P(€ + 2qm)) # 0, we must have |2P€ — 2P0&y| < 2P0§ and |2P(€ + 2qm) —
2P0 (&g + 2qom)| < 2P05. Consequently, we have

1 0
120 = 27qo| = o~ (1(272qm — 270 2qom — (2°€ — 2760 )| + [27€ — 27°p]) < 270 — <27 (5.18)
7T s

If p > po, we can easily show that |2P0gy — 2P¢| is greater than 2P° because ¢ and ¢gg are odd,
which is in contradiction with Inequality (5.18). If p < pg, we have |2P0gy — 2Pg| > 2P. Let jy be
the largest integer number such that 270 < 2P0 /7. We so obtain

e[ 3 S 2w+ 2m) e

p=—00q€2Z +1

Using a similar argument as in Inequality (5.16), we can write
|Js| < Js1+ Js2

where we set

Ja= [0S @O €+ 2m) 5 ) de

p=—00qe2Z +1
and

Tiam [0S U6+ 20m) 35(2°€) 5 mo(€) e

p=—00 qe2Z+1
with

+oo
(&) = > _ [P0 (2fe)?
/=0
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for almost all £ € R. Since Hi/z(j)HLg(R) = 1 for j € Z, this last series converges in L!(R) by
Levi’s theorem.
Similarly to the proof of Lemma 5.5.4 (and the proof of the previous paragraph), we obtain

opo  [Fo0 Jo

Tsp < — D Xzro-r(go—s),2r0-p(go+a)) (€) o (€) dE
T J2(&0-0) p=—eo

and the series ‘

Jo

Z X[2P0*P(5075),2P0*P(£0+5)](') (") (5.19)

p=—00
is integrable on R by Levi’s theorem. Indeed, as in the proof of Lemma 5.5.4, the sequence
(hy)jen of integrable functions on R defined by
Jo
ha(€) =D Xpzro-»(eo—8).200-7(g0+8)) (€) To(E)
p=—J

for almost every £ € R is increasing because 7, € L'(R) is positive. Moreover, using Additional
asymptotic condition (5.3), we have

/RhJ(g) i — Z Z/ 2007 (69— 6) 200 (¢ +)] (§) (1 + [28€]) [P0 (2%€)|2 de

2 2 (1+ [2%€])e
Jjo oo
< Cepya (7 (0—0) (ol ey |2
< 33w gy 0 P
jo oo 9 Y, ot )
33 e o 0P
Jjo oo
< A
sz% 25201(€+po P) (& — §)™
9—apo 4 O T\
=
— )« a+1
(o—0) &=, = \2
9—apo A 1 Jjo
< opa
T (bo—0)x 1—2-(at]) p:zoo

As [P (6 — 6), 270 7P(E + 0)] C 2P0 (€9 — 1), 20 P(E + )] for 6 < & with & € (0,&), we

have ‘
opo  [+oo Jo

Js1 < — Z X[2r0—7 (g9—5") 2007 (g0+5")] (§) Tp(§) d§ — 0
n %(5076) p=—00

as & = 07 by Lebesgue’s theorem. Thus, lims o+ J51 = 0 and limg_,o+ J52 = 0 by a similar
reasoning. Finally, we have limg ,o+ J5 = 0 and t,, 4,(&) = 0.

5.6 Proofs of Theorem 5.2.5 and Proposition 5.2.6

Let us now prove Theorem 5.2.5 and let us begin with the necessary condition. We proceed
as in the stationary case (see [52]).
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5.6.1 Proof of the Necessary Condition of Theorem 5.2.5

By hypothesis, the mother wavelets 1)9), j € Z, come from a nonstationary multiresolution
(J)), € 7Z, leading to
their construction. The following proposition shows how to get |¢()|2 from [4)(™) |2, m € Z such

analysis of L?(R) and there exist thus scaling functions @) (and filters m

that m < j. The proof follows the stationary case with some easy adaptations (see [52]).

Proposition 5.6.1. For all j € Z and for almost all £ € R, we have

+oo
2= 3 [BomEng)?
n=1

Proof. Let j € Z. Using Equality (5.7), Equality (5.5) of Proposition 5.2.3 and Theorem 5.2.4,

we have

PDEP =169 ©)F (1m§ () + Im§ (€ +m)2) = 19979 26) 2 + [H9 (2¢)
and then N
PO = g0 M@V + Y [0 (2n)
n=1

for almost all £ € R and for all N € N. Since |[1)(™) [z2r) = 1 for all m € Z, the series

+oo
Do)
n=1

converges in L'(R) and then almost everywhere on R by Levi’s theorem. Consequently, the
sequence (|@U=N) (2N .)|)yen converges almost everywhere on R. Moreover,

/ UM (2N )2 de = 227N — 0

as N — +o00. Hence

: 2(G=N) (9N ¢\[12 _
Jlim g V)

for almost every ¢ € R, which leads to the conclusion. [ |
For all j € Z, using Lemma 5.2.2 and Proposition 5.6.1, we have
1= 19 (¢ + 2km))” ZZW (2" (€ + 2km))|* = Dj(¢)
keZ k€Z n=1

for almost all £ € R, since {2//20\) (27 . —k) : k € Z} is an orthonormal family of L(R).

5.6.2 Proof of the Sufficient Condition of Theorem 5.2.5

Let us now consider the sufficient condition. Let us assume that D;(§) = 1 for all j € Z
and for almost all £ € R and let us construct scaling functions. Basically, for all j € Z and for
almost all £ € R, since D;(§) = 1 by hypothesis, we choose the smallest n € N such that

D U@ + 2km))? #£ 0

kEZ
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and then we define ) by
PU~m (27¢)

\/Z U= (27 (€ + 2k))|?

keZ

PU() =

for almost all £ € R.
Let us look more precisely at the construction. Let us fix j € Z and n € N and let us define
the infinite vector

(€)= (U@ +2km))

of ¢%(Z) for almost all £ € R. The following lemma will be useful later. The proof uses the
theoretical characterization of nonstationary orthonormal bases of wavelets (see Theorem 5.1.3)
and thus Additional asymptotic condition (5.3).

Lemma 5.6.2. For all j € Z and n € N, for almost every £ € R, we have

400

PU(20g) = 373U (2(€ + 2km)) SU (20 (€ + 2km)) U T(27E). (5.20)
r=1keZ

Proof. Let us give the idea of the proof. The double series converges almost everywhere for all

j € Z and n € N thanks to Cauchy-Schwarz’s inequality, the convergence of D; for j € Z and

Equality (5.1) of Theorem 5.1.3. For the equality, if we denote G, (&) the second member of

Expression (5.20), we have G, (§) = Gj—1,,-1(2¢) for all j € Z, all n € N\{1} and almost all

&£ € R by Theorem 5.1.3 and Proposition 5.6.3 below. In consequence, for all j € Z, all n € N

and almost all £ € R, we have G, ,(§) = Gj_(n_l),l(anlg) by recursion and thus the conclusion

because G;_(,—1),1(§) = Y= (2¢). |

Proposition 5.6.3. The family {2//2¢) (27 . —k) : j,k € Z} is orthonormal in L*(R) if and

only if
> D (4 2km)P =1

kEZ
almost everywhere for all j € 7 and

Z PUPN (2P (- + 2km)) pU) (- + 2k7) = 0
kEZ
almost everywhere for all j € Z and p € N.

Proof. 1t suffices to adapt the proof of the stationary case (see [52]) to the nonstationary case.
Let us note that the first equality is similar to the one of Lemma 5.2.2 (see [16]). ]

Let us come back to the sufficient condition. Thanks to Lemma 5.6.2, we can write

—+00

qj]}n@) = Z <\I]j,n(5)7 \I]j,r(f» \I]j,r(g) (5.21)

r=1

for almost all £ € R. Moreover, for almost all £ € R, we can see that

+o00 +o0o
D Nnlz =D D> WU (€ + 2km))]* = Dy(€) = 1. (5.22)
n=1

n=1keZ
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For all j € Z, we define

F;(€) :=span{¥;,(§) : n € N}

for almost all £ € R. It is a subspace of £2(Z) of dimension 1 by the following proposition
(see [52]) thanks to Equalities (5.21) and (5.22).

Proposition 5.6.4. Let {v, : n € N} be a family of vectors in a Hilbert space H such that

+o0 +oo
Z lva|? = C and vy, = Z (Umny V) Up
n=1 r=1

for all m € N. Then, the dimension of the subspace span{v, : n € N} of H is equal to C.

In consequence, F;(£) is generated by only one unit vector U;(£). To construct it, we first
make a partition of [0, 27]:

Ejn:={£€(0,2n]:¥;,(§) #0and ¥, ,,({) =0form <n}, neN

and the null set F; o := {{ € [0,27] : D;j(§) = 0}. We can then define U; almost everywhere on
[0, 27] by
Uj(€) = —L2=r— if £ € By,
’ 1W5,n(&)lle2(z) ’

Let us write U;(§) = (u,(j )(5)) ez and define o) almost everywhere on R by
U (&) = ul) (¢ — 2km)  if £ € [0,27) + 2k (k € 7).

As in the stationary case (see [52|), these pU), j € Z, are the sought scaling functions.

5.6.3 Proof of Proposition 5.2.6

Let us now prove Proposition 5.2.6. In fact, it suffices to show that, for all j € Z, D; > 0
almost everywhere on (0,27) implies D; = 1 almost everywhere on R.

Let us fix j € Z. By definition, D; is 2m-periodic. With the notations of Subsection 5.6.2,
we know that D;(§) is the dimension of IF;(§) for almost all £ € R (see Proposition 5.6.4).
Consequently, D;(£) € N for almost all £ € R because D; > 0 almost everywhere on (0,2m).

Moreover, we have

400 2
Dj<s>d§:§j§j/%

n=1keZ i

2w (k+1)m

+o0o

U@ dg =Y 2" [V 12wy = 27
n=1

because ||)(™) 22y = 1 for all m € Z. We so have D;(§) =1 for almost all £ € R.

5.7 Proof of Theorem 5.4.1

Let us now prove Theorem 5.4.1. By contradiction, let us assume that we have an orthonor-
mal basis {27/2¢0) (27 . k) : j, k € Z} of H*(R) satisfying the given regularity conditions.
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Using the two first conditions of regularity, for j € Z, the series
+00 ‘
50) 5= Y9 P
n=1

converges uniformly on compact subsets of R\{0} and then represents a continuous function
on R\{0}. Moreover, there exists C' > 0 such that

C
s;(§) < g2a+1

for all £ > 0 and j € Z because

+oo 2 2 +o
A A 1 C
sj(f) < Z (1 4 2n£)2a+1 < §2a+1 Z 2n(2a+1) S 5204—}—1 .

n=1 n=1

By definition, for j € Z, we can see that

Dj() = sj(- + 2km).
keZ

This series converges uniformly on compact subsets of [—m,0) U (0,7] and then represents a
continuous function on this set. Since |[1)(™| r2r) = 1 forall m € Z, D; = 1 almost everywhere
on R by a similar reasoning as in the proof of Proposition 5.2.6 (see Subsection 5.6.3), adapted
to the case H?(R) (Additional asymptotic condition (5.3) is satisfied thanks to the second
hypothesis).

Let us fix j € Z. For all k € Z, the function s;(- — 2km) is continuous on R\{2k7}. The
series

ti() = D si(-+2km)
keZ\{0}

converges uniformly on [—7, 7] and then represents a continuous function on [—7, 7]. By con-

struction, we have
D;(€) = 54(&) + (&)
for all £ € [—m,0) U (0, 7]. By continuity of each term, we obtain

1= gl_igg D;j(¢) = gl_i)rgf(sy'(ﬁ) +1;(€)) = 0+1;(0)

because ¥U) € H%(R) and

L= [lim, D;(€) = lim, (s;(€) +4;(8) = Jim, (&) +;(0).
Hence, for all j € Z, we get
li (&) =0. 5.23
i, 55 (€) (5.23)
Let us consider s;(277¢) for j € N and € € (0,1). On the one hand, there exists § € (0,7)
such that
(5.24)

DN |

0<s;(277¢) <
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for all £ € (0,0) and all j € N. Indeed, using the third hypothesis, we have

+o0o 7—1
5i27¢) = Y WEORYP = s+ WO P
=1—j =0

7j—1
s0(§) + B2 Y 270 = 50(¢) + B¢

=0
< so(€) + Bge?

IN

for all j € N and for all £ € (0,7) where Bg is a constant depending only on f. It follows that,
using Equality (5.23) with sg, we have Inequality (5.24). On the other hand, using Equality (5.1)
(of Theorem 5.2.5 in the present setting), we have

“+oo
5i(2796) = Y [PIRYP 1
{=1—j

as j — 4oo for almost every £ > 0. Hence we get a contradiction with Inequality (5.24), taking
&o € (0,6) such that s;(277&) — 1 as j — +oc.



Chapter 6

Nonstationary Continuous
Wavelet Transform

In the previous chapter, we have investigated nonstationary orthonormal bases of wavelets
of L?(R). Initially, this nonstationarity was introduced in various situations: the construction
of bases of wavelets in Sobolev spaces (see [15,16]), the construction of infinitely differentiable
compactly supported bases of wavelets in L2(R) (see [41]),. ..

Up to now, the nonstationarity has been only considered in the context of orthonormal bases
of wavelets. What about the continuous wavelet transform? In [95] (see pages 80-81), the idea
of a nonstationary continuous wavelet transform is put forward. Apparently, it could be useful
in the study of particular singularities, called oscillating singularities (see [88| for example), of
a function.

Let us already mention that the case of the continuous wavelet transform in Sobolev spaces
is studied in [105]. In comparison with the case of orthonormal basis of wavelets, it appears
that only one wavelet (not a family of wavelets) is sufficient to define the continuous wavelet
transform of a distribution which belongs to a Sobolev space and to consider the reconstruction
of this distribution from its continuous wavelet transform.

The purpose of this chapter is to present a nonstationary version of the continuous wavelet
transform, which does not seem to have been investigated before. In this chapter, we first
define the notions of nonstationary family of wavelets and of nonstationary continuous wavelet
transform in L?(R). We then give some examples and we study the reconstruction of a square

integrable function from its nonstationary continuous wavelet transform.

6.1 Nonstationary Continuous Wavelet Transform

Let us begin with the introduction of the notions of nonstationary family of wavelets and

nonstationary continuous wavelet transform.

Definition 6.1.1. The set ¥ := {)(® : ¢ € R\{0}} is a nonstationary family of wavelets
if (@ ¢ LYR) N L*R) for all a € R\{0} and if ¥ satisfies the nonstationary admissibility
condition: the function

)a)
L 99 @)

lal

is integrable on R for all £ € R and the integral
7(a) 2
[ o,
R |al

81
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is independent of ¢ for almost all £ € R.
Using the nonstationary family of wavelets W, the nonstationary continuous wavelet trans-
form of a function f € L?(R) is the function Wy f defined by

W f(a,b) : /f () dz = (f,as), a€R\{O}, bER

where

Yupl) = T ( b), rER.

a

Let us consider some examples of nonstationary family of wavelets.

(a) If ¢ is a wavelet, then {t} is clearly a nonstationary family of wavelets. Indeed, we directly

IS e ra\ a= | \wm "

which is independent of & for all almost £ € R. The stationary case is thus a particular case

have

of the nonstationary case.

(b) Let ¢ be an even or odd wavelet and let p € R\{—1}. For a € R\{0}, let us set

() = . <i>, zeR.

alp ™\ Jal?

Then, ¥ := {4(®) : ¢ € R\{0}} is a nonstationary family of wavelets. Indeed, for almost all
¢ € R, we have ¢ (¢) = ¢(|afP¢) and

/ rw as / [é(laPag)l® ra\pas _, /+°° [P
0

a

because || is an even function. We then have

|w<a as oo |w 1 9 (1))?
d = d
/ p+1|/ ! |p+1|/R g

which is independent of & for almost all £ € R. For example,

{i (=X[=talr.0) + X[0alp)) s @ ER \{0}}

lalP

and

2
{x — —ﬁeﬂﬂ/la\% ta€ R\{O}}

are such nonstationary families of wavelets. In this case, the nonstationary continuous
wavelet transform of f € L?(R) related to W is

Wy f(a,b) = Wy f(alal”,b)

for all a € R\{0} and b € R.
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(c) If ¢ is a wavelet and if p is a function defined on R\{0} such that |p| =1 on R\{0}, then

V= {p(a)(-) : a € R\{0}}

is clearly a nonstationary family of wavelets (thanks to the same argument as Item (a)). In
this case, the nonstationary continuous wavelet transform of f € L?(R) related to ¥ is

Wy f(a7 b) = p(a) Ww f(a7 b)

for all a € R\{0} and b € R.
(d) Let p and ¢ be the functions defined on R\{0} by

4) e log(|a| 4+ 1) n ) e | al 1

For a € R\{0}, let us set

(@ (x) :=¢q(a) (xD, + 1)

and let us note that we have

for all x € R, where ¢ p is the Poisson wavelet:

bp(z) = 1 1—22

=—— " 2€R.
r(l+a222 "

Then, ¥ := {1)(*) : ¢ € R\{0}} is a nonstationary family of wavelets. Indeed, for almost all
¢ € R, we have

7(a) 2 +oo +o0
/ |¢ (a£)| da — 2’5‘2 / IOg(a + 1) e—ZIEIIOg(a+1) da = 2/ te—Qt dit = l
R ]a\ 0 a+1 0 2

In this case, the nonstationary continuous wavelet transform of f € L%(R) related to ¥ is

W Flost) = a(6) W Salt) = [y s W £ (G 0)

for all a € R\{0} and b € R.

Let us note that all the previous examples of nonstationary families of wavelets are actually
constructed from one wavelet. All the presented nonstationary continuous wavelet transforms
can be then reduced to a classical continuous wavelet transform to a multiplicative factor. It
is certainly possible to find a nonstationary family of wavelets where such a situation does not

occur.
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6.2 Reconstruction Formula

If ¥ is a nonstationary family of wavelets, it is possible to reconstruct a square integrable
function f from Wy f(a,b) with a € R\{0} and b € R. This is the object of the following
result (which is the nonstationary version of Theorem 3.1.3). The proof is very similar to the
stationary case (see [33]) and it allows to understand the choice and the use of the nonstationary
admissibility condition.

Theorem 6.2.1. Let U := {¢)() : ¢ € R\{0}} be a nonstationary family of wavelets such that
(@) 2
R |al

for almost all ¢ € R. For all f,g € L*(R), we have

———dadb
LW e Wosat) T = (r.9). (62)
Moreover, for f € L*(R), we have
. da
im 70~ | ([wes@nvmta) il —o
7"8—_>>—Eoo {ad/eRie<|a’/|<T} R |a| L2(R)
Proof. 1. Let us first show that
Wy h(a,b)
(a,0) » ———=—
Vlal
is square integrable on R? for all h € L%(R). We first have
1 —_— . 1 AL AT
= — (a) _— e + (a)
Wahla,b) = (hx 9@ (=2)) () = o= FL, (&P () (63)

for almost all a,b € R, where we notice that & — h(€)ih(@ (af) € L*(R) N L2(R) because
h € L2(R) and € — (@ (a€) € L2(R) N L°°(R) by hypothesis. For almost all fixed a € R, the

function

Wy h(@ b 1
b— =
|al 472
is then integrable on R. Moreover, we have

Wah@b) 1 [ 9 (ab)?
/ =5 [ 1h0) a

lal lal

al “7:2_—% (h(g)qﬁ(a)(aé)) ‘2

and this function of a is integrable on R by Fubini’s theorem because the function

2 [() (ab)|”

(@,0) = )

is integrable on R? by Tonelli’s theorem. Indeed, for almost all fixed b € R, the function a —
|1/A)(‘1) (ab)|?/|a| is integrable on R because W satisfies the nonstationary admissibility condition.
Using Equality (6.1), we have

+oo h@) (ab)|2 .
/ FoPEE O 4 )P

lal
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and b — |h(b)|? is integrable on R. By Tonelli’s theorem again, we then have the integrability
of (a,b) — | Wy h(a,b)|*/|a| on R,
2. Let us now show Equality (6.2). Using Equality (6.3), we successively have

/ We f(a,b) We 9@, D) dﬁ”’

47T2 =5 ( | e (Foi@ee) 7L, <A(£)¢(a>(a@)db> -
e /R<F Ca > |dCT

1 da
F,
27r/< a’G>\a]

where, for all a € R\{0}, we have setted F,(¢) := f(&)¥(@(af) and G,(€) := §(&)¥(@ (af) for

almost all £ € R. Using Equality (6.1), we then have
| )(a) 2
lal
,9)

—  dadb
/ / Wa f(a,b) Wy g(a,b) 20—
(0,4-00) xR a

>

3. Let us finish with the convergence in L?(R) and let us set

Q%’IH S’IH

da
L) = W fla,b) thap(-) db ) 22
7 () /{a’eR:5<|a’<r} </R v f(a )w 7b() > ’a‘

for r > ¢ > 0. With Equality (6.2), we directly have

dadb
lal

If - Is,rHLQ(]R) = sup [(f—IL,g)|= su
||g||L2(R):1 ||9||L2 R)*l

[ we rtay Wgtan S
where X := (R\((—r, —¢) U (g,7))) x R. By Cauchy-Schwarz’s inequality, we obtain

I1f = Lol o) < \///’W“Jfab ddb\///’w‘l’gab dadb.
g||L2 )71 |al |a

However, with Equality (6.2), we have

Wy g(a, b)? W g(a,b)
/X’ wg(a,b) ddb<//R2’ ‘I’ga ddb:\lgllia(m

lal

Consequently, we have

Wy f(a,b)|
If = Lerll 2@y < \///| “P"’;’ dadb — 0

if ¢ - 07 and » — 400 by Lebesgue’s theorem since (a,b) — | Wy f(a,b)|?/]a| is integrable
on R?. Hence the conclusion. |
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As in the stationary case, it is possible to recover a square integrable function f from
Wy f(a,b) with a > 0 only and b € R, where ¥ a nonstationary family of wavelets. In this
context, we slightly adapt the nonstationary admissibility condition and then also the notion
of nonstationary family of wavelets. The set ¥ := {1/)(‘1) :a > 0} is a nonstationary family of
wavelets if () € LY(R) N L3(R) for all a > 0, if the function

@@
a

is integrable on (0, 4o00) for all £ € R and if the integral

oo |4h(a)
[t
0

a

is independent of £ € R for almost all ¢ € R. We have the following reconstruction formula. The
proof is similar to the one of the previous theorem.

Theorem 6.2.2. Let ¥ := {¢)(%) : ¢ > 0} be a nonstationary family of wavelets such that

[,
0 a

for almost all ¢ € R. For all f,g € L*(R), we have

—dadb
// W\I/f(a’ab)w\l/g(a’b) c :<f,g>
(0,400)xR a

Moreover, for f € L?(R), we have

- [ (freswasson)

=0.
L2(R)

lim
e—0t
r—-+00
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SY Spaces Revisited
with Wavelet Leaders
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Chapter 7

From S Spaces to LY Spaces

The study of the Holder continuity of a function by means of its wavelet coefficients, i.e. its
coefficients in an orthonormal basis of wavelets, is a widely used tool (see [3,59,92]). We have
already considered this kind of study in Chapter 3 with the continuous wavelet transform of a
function. In order to investigate the regularity of a function with the sequence made up of its
wavelet coefficients, S spaces first (see [64]) and then more recently £ spaces (see [13]) have
been introduced.

Up to now, in Chapter 1, we have presented the notions of Holder continuity and Hoélder
exponent to study the regularity of a function. If a function is very irregular, in the sense that its
Holder exponent changes at each point, these notions are not more really relevant. In this case,
the spectrum of singularities of the function gives a more appropriate information (see [65] for
example). For each possible value h taken by the Holder exponent of a function, this quantity
actually measures the “size” of the set of real numbers where the Holder exponent of the function
is equal to h. In general, it is impossible to calculate the spectrum of singularities of a function
because of the determination of several intricate limits which are in its definition. Therefore,
one tries to estimate this spectrum from some quantities which are numerically computable
(see [65,67]). It is just the purpose of the methods developed with S spaces and L¥ spaces.
From this point of view, the method based on L£" spaces allows to obtain theoretically better
approximations of the spectrum of singularities than the one based on §” spaces (see [13]), which
still improved the one based on Besov spaces (see [64]) given by the Frisch-Parisi conjecture
(see [63,99]).

At first sight, S¥ spaces and LY spaces are spaces of functions. They are both defined from
a certain quantity, called wavelet profile in the case of S spaces and leader profile in the case of
L spaces, which depends on the wavelet coefficients of functions. It has been proved that these
two profiles and these two types of spaces are actually independent of the chosen orthonormal
basis of wavelets to represent the functions (see [13,64]). Therefore, S” spaces and L¥ spaces
can be considered as sequence spaces (and no more as function spaces). Likewise, the two profiles
can be directly associated to a sequence (and no more to a function). This will be the point of
view that we will adopt in all of this part, except only for some particular remarks or comments.

This chapter is a presentation of £ spaces and a preparation to the next chapter. After
some preliminaries about wavelet coefficients and wavelet leaders in the context of sequences, we
recall the notions of wavelet profile and space S” in a first time and the notions of leader profile
and space LY in a second time. Then, we give some examples and we compare the spaces S¥
and L”.

89



90 Chapter 7. From S8” Spaces to LY Spaces

7.1 Wayvelet Coeflicients and Wavelet Leaders

Initially, S¥ and L£" spaces have been introduced to study the regularity of functions from its
wavelet coefficients. Since we are interested in local properties of functions, we can assume (as
in [9,13,64|) that the functions that we consider are 1-periodic. To represent such functions, we
can use an orthonormal basis of wavelets of the space of the 1-periodic functions of L%([0,1]).
For that, we take a mother wavelet ¢ € S(R) (as done in [83]) and we write

Yin() =D Y@ (-=1)—k), jeNy,ke{o,...,27 —1}.
leZ
We know that the 1-periodic functions 2]'/21/@-71?, j € Ng, k € {0,...,27 — 1}, together with
the constant function 1 form an orthonormal basis of the space of the 1-periodic functions of
L?(]0,1]) (see [33,88,92] for more details). If f is such a function, we have

400 27 —1

F=ct Y cintin

j=0 k=0

in L%([0,1]) where ¢ := fol f(z) dz and

1 .
Cjk = 2]/ fx)Yjp(x)dr, jeNg, ke {0,...,23 — 1}.
0

In comparison with Chapter 5, the index k& does not vary in Z, but in {0,...,2/ — 1} for each
fixed scale j € Ny. We are then interested in sequences with a couple of indices (j, k) where
j€Ngand k €{0,...,27 —1}.

Let us denote

A= UJA{G k) kefo,.... 2 —1}}
j€Ng

and Q := C". The elements of a sequence & € Q are still called wavelet coefficients (of &), even
if we are no more in the context of functions. As mentioned in the introduction of this chapter,
SY or L can be seen as function or sequence spaces and thus, there is no problem with this
abuse of language.

For j € Ny and k € {0,...,2/ — 1}, we use the notation A(j, k), or simply X if there is no
ambiguity, to refer to the dyadic interval

MG, k) ={zeR: 2z —-ke[0,1)} = [%,%) .

For j € Ny, A; represents the set of all dyadic intervals of [0,1) of length 277. In the following,
we will use the two equivalent notations c;j and cy for (j, k) € A to denote the elements of ¢ € €2
(indeed, for any (j,k) € A corresponds a unique dyadic interval of [0, 1) and reciprocally).

Definition 7.1.1. The wavelet leaders of ¢ € §) are the quantities
dy := sup ‘C)\/‘, )\EAj,jGNo.
MNCA

With this definition, it may happen that dy = 4+00. However, in Section 7.3, we will see that
all the wavelet leaders of a sequence of LY are finite. For the wavelet leaders of ¢, we will also
use the two equivalent notations dy and d;;, for (j,k) € A.
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7.2 Wavelet Profile and Space S”

7.2.1 Definitions

Let us recall the notions of wavelet profile and space S¥ (see [8,9,42,64]).

Definition 7.2.1. The wavelet profile of a sequence € € € is the function vz defined by

ve(a) := lim <limsup <log(#Ej(1,a + 6)(5))>> , a€R,

=0T \ jotoo log(27)

where
Eij(C,a)@) == {k€{0,...,27 =1} : |cj| = C27%}
for j € Ny, C' > 0 and o € R.
This definition formalizes the idea that at large scales j, there are about 2“#(®)J wavelet
coefficients larger in modulus than 2%/ (with the convention 2% := 0). By construction, for

¢ € Q, vz is non-decreasing, right-continuous and with values in {—oo} U [0, 1].
Before giving the definition of space S§”, we need the notion of admissible profile.

Definition 7.2.2. An admissible profile is a non-decreasing and right-continuous function v
with values in {—oo} U [0, 1] such that

amin = inf{a € R:v(a) >0} € R.
Definition 7.2.3. Given an admissible profile v, a sequence ¢ € () belongs to S if
ve(a) < v(a)
for all a € R.

Equivalently, ¢ belongs to S” if and only if for every o € R, ¢ > 0 and C > 0, there exists
J € Ny such that
#E;(C,a)(¢) < o(v(a)+e)i

for all j > .J. When v(a) = —oo, we use the convention 277 := 0 for all j € Ng. Heuristically,
a sequence C of ) belongs to S” if at each large scale j, the number of &k such that |c; | > 2-J
is of order smaller than 2¥(®)J_ This space is a vector space (see Section 2 in [8]).

Some examples of S” spaces for particular admissible profile v are given in [42].

7.2.2 Basic Results

In this subsection, we summarize the topological properties of S” established in [8]. This
will permit to compare them with the ones of £ studied in the next chapter.

Theorem 7.2.4. There exists a unique metrizable topology that is stronger than the topology
of the pointwise convergence and that makes S” a complete topological vector space. This
topology is separable.
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More precisely, in order to define a complete metrizable topology on S, auxiliary spaces
were introduced. For any o € R and any § € {—o0} U [0, 4+00), the space A(«, ) is defined by

A, ) :={c€Q : 3C,C" > 0 such that #E;(C,a)(¢) < C'2% Vj € Ny}.
This space is endowed with the distance
0a.5(E,") == inf {C +0' 0,0 > 0 and #E;(C,a)(@— &) < €25 ) € No}

for ¢,¢" € A(a,B). Let us remark that if 3 = —oo, then A(a, —c0) is the space ¢®, i.e. the
space of sequences ¢ € €2 such that the sequence (2ajcj,k)(j7k)e/\ is bounded. Let us note that

” = £>°(A). Moreover, (A(a, —00),0a,—o0) is the topological normed space (c¢%, || - ||ce) where
[Pl = sup Pl Fe e
-]7

If 8 > 1, then A(a, ) = Q. Moreover, if 5 > 1, the topology defined by the distance 4, is
equivalent to the topology of the pointwise convergence.

Proposition 7.2.5. For any sequence (o, )nen dense in R and any sequence (€., )men of strictly
positive numbers decreasing to 0, we have
S = ﬂ ﬂ Ao, v(am) + em)-
meNneN

The topology of S¥ is defined as the projective limit topology, i.e. the coarsest topology that
makes each inclusion 8 C A(an,v(ay) + &) continuous. This topology is equivalent to the
topology given by the distance

+00 +oo

5i= 30 o-lmin) G /(ctn) +em

m=1n=1 L+ 5aan(an)+6m

(see Section 5 in [8]).
Let us recall the characterization of the compact sets of S” (see Section 6 in [8]). For
m,n € N, let C, ,, and Cr/mn be positive or null constants and let us define

Ko = {ae Q:#{k€{0,...,27 =1}t |ejul > Cpp 27979} < O, 20O FEm)T v € No}

(taking the usual sequences of Proposition 7.2.5). We write
K = ﬂ ﬂ K-
meNneN

Proposition 7.2.6. A set is a compact subset of (S¥,¢) if and only if it is closed in (S¥, ) and
included in some K.

7.3 Leader Profile and Space £”

7.3.1 Definitions

Let us now define the notions of leader profile of a sequence and space LY (see firstly [14]
and secondly [13] which gives the definitions of leader profile and space £¥ in a more general
context). In fact, there are just the notions of wavelet profile and space S where wavelet
coefficients are replaced by wavelet leaders.
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Definition 7.3.1. The leader profile of ¢ € €1 is the function vz defined by

vz(@) ;== lim (hmsup <log(#75’;(1,a + 6)(5))>> , a€R,

=0T \ jotoo log(27)

where

E;(C,a)(@) = {k € {0,...,20 —1} : d;), > C27}
for j € Ny, C > 0 and o € R.

This definition formalizes the idea that at large scales j, there are about 27¢(®)J wavelet
leaders larger than 277,

Definition 7.3.2. Given an admissible profile v, £ is the space of sequences ¢ € 2 such that
ve(a) < v(a)
for all a € R.

Just as in the case of S¥ spaces, we get the following description of £ (the proof is a simple
adaptation of the proof of Lemma 2.3 in [8]).

Proposition 7.3.3. Let v be an admissible profile. A sequence ¢ € §2 belongs to LY if and only
if for every a € R, € > 0 and C > 0, there exists J € Ny such that

#E;(C,a)(@) < 2@+ (7.1)
for all j > J.

Proof. Let ¢€ LY and let &« € R, n > 0 and C > 0. By definition of Uz, there exists £ > 0 such
that —
log(#E;(1, 0 +€)(¢))

inf . <
JlélNo ngJ) log(27) v(@)
and then, there exists J € Ny such that
1 #Ev» La+e)(c
og(#F; (1, £)(©)) <v(a)+mn.

log(27)
and that 275 < C for all j > J. Thus, for j > J, we have

#E;(C,a)(@) < #E;(La + &)(&) < 2@+,

Reciprocally, let ¢ € Q be such that ¢ satisfies Inequality (7.1). Let a € R and € > 0. By
hypothesis, there exists J € Ny such that

#fE;(l,a + 6)(5) < 2(V(Oé+6)+€)j
for all j > J. Then, we directly obtain

log(#E;(1,a +¢)(7))
e log(2)

<via+e)+e.

Taking the infimum on J € Ny and then the limit as ¢ — 0", we have the conclusion thanks to
the right-continuity of v. [ |
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7.3.2 First Properties

Let us begin by showing that £ is a vector space. The proof is similar to the one for S¥
(see [64]).

Proposition 7.3.4. Given an admissible profile v, LY is a vector space.

Proof. Tt is evident that 0 € £. Let & & € £” and § € C\{0}. To have the conclusion, let us
show that ¢+ ¢’ € LY and Oce€ LY. Let us fix a € R, € > 0 and C > 0.
On the one hand, by hypothesis and by Proposition 7.3.3, there exists J € Ny such that

¥ {k €{0,.... 2 1} dy < %Qaﬂ'} < ovla)te)

and then

#<kedo,... ,2j —1}: sup |fen| < C27% % < 9w(e)+e)j
NCAG,k)

for all 7 > J. Thus 6¢ € L".
On the other hand, by hypothesis and by Proposition 7.3.3 again, there exists J € Ny such
that €5/2 > 1,

# {k €{0,...,27 =1} : dj, < %20‘7} < oW(@)+35)j

and
# {k €{0,....27 =1} : d;, < %20‘3} < gw(@)+3)j

for all j > J. Since

. C , c ;
sup ey +cy| >C27% = sup |ex| > =27 or sup || > =27,
A 2 M=

NCA NCA NCA
we have
#ke{0,...,27 —1}: sup |exv +c\|>C27Y
NCAGkK)
~ (C . ~ (C .

< #E; <5,a> (C) + #E; (5,04) @)

< 2. 9Wl@)+5)i

< gw(e)te)
for all j > J. Thus, ¢+ ¢’ € L. [ ]

Contrary to the space §Y, a sequence of LY is automatically bounded. This is the object of
the following result. Consequently, if a sequence belongs to LV, its wavelet leaders are finite.

Proposition 7.3.5. Given an admissible profile v, we have LY C V.

Proof. Let ¢ € LY and let o < apin. By definition of ap,;, and by Proposition 7.3.3, there
exists J € Ng such that d;; < 27 for all j > J and k € {0,...,2/ — 1}. Moreover, there
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exists ¢’ > 0 such that 2%9d;;, < C' for all j € {0,...,J — 1} and k € {0,...,27 — 1}. Setting
C := max{C’, 1}, we obtain d;; < C27% for all (j, k) € A. In particular,

doo = sup |cji| <C
(4,k)EA

and thus, € . [ |

Remark 7.3.6. In fact, we can assume that oy, > 0 in the definition of admissible profile

(see Definition 7.2.2) to consider £” spaces. Let us assume that ami, < 0 and let us define the
admissible profile vT as follows:

o) = v(a) %f a>0 .
—oo if a<0
We directly have "' c L¥ because v < v on R. For the other inclusion, let ¢ € LY. By
construction, we have v = v on (=00, auin) U [0, +00). Let o € [oumin, 0), € > 0 and C > 0. By
Proposition 7.3.3, there exists J € Ny such that

#E’;(C’, a) (@) < o(v(a)+e)j

for all j > J. Since ¢ € ¢ by Proposition 7.3.5, there exists C’ > 0 such that d;; < C’ for all
(4,k) € A. Moreover, because a < 0, there exists J' > J such that 2=*/C > C' for all j > J'.
Consequently, #E;(C,a)(¢) =0 for all j > J" and ¢ € £, Hence £¥" = V.

Therefore, from now on, we will always assume that v is an admissible profile with i, > 0.

7.3.3 Examples and Comparison of Spaces £” and &%

Let us now compare the spaces £¥ and S8 and let us give some examples for particular
admissible profile v. From the definition of the wavelet leaders, it is direct to see that vz < Uz
for any sequence ¢ € ) since |c;j ;| < djj for every (j,k) € A. Therefore, given an admissible
profile v, we have

Lr c §”. (7.2)
Here is an easy example where the inclusion is strict. Let us consider the admissible profile v
defined by
1 fa>0
= - 7.3
V(@) {—oo ifa<0 (7.3)

and let us show that £” = c’. We know that £” C ¢ (see Proposition 7.3.5). For the other
inclusion, let ¢ € ¢ and let « € R, ¢ > 0 and C > 0. If o > 0, we directly have

#E5(C,0)(¢) <2 < PO

for all j € Ny. Let us now assume that o < 0. By hypothesis, there exists C' > 0 such that
djx < C’' for all (j,k) € A. Moreover, there exists J € Ny such that C27* > C’ and then
#{k€{0,...,27 =1} :d;p > C27%} =0 for all j > J. By Proposition 7.3.3, ¢ € LV.
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We know that S” = (.. oc™° (see [42]). In this case, S” is not included in £¥. Indeed, on
the one hand, the sequence ¢ € ) defined by

j ifk=0
= ) 7.4
ik {0 ifhe{l,... .2 -1 (74)

for all scale j € Ny, is not bounded and does not belong to £”. On the other hand, it belongs
to ¢~¢ for all € > 0 because 5275/ tends to 0 for j — +oo.

In the previous example, the admissible profile is such that apyi, = 0. In fact, in this case,
the inclusion £¥ C 8" is always strict, as shown in the next proposition.

Proposition 7.3.7. Ifv is an admissible profile such that i, = 0, then LY is strictly included
in S8%.

Proof. Since LV is included in , it suffices to find an element of S¥ which does not belong
to . Such an example is given by the sequence ¢ €  defined in Expression (7.4). We know
that & ¢ c? and let us show that ¢ € S”. Let a € R, ¢ > 0 and C > 0. If a < 0, there exists
J € Ny such that j < C27% and then #FE;(C,a)(¢) = 0 for all j > J. If @ > 0, we have
#E;(C,a)(¢) < 1< 2@+ for all j € Ny. Hence the conclusion. ]

Let us study what happens in the case ay, > 0. Let us begin with an example. Let us
consider the admissible profile v defined by

V(a)::{l fa>a

-0 fa<a

where a > 0. We know that S” = (.,,¢c* " (see [42]) and let us show that £” = S”. Using
Inclusion (7.2), it suffices to prove that (.. ,c*™® C LY. Let ¢ € ¢* * foralle > 0 and let o € R,
e>0and C > 0. If a > a, we directly have

#E5(C,0)(¢) <2 < PO

for all j € Np. Let us now assume that a < a. There exists > 0 such that a — § > 0 and that
a—a+d<0. Since ¢ € ¢*%, there exists C’' > 0 such that 202797 |¢; ;| < C’ for all (j, k) € A.
Then, for j > j and k" € {0,...,2/" — 1}, we have

‘Cj/ k;" S Cl 27((175)_]" S C/ 2(0{7(14’5)]‘ 2704_]'.
Since there exists J € Ny such that C/2(@—a+9)Ji < C/2 for all j > J, we so obtain
dj,k <C27%

for all j > J and k € {0,...,2/ —1}. Thus, #E;(C, a)(¢) =0 for j > J. Consequently, ¢ € L”.
The next result gives a necessary and sufficient condition on the admissible profile v to have
the equality of the spaces £” and S” (see [14]).

Theorem 7.3.8. Let v be an admissible profile such that o, > 0. Then, LY = SY if and only
if

v(a)
/

v(a) = sup (7.5)

a'e(0,0] &

for all o € [Olmina infOé/ZOCmin V&z')]'
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In fact, Condition (7.5) means that the admissible profile v is with increasing-visibility on
the given interval (see [89]). It is indeed the case in the previous example.

Without going into the details, let us give a last example. If v is an admissible profile which
is concave, L£¥ can be described as a countable intersection of oscillation spaces (see [14]).

In the next chapter, we will endow LY spaces with a natural topology, in a similar way as
SY spaces (see [8]). We will also study some classical topological properties like separability or
compact subsets.

To finish this chapter, let us mention that, if we consider £¥ as a function space (see the
beginning of this chapter), the topology that we will define on L£” is a “good” topology, in the
sense that it is also independent of the chosen orthonormal basis of wavelets (see [14]). This will
allow to consider the space £ as either a topological function space or a topological sequence
space.






Chapter 8

Topology on LY Spaces

In [8], S” spaces are endowed with a natural topology. Some topological properties have
been also studied (see also [5—7] for more information). The main elements have been recalled
in Section 7.2.

In this chapter, we adapt most of results of [8] in the case of L” spaces. More precisely, we
first define a topology on LY spaces. To do so, we introduce auxiliary spaces. We then study
the compact subsets and the separability of £”. We finish by the comparison of the topologies
of the spaces §” and L£V. The results presented in this chapter are from [14].

8.1 Auxiliary Spaces

As for the case of §” spaces, a useful description can also be obtained by the introduction
of auxiliary spaces. These new spaces will be used to define a topology on LY.

Definition 8.1.1. Let & € R and § € {—o00} U[0,400). A sequence ¢ €  belongs to the
auxiliary space A(a, () if there exist C,C’ > 0 such that

#E,(C,a)(@) < C'2%
for all j € Ny.

Let us first note that the auxiliary spaces are vector spaces. To prove it, it suffices to adapt
the proof of Proposition 7.3.4. For some particular 3, we can identify the space A(a, 3). This
is the object of the following remark.

Remark 8.1.2. (a) If # = —oo, then A(a,f3) is the set of the sequences & € € such that
(2%9d; 1) (j k)en is bounded. In fact, we even have

~ c® ifa>0
A(a,—oo):{ A ifa<0

Indeed, on the one hand, if o > 0, it is clear that A(a, —00) C ¢® because lcj k| < dj g for
all (j, k) € A and all @€ Q. Moreover, if there exists C > 0 such that 2%9|c; ;| < C for all
(7, k) € A, we have

‘Cj’,k/‘ < c2~' < c2-%

for all 7/ > j and ¥ € {0,...,2 — 1} and then 2%d; ) < C for all (j,k) € A. So,
¢® C A(q, —00). On the other hand, if o < 0, we have A(a, —o0) C @ because |j k] < 2%
for all (7,k) € A and & € Q. Moreover, we have the other inclusion because 20‘jdj,k < dpp
for all (j,k) € A and ¢ € Q.

99
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(b) If 8 > 1, then g(a,ﬁ) = Q since, for all ¢€ Q and all j € Ng, o € R and C > 0, we have
#E;(C,a)(@) <2 < 2%,

As for S§” spaces, we have the following result which allows to describe LY spaces as a
countable intersection (of auxiliary spaces). This proof is a simple adaptation of the proof of
Theorem 5.4 in [8].

Proposition 8.1.3. For any dense sequence (a, )nen in R and any sequence (€, )men of strictly
positive numbers which converges to 0, we have
=) Ala,v@)+2) = () ) Alan, v(an) +em).
e>0a€cR meNneN
Proof. Let us show the following inclusions:
L c ﬂ ﬂ Ala,v(a) +¢) C ﬂ ﬂ Alan, v(om) +em) C LY.
e>0 aeR meNneN
1. For the first inclusion, let ¢ € LY, a € R and € > 0. By Proposition 7.3.3, there exists

J € Ny such that
#E;(1,0)(¢) < 20+

for all j > J. Moreover, there exists C’ > 0 such that 2%/d;, < C’ for all j € {0,...,J —1} and
k€ {0,...,27 —1}. Then,
#E;(C', ) () =0 < 20(@)+e)

for all j € {0,...,J — 1}. Consequently, setting C' := max{C’,1}, we have
#E(C’ a)(€) < 2W(e)+e)

for all j € Ny and thus, @€ A(, v(a) + ). We so have the first inclusion.

2. The second inclusion is evident.

3. For the third inclusion, let & € A(an, (o) +em) for allm,n € N. Let usfix a € R, e > 0
and C' > 0. Let us consider the two following cases.

(a) If v(a) = —o0, then there exists n € N such that v(a,) = —oo and that «,, > « by
hypothesis. Then, ¢ € A(ay, —00) and there exists C' > 0 such that d;, < C'27%J for all
(j,k) € A. Moreover, there exists J € Ny such that C’2(®=2n)i < C for all j > J, and so
djx < C27% for all j > J and k € {0,...,29 — 1}. Thus, for j > J, we have

#E;(C,0)(¢) = 0 < 2@+
(b) If v(«) € [0, 1], there exist m,n € N such that
ap >a, 3e,<ec and v(a) <v(a,) <via)+en,
by hypothesis. Since & € A(an, v(an) + £m), there exist Co, C{ > 0 such that
#E;(Co, o) < Ch2Wlon)temi

for all j € Ny. Moreover, there exists J € Ny such that Cp27*J < C27% and that C) < 27e/3
for all j > J. Consequently, for j > J, we have

#E;(C,a)(€) < #E;(Co, a)(€) < Cp2llomtem)i < 975 91 () +3) < gilv(e)te),

Thus, ¢ € LY by Proposition 7.3.3. Hence the conclusion.
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Let us now define a distance on these auxiliary spaces. The proof is adapted from the proof
of Lemma 3.3 in 8] to the case of wavelet leaders.

Definition 8.1.4. Let o € R and 8 € {—o0} U [0, +00). For &’ € A(a, 8), we write

3a(2,8") = inf{C’ +C 0, C" > 0 and #E;(C,a)(@— &) < C'2%9 ) e No} .

Lemma 8.1.5. For « € R and 8 € {—o0} U [0, +00), ga,g is a distance on A(w, 8) which is
invariant by translation and which satisfies

00,3(02,0) < max{1, 0]} 64.5(¢,0) (8.1)
for all ¢ € A(a, ) and 0 € C.

Proof. 1. By definition, it is clear that ga,g is positive, symmetric and invariant by translation.

2. Let us show that if &, 3(¢,') = 0 for & & € A(a, ), then & = &. Thanks to the
translation invariance, it suffices to prove it for @ = 0. Let ¢ € g(a, B) be such that gaﬁ(é’, 6) =
0. By hypothesis, for all > 0, there exist C,C’ > 0 such that C' + C’ < n and that

#{kc{0,...,27 — 1} :dj > C27%} < (¢'29
for all j € Ng. Let us take jy € Ny, € € (0,1) and 5 := min{e2757, £2%0}, Then, we have
#{k€{0,...,27 —1} 1dj, > 0270} < 2P0 < e <1

and then dj, , < C27%0 < ¢ forall k € {0,...,20 — 1}. As € and jg are chosen arbitrarily, we
obtain dj, x = 0 for all (jo, k) € A. Hence ¢ = 0.

3. Let us prove the triangle inequality. With the translation invariance, it suffices to show
that

-,

00 3(€—E',0) < 00.5(E0) + 64,5(¢",0)

for all & & € A(w, 8). By definition of gaﬁ, for all n > 0, there exist C1,C7,Ca,C% > 0 such
that C1 + C < 1/2 4 0a,5(¢,0), C2 4+ Ch < n/2 + 64.5(¢",0),

#E;(Cr, ) (@) < C12%  and  #E;(Cy,a)(@') < 527

for all j € Np.
Let us fix j € No. If £ ¢ E;(C1,a)(¢) U E;j(Ca, ) (€"), we have

sup Jex — | <djp +dy < (Cr + )27,
N CAGk)

that means that k ¢ E\;(C’l + Cy,a)(¢— ¢&’). We so obtain
Ej(Cy + C3,0)(@ = ") € (Bj(C1,0)(@) U Bj(C,0)(@)) -
Then, we have

HEJ(C1+ Ca,)(E— &) < #E5(C1,0) (&) + #Ej(Ca, ) (&) < (C} + C)27.
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Consequently, we successively have

00.5(E—2',0) < (C1 + Ca) + (C} + C) < 0+ 0a.5(7,0) + 64 5(¢",0)

and the conclusion follows since 7 is chosen arbitrarily.

With these three points, we can conclude that gaﬁ is a distance on /Nl(oz, B).

4. To finish, let us show Inequality (8.1). Let @€ A(a,3) and 8 € C. If |§] < 1, we directly
have ga,g(é?é', 0) < gaﬁ(é', 0) because

#kef{0,...,27 —1}: sup |fey|>C27% 4 <#{ke{0,...,27 —1} 1 djy, > C27}
N CA(j,k)

for all j € Ny and all C' > 0. If |#] > 1, we have Saﬁ(ea 0) < \nga,g(é', 0) because

{kef0,...,27 =1} :dj, > C27%9} =k e{0,...,27 —1}: sup |fey| > C|0]27
N CA(F,k)

for all j € Ng and C > 0. [ ]

If 5 = —oc0, then (ﬁ(a,ﬂ),gaﬁ) is the topological normed space (¢, || - ||ce) if @ > 0 and
(| - |lo) if @ < 0. Moreover, if 3 > 1, we have gaﬁ < 1. In the following proposition, we
also get more information about the topology in the case 8 > 1. The proofs of some points are
similar to the ones of Proposition 3.5 in [8].

For auxiliary spaces of §%, it is known that the topology defined by 4, g is stronger than the
pointwise topology; these topologies are equivalent when 5 > 1. In the £¥ case, the topology
defined by gaﬁ is also stronger than the pointwise topology. In fact, it is even stronger than the
uniform topology, i.e. the topology defined by the norm of V. The equivalence with uniform
topology happens if 5 > 1.

Proposition 8.1.6. Let « € R and 8 € {—o0} U [0, +0o0].

(a) The addition is continuous on (A(w, 8), gaﬁ).
(b) The space (ﬁ(a,ﬂ),gaﬁ) has a stronger topology than the uniform topology. Moreover,

every Cauchy sequence in (A(a, 3),04,3) is also a uniform Cauchy sequence.
(c) If B > 1, the topology defined by the distance ga,g is equivalent to the uniform topology.
(d) (i) If B is a bounded set of (A(w, B), gaﬁ), then there exists r > 0 such that
B C {56 Q:#{ke{0,...,27 —1} :djp, >r27%} <29 vj ENO}
c {ae Qe {0,...,2 1} idy >r27%} <120 vj € NO}.
(ii) Let r,7' >0, o/ > « and 8’ < 3. The set
B := {56 Q:#{ke{0,...,27 =1} :dj, > r2-} </ 2% vj e NO}

is a bounded set of (A(c, 3),8q.3). Moreover, B is closed for the uniform convergence.

(e) The space (A(a, f3), gaﬁ) is a complete metric space.
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Proof. (a) The first point is obvious using the triangle inequality with the distance gaﬁ.
(b) Let (¢0™),,en be a sequence of elements of A(a, ) which converges to &in (A(a, ), da,8)-
If B = —o0, it suffices to observe that we have

sup |c§.7wkl) —cjxl =2 sup |Cg\1,n) —cy| < sup 2% sup |c§;n) —cv| = ga,,oo(é’(m),é’)
(4,k)eA N CA(0,0) (4,k)eA N CA(5,k)

for every m € N. Let us consider now the case # > 0. Let £ > 0 and 7 := min{3,e}. By
hypothesis, there exists M € N such that

#< ke {O,...,2j —1}: sup ]cg\r,n) —cyv| > n2= Y < 2P
N CA(G,k)

for all j € Ny and m > M. Consequently, taking j = 0, we obtain for all m > M,

sup |C§:?])€0 — Cjo.ko| = SUp |cg\r/n) —cv|<n<e

(jo,ko)EA NCA(0,0)
The proof is similar for Cauchy sequences.

(c) With the previous point, it only remains to show that the uniform topology is stronger
than the topology defined by the distance ga,g (in the case 8 > 1). Let (¢(™),,cn be a sequence
of g(a, B) = Q which converges uniformly to ¢ and let ¢ > 0. There exists J € Ny such that
27 < 257 for every j > J because § > 1 and then we have

#{ke{0,...,27 —1}: sup |c§\r/n) —ey| > €279} <2 < 2%
AN CA(F)

for every 7 > J and m € N. Let us now fix j € {0,...,J — 1}. Using the uniform convergence,
there exists M € N (which only depends on ) such that

sup ]cg\r,n) —cy| <27
NCA(,k)

for every k € {0,...,2/ — 1} and m > M. So, for every m > M, we have

#{ke{0,...,27 —1}: sup ]cg\r,n) —en| >e27 3 =0< £287
NCA(j:k)

Consequently, we have ga,g(é'(m), &) < 2 for all m > M and thus (Z0™),,en converges to & in
(A, B),0a,3)-

(d)(i) The second inclusion is clear. Let us prove the first inclusion. Since B is a bounded set
in the metric space (Z(a,ﬂ), ga,g), there exists C' > 0 such that ga,g(f, y) < C for all ¥,y € B.
Let £ € B be such that gaﬁ(f, 0) < C. By the triangle inequality, we then have

80,8(80) < 80, 5(G T) + 80,5(F,0) < 2C

for all ¢ € B. Consequently, we obtain

Bc {569:#{ke{o,...,2j—1};dj,kzcg—aj}gczﬁiwem}.
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(d)(ii) By definition and by hypothesis, it is clear that B C g(a, B). By the triangle inequal-
ity again, we have

Oa 5($ y)<5aﬁ( )+5a5( 6)<2(T+T)

for all Z,§ € B and then, B is bounded in (A(a, 8), 60475). Let us now show that B is closed for
the uniform convergence. Let (¢ (m))meN be a sequence of B which converges uniformly to ¢ and
let € > 0. Then, there exists M € N such that

sup \cy,n) —cx|<e
XN CA0,0)

for all m > M. For (j,k) € A, we have
d; > r2 Y o dg{‘,f) > p27,
Otherwise, dg.]\,;[) < r27%J and then, taking e smaller if needed, we have

ro2— 04]<d]k—{—j< sup |C>\, _C)\/|+d( )—€§T‘2_a/j,
N CA(F,k)

which is absurd. So ¢ € B because
#{ke{0,...,2 =1} :djp >r27°} < #{k e {0,...,29 — 1} : d(M > r270} < /2P

for all j € Ny.

(e) Since (A(a, f),0q,8) is a _metric space, it only remains to show that if (@) men is
a Cauchy sequence in ( (a B),0a,8), it converges in (A A(e, B),0 a,3). From Item (b) of this
proposition, (¢ (m))meN is also a unlform Cauchy sequence and then it converges uniformly to €.
By hypothesis, if n > 0, there exists M € N such that

#ke{0,...,27 —1}: sup \cg\e) — c(;{)\ > 27 Y < 28I
NCA(j,k)

for all j € Ny and for all p,g > M. Then, ¢ belongs to the set

{aeﬁz#{ke {0,...,27 =1} : sup ]cg\]f)—axl >n2aj} < 2P VjeNo}

NCA(,k)

for all p,q > M. As the previous set is closed for the uniform convergence (it is similar to the
last part of the proof of Ttem (d) of this proposition), ¢ also belongs to

{ae Q: #{k €{0,...,27 —1}: sup |c(ff) —ay| > 7720‘3} <n2%vje No}
NCAG,k)
forall p > M. Thus, ¢ € g(a, B) and gaﬁ(é’(p), ¢) < 2nfor all p > M. Hence the conclusion. ®
Remark 8.1.7. If 8 € [0,1] and « > 0, the scalar multiplication
(0,8) € CxA(a, B) — 02 € A(a, B)

is not continuous and consequently, the space (/T(oz, B), gaﬁ) is not a topological vector space.



8.1. Auxiliary Spaces 105

Indeed, let ¢ be the sequence defined by

P §j27% ifke{0,...,[2%] -1}
LA I if ke {|207],...,21 -1}

for j € Ny. From some scale, this sequence is strictly decreasing. Moreover, for large scale j, we
have [260+1) /2 < |2%7], which implies that we do not have non-zero coefficients in a dyadic
interval A(j, k) with k € {0,...,2/ — 1} where ¢;, = 0. In other words, there exists J € Ny such
that dj, = cj, for all j > J and k € {0,... ,29 — 1} and so,

#B5(C,0)(¢) < [27] < 2%
for all 7 > J. For j € {0,...,J — 1}, we have
#E;(C,a)(@) <2 < 2072057
Thus, setting ¢’ := 20=%7 > 1 we have
#E(C,a)(@) < C'2%

for all j € Ny and &€ A(a, ).

Let us now prove that the sequence (&/m)men does not converge to 0 in (/T(a,ﬁ),gaﬂ),
following the idea of Proposition 3.5 in [8]|. By contradiction, let us assume that we have the
convergence. Then, there exists M > J such that

A 1 1 . 1 4
kelo,....29 —1Y: —d;, > -2 <~ 9fJ
#{ E{a ) } m],k_Q }_2

for all m > M and j € Ny. Taking j = m, we have

1 1 1
kefo,....2m—1}:— > —gam i <~ ofm
#{ E{a 3 } mcm,k_2 }_2
and then 1
pﬁmjgiﬁm

for all m > M. Hence a contradiction. If 5 = 0, it is clear. If 5 € (0,1], we actually have
m < 1/8 and we have the contradiction if we assume that M is also strictly greater than 1/5.

This counterexample also shows that the topology defined by gaﬂ and the uniform topology
are not equivalent for such g and «a.

Let us end this section with some relations between auxiliary spaces. The second part is
useful to obtain the continuity of the scalar multiplication in LY.

Lemma 8.1.8. (a) If « > o and 3 < 3/, then

Aa,B) c A(d,B) and ga/ﬁ/ < Saﬂ.

(b) Let o/ > « and 8/ < (. If the sequence (6,,)men converges to 6 in C and if the sequence
(@) men of @ converges to & in (A(a, B),0a,5) with & € A(c/, '), then the sequence
(0™ e converges to 0 in (A(a, B), 0u.p)-
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Proof. The first item is obvious. The second one is similar to the one given for the 8" case (see
Lemma 4.2 in [8]). Since the sequence (6,,)men converges to 6 in C, there exists D > 0 such
that |0, — 0| < D for all m € N. We have

0@ ™ — 62 = (0, — 0)(@™ = &) — 6™ — &) + (6, — 6)T
and then
00.3(0mc ™, 02) < max{1, D} 6, 3(¢™, &) + max{1, 0|} 6as(E™, &) + 00.5((0m — 0)E,0)

thanks to Lemma 8.1.5. The two first terms converge to 0, using hypotheses and the first point
of this lemma. Let us now consider the convergence of the third term. Since ¢ € Z(O/ , '), there
exist C,C’" > 0 such that

#E;(C,a)(2) < 277
for all j € Nog. Let n > 0. Then, there exists J € Ny such that DC277('=%) < p and
C'273(B=F") < p for all j > J. Consequently, we have, for all 5 > .J and m € N,

#{ke{0,...,27 =1} 1 |0, — 0| djp, > 027} < 2%

because |,, — 60| < D for all m € N. Since the sequence (6,,)men converges to 6 and that & € ¢,
there exists M € N such that

|0 — 0]dj e < 2=
forallm > M, j€{0,...,J —1} and k € {0,...,2/ —1}. Hence gaﬁ((é?m —6),0) < 27 for all

m > M and we get the conclusion. [ |

Remark 8.1.9. (a) The assumption that the sequences belong to ¢ will not be restrictive
because we know that £” C ¢ (see Proposition 7.3.5).

(b) If 8 = 8/ = —o0, this lemma remains true.

8.2 Topology on L”

By Proposition 8.1.3, we know that £ is a countable intersection of auxiliary spaces. As
in the case of S§” spaces, this description allows to obtain a structure of complete metric space
on LY. Indeed, the idea is to use the following classical result of functional analysis (see for
example [72]) to define a topology on L”.

Proposition 8.2.1. For m € N, let E,, be a space endowed with the topology defined by the
distance dp,. Let us set E := (e Em. On E, let us consider the topology T defined as follows:
for every e € E, a basis of neighbourhoods of e is given by the family of sets

N {f €E:dnle,f) <rm}
(m)

where r, > 0 for every m € N and (m) means that it is an intersection on a finite number of
values of m. Then, this topology satisfies the following properties.

(a) For every m € N, the identity i : (E,7) — (Em,dy,) Is continuous and T is the weakest
topology on E which verifies this property.
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(b) The topology T is equivalent to the topology defined on E by the distance d given by

= oom (e, f)
d(e, f) ::mzl2 TTan(e.]) e,f €E.

(c¢) A sequence is a Cauchy sequence in (E,7) if and only if it is a Cauchy sequence in (E,,, d,,)
for every m € N,

(d) A sequence converges to e in (E,7) if and only if it converges to e in (E,,d,,) for every
m € N.

Using some properties of the auxiliary spaces (Z(a,ﬁ),éaﬂ) and Proposition 8.2.1, we can
define a distance on the spaces £” and obtain some additional information on these spaces. The
reasoning is an adaptation of Section 5 in [8].

Definition 8.2.2. Let o := (a,)nen be a dense sequence in R and € := (,,)men be a sequence
of (0,400) which converges to 0. We denote

“+o0o +o0o

ga,a = Z Z 9~ (m+n) 60‘”7’/(0‘n)+€m

m=1n=1 1+ 504n7V(Oén)+€m

Proposition 8.2.3. Let @ and € be sequences chosen as above.
(a) The application gaﬁ is a distance on LV.

(b) The topology defined by gms on LY is the weakest topology such that, for every m,n € N,
the identity i : L — A(an, V(o) + €m) Is continuous.

(c) A sequence in LY is a Cauchy sequence in (LY, ga,s) if and only if, for every m,n € N, it is

a Cauchy sequence in (A(can, V(o) + €m); Oay, v(an)+em)-

(d) A sequence in LY converges in (E”,gms) if and only if, for every m,n € N, it converges in

(A(Oén, l/(Oén) + 6m)’ 5an,u(an)+am)‘

(e) The space (L", gaﬁ) is a complete topological metric space.

Proof. The four first items are simply consequences of Proposition 8.2.1 and of some results
concerning auxiliary spaces (see Section 8.1). Let us prove the last item.

It is clear that the addition is continuous in (£¥,4) thanks to Item (a) of Proposition 8.1.6
and the second item of this proposition. Let us show that the scalar multiplication (6,¢) €
C x LY — 0 € LV is also continuous in (£Y,4). Let (6;)en be a sequence of C which converges
to 6 and let (Z());c be a sequence of £ which converges to @in (£7,0). If (6,¢1),en converges
to 6 in (A(a,v(a) +e), gayy(a)ﬁ) for all @ € R and all € > 0, we have the conclusion thanks to
Item (d) of this proposition. Let us fix & € R and £ > 0. Then, there exist m,n € N such that

Em <&, ap>a and v(a,)+en <v(a)+e.

n)
Using Ttem (d) of this proposition, the sequence (¢(®),cy converges to & in (A(m,, v(am) +
Em)s gan,y(an)%m). By Proposition 8.1.3, ¢ € Z(a, v(a)+¢). Consequently, (6;¢1));en converges
to 0¢ in (A(a,v(a) + €),0a,0(a)+e) by Lemma 8.1.8. Thus, (L”,dq.) is a topological metric
space.
Moreover, (LY, ga,e) is complete thanks to Items (d) and (c¢) of this proposition and Item (e)

of Proposition 8.1.6. |
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In fact, all the distances ga,S where a and € are sequences as in Definition 8.2.2 define the
same topology on £”. We even have the following more general result.

Proposition 8.2.4. If 51 and 52 define complete topologies on L£L¥ which are stronger than the
pointwise topology, then these topologies are equivalent.

Proof. 1t is a direct consequence of the closed graph theorem. [ ]

With the two previous propositions, the choice of sequences «¢ and € of Definition 8.2.2 has
thus no importance for the topology defined on LY from the distance gms. Therefore, in the
following, we write § this distance on L”, independently of these o and €.

Remark 8.2.5. Combining Proposition 8.2.3 (Item (d)) and Proposition 8.1.6 (Item (b)), the
space (LY, g) has a stronger topology than the uniform topology. Moreover, the inclusion £V C °
is continuous.

8.3 Compact Subsets of L£”

Let us continue with the characterization of compact subsets of (£, g) This characterization
will only holds if api, > 0. It is particularly useful to prove the convergence of sequences in L.
For m,n € N, let Cy, , and C}, ,, be positive or null constants and let us define

Koy = {Ee Q:#{k €{0,...,2 — 1} 1 djp > Cpppy 2779} < O, 2O FEm)T v € NO}

(by taking the usual sequences of Proposition 8.1.3 and Definition 8.2.2). We write

K= ) Knn (8.2)

meNneN

Let us note that IN(mn is a bounded set of (A(au, v(an)+em), gam,,(an)%m) by Proposition 8.1.6
(Item (d)) and that K C £” by Proposition 8.1.3.
Here are some useful observations to obtain the characterization of compact subsets of (L”, §).

Lemma 8.3.1. (a) From any sequence of K, we can extract a subsequence which converges

pointwise.

(b) Let a > 0 and let B be a bounded set of (¢*,|| - ||co). If (€®),cn is a sequence of B which

converges pointwise to ¢, then it converges uniformly to C.

(c) Let ag € R and By > 0 and let B be a bounded set of (;{(QO;/BO)agao,ﬁo)- If (E'(l) leN IS a

sequence of B which converges uniformly to ¢, then it converges to ¢ in (A(w, 3),0q,3) for
all o and B such that a < ag and 8 > [y.

(d) Let ag > 0 and let B be a bounded set of (c®0, || ||c0 ). If (€®))1en is a sequence of B which

converges uniformly to ¢, then it converges to € in (c®, || - ||ce) for all a < ay.

Proof. (a) Let (E(l))leN be a sequence of K. There exists n € N such that a;, < qu, and then
we have
! _
] < 27
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for all I € N and (j,k) € A. This means that the sequence (¢());cy is pointwise bounded in C
and we can thus extract a pointwise convergent subsequence.
(b) Since B is a bounded set of (¢, || - ||ce ), there exists r > 0 such that

BCB :={adeQ:2% sup |ay| <rV(j,k) €A
NCA(j,k)

and B’ is closed for the uniform and then the pointwise convergence by Proposition 8.1.6
(Ttem (d)). Moreover, B’ is a bounded set of (¢, || - ||c). So, @€ B’ C ¢* and (€ — &)jen
is bounded in (¢%,| - ||co). Consequently, using again Proposition 8.1.6 (Item (d)), there exists
R > 0 such that |c§l3C —¢jk| < R27% for all (j,k) € A and all [ € N. Let n > 0. On the one
hand, since o > 0, there exists J € Ny such that R27% < 5 for every j > J and then

!
|C§-,3c —cikl <

forall ] € N, j > J and k € {0,...,2/ —1}. On the other hand, thanks to the pointwise
convergence, there exists L € N (which only depends on 7)) such that

l
e} = ejul <m
forall i >L,j€{0,...,J —1} and k € {0,...,27 — 1}. Thus, for all [ > L, we obtain

l
sup |c§;€ — ¢kl <1
(:k)eA

(c) Since the sequence (%) — &);ey is bounded in (Z(ao, Bo)s gomﬁo) (by the same argument
as in the previous item of this proposition), there exist R, R’ > 0 such that

#ke{0,...,27 —1}: sup |c§\l/) —cy| > R27907 § < R/oPoi
N CA(:k)
for all j € Ny and | € N, using Proposition 8.1.6 (Ttem (d)). Let n > 0. Since a < ap and
> fo, there exists J € Ny such that R27%J < 2% an 0j <  for every j > .J an
B > fo, th ists .J € N such that R27%7 < 27%7 and R/2°07 < 1257 f J and
then

#{ke{0,...,27 —1}: sup |c§\l/) — x| =027 b <28
N CA(:k)

for all [ € N and j > J. Moreover, thanks to the uniform convergence, there exists L € N (which
only depends on 7)) such that

sup |Cg\l,) —cy| <n27
N CA(5k)

forall i >L,j€{0,...,J —1} and k € {0,...,27 — 1}, and then
NCAG,k)

#{kE{O,...,2j—1}: sup |Cg\l,)—C)\/| 21720‘J} =0<n2%

forall I > L and j € {0,...,J — 1}. Thus, we have ga,g(é'(l),é') < 2n for every | > L.
(d) The proof of this item is similar to the two previous ones. |
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Proposition 8.3.2. Let us assume that o, > 0. A set is a compact subset of (E”,g) if and
only if it is closed in (L£", ) and included in some K.

Proof. Since any compact set of a metric space is closed and bounded, the condition is obviously
necessary.

To prove that the condition is also sufficient, it suffices to show that K is compact. Let
(20)en be a sequence of K. By Lemma 8.3.1 (Item (a)), we can extract a subsequence which
converges pointwise. Let us note (¢ (p(l)))leN this subsequence and ¢ its pointwise limit. Let us
show that (&®1)),cy converges to &in (L£¥,9).

As amin > 0, there exists ng € N such that 0 < ay, < amin. By construction, ¢r) ¢ f(m,no
forall/ € Nand m € N and we know that IN(mmO is bounded in (¢*"0, ||-||,ano ) by Proposition 8.1.6
(Item (d)). Using Lemma 8.3.1 (Item (b)), we get that (¢P(1)),cy converges uniformly to .

Let « € R and € > 0. If v(a) € R, there exist n,m € N such that
Em <&, ap>a and v(a,)+en <v(a)+e.

Lemma 8.3.1 (Item (c)) implies that (®1)),cy converges to & in (A(a, v(a) + 6),50{7,,(04)%).
If v(a) = —oo, there exists n € N such that a,, > a and v(a,) = —oco. By Lemma 8.3.1
(Ttem (d)), (?P®));en converges to & in (A(a, v(a) + €); 0a,u(a)+e). Proposition 8.2.3 gives the

conclusion. ]
In fact, we also have obtained within this last proof the following result.

Corollary 8.3.3. Every sequence of K which converges pointwise converges also in (LY ,g) to
an element of K .

Remark 8.3.4. The characterization is not longer valid in the case api, = 0. Indeed, let v be
the admissible profile defined by

y()‘— —0 if a<0
YTV oa>o0

as in Expression (7.3). In this case, we know that £” = ¢ (see Subsection 7.3.3 in the previous
chapter). If we assume that we have this characterization of subset compacts of £, then the
(closed) unit ball of ¢® would be compact (it is easy to show that it is included in some K) and
therefore the space would be finite dimensional. This leads to a contradiction.

8.4 Separability

As for the characterization of the compact subsets of £”, we have to consider separately the
two following cases: amin > 0 and apiy, = 0. Let us start with a first difference described in the

following lemma.

Lemma 8.4.1. If ¢ € Q, let (¢")nen, be the sequence of Q) defined by

(8.3)

N cjr ifj < Nandke{0,...,27 — 1}
C; = .
Gk 0 ifj>Nandke{0,...,2—1}

for every N € Ng.
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(a) If amin > 0, () nen, converges to @ in (LY, 8) for all ¢ € LY.

(b) If amin = 0, there exists & € £V such that (EN)nen, does not converge to & in (L, 9).
Proof. (a) Since the characterization of compacts of £¥ (when au,i, > 0) is similar to the one
in 8 case, the proof of this first item only needs some adaptations of Lemma 6.3 in [8] with
wavelet leaders.

Since ¢ € LY, ¢ € Z(an,y(an) + &) for all myn € N by Proposition 8.1.3. Then, for all
m,n € N, there exist Cy, 5, C}, ,, > 0 such that

#{ke{0,...,27 =1} 1 djp > Cppp2 ™} < C;n7n2<”<%>+€m>j

for all j € Ny and so, @€ K where K is defined as in Expression (8.2). For all N € Ny, we also
have ¢V € K because dfk < dj for all (j,k) € A by definition of ¢%V. Moreover, (¢VV)nen,
converges pointwise to ¢. Corollary 8.3.3 gives the conclusion.

(b) Let us now suppose that apy;, = 0 and let us consider the sequence ¢ defined by

1 ifk=0
Cik = . .
ik 0 ifke{l,...,2 —1}
for each scale j € Ng. We have d; 1, = ¢;, for all (j, k) € A. Using the assumption aupmin = 0, it is
easy to check that & belongs to £¥. By contradiction, let us assume that (¢V)yen, converges to

cin (LY, g) We know that the space (LY, g) has a stronger topology than the uniform topology
(see Remark 8.2.5). However, for N € Ny, we have

N
sup |c¢jp — Cj7k| =1,
(7,k)EA

hence a contradiction. [ |
Let us begin by studying the separability of £¥ with aupi, > 0.

Lemma 8.4.2. Let B be a pointwise bounded set of sequences and let us assume that there
exists N € Ny such that

Vée B, ¥Yj > N, Vk €{0,...,27 — 1}, ¢;j = 0.
If anin > 0, then B is included in a compact subset of LY.
Proof. Since B is a pointwise bounded set, there exists a constant C' > 0 such that

sup sup |ej| <C
j€{0,...,N} ke{0,...,29 -1}

for all ¢ € B. Let ¢ € B. Then, ¢;; = 0 and therefore d;;, = 0 for all j > N and k €
{0,...,27 — 1}. Moreover, for all j € {0,...,N}, k€ {0,...,2/ — 1} and n € N, we have

20‘"jdj7k < 2% gup sup lcjr | < 2 < O sup sup 90’
J'€{0,....N} kre{0,...,24" -1} 7'€{0,....N} k’e{0,...,29" -1}
Setting Cp, n :=C  sup sup 203" for m,n € N, we so obtain

j’€{07...,N} k’E{O,...,2J'/71}
#{ke€{0,...,27 =1} 1 djp > 27 Chp} = 0 < O, 20O Fem)i

for all j € Ny and all constant C! > 0. Consequently, ¢ € K where K is defined as in

m,n

Expression (8.2). ]
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Proposition 8.4.3. If ayi, > 0, the metric space (LY, g) is separable.

Proof. Let us prove that the set
U .= {EG Q:¢jr€Q+iQ and IN € Ny such that ¢;, =0Vj > N, k€ {0,...,2j — 1}}

is dense in (E”,g). Let ¢ € £Y; by Lemma 8.4.1, the sequence (¢%V)yen, defined in Expres-
sion (8.3) converges to Zin (£¥,4). Using the density of Q+i Q in C, we can find for all N € Ny,
a sequence (cj}él))leN of U which converges pointwise to &V. By Lemma 8.4.2 and Corollary 8.3.3,
the convergence also holds in (LY, g), hence the conclusion. |

Let us consider now the case where the admissible profile v is such that oy = 0. The
previous result is no longer valid. Indeed, with the admissible profile considered in Remark 8.3.4,
the space £V is ¥ which is not separable. More generally, we have the following property.

Proposition 8.4.4. If ay,i, = 0, the metric space (LY, g) is not separable.

Proof. Let us consider the uncountable set A of sequences ¢ of ) such that for each scale j € Ny,
¢jo € {0,1} and the other coefficients are equal to 0. Using the hypothesis amin = 0, we easily
prove that A is a subset of £”. Indeed, let ¢€ Aandlet « € R, e >0 and C > 0. If & < 0,
there exists J € Ng such that C27%7 > 1 for all j > J and we then have

dijp<1<C27%
for all j > J and k € {0,...,2/ —1}. If a > 0, we have
#E;(C,a) (@) <1 < 2W(@)+2)

for all j € Ny. Thus, &€ LY. Moreover, we clearly have ||¢— ¢’||,0 = 1 for all distinct elements &
and &’ of A.

Let D be a dense subset of (£¥,4). For every @ € A, there exists a sequence (Z0™),cy of

elements of D which converges in (£, d) to ¢ € LY. Moreover, the convergence also holds in ¢

by Remark 8.2.5. Consequently, there exists M € N such that
1

o < 3

—

e —
for all m > M. In particular, there exists @ € D such that

oL 1
I€—dllo < 7

Since [|¢ — é'||,0 = 1 for two distinct elements ¢ and ¢’ of A | D must contain at least as many
elements as A and cannot be countable. |

8.5 Comparison with the Topology of §”

In the end of the previous chapter, we have studied the inclusions between £ and S”. Let
us recall that £ C S¥ for all admissible profile v. Let us now compare the topologies of £
and §”. We have the following proposition; its proof is straightforward.
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Proposition 8.5.1. (a) If « € R and 8 € {—o0} U [0, +0o0[, then we have

Aa,B) € A(a, ) and dap < gaﬁ.

(b) If a sequence converges in (A(w, ), ga,g), it converges in (A(«, 3),0q,8) to the same limit. If
a sequence is a Cauchy sequence in (A(w, §8),0q,8), it is a Cauchy sequence in (A(c, ), 0q,8)-

(c) The space (/T(a,ﬁ),gaﬂ) has a stronger topology than the topology induced by the dis-
tance 0q,3-

(d) The space (L", S) has a stronger topology than the topology induced by the distance 0.

Proof. Let us prove the first item. Let ¢ € g(a,ﬁ). By definition, there exist C,C" > 0 such
that
#{k€{0,...,27 — 1} :d;), > 0279} < 2%

for all j € Ny. Since |¢jx| < djy for all (j,k) € A, we directly have ¢ € A(o, ). The same
argument shows that J, 5(¢,0) < 04, 5(,0).
The other items result from the first item of this proposition. [ |

The topology induced by § on L£¥ is not equivalent to the one induced by 5. Tt is the ob ject
of this last result.

Proposition 8.5.2. If LY is strictly included in 8¥, then L¥ is not closed in 8.

Proof. Let ¢ € 8”\ LY and let (¢V)yen, be the sequence defined from & as in Expression (8.3).
For all N € Ny, ¢V belongs to £” and then to S” because it has only a finite number of non
zero coefficients. The sequence (¢V)yen, converges to ¢ for the topology of S” (see Lemma 6.3
in [8]). Since ¢ ¢ L”, we have the conclusion. ]
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