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Abstrat

There exist a lot of ontinuous nowhere di�erentiable funtions, but these funtions do

not have the same irregularity. Hölder ontinuity, and more preisely Hölder exponent, allow

to quantify this irregularity. If the Hölder exponent of a funtion takes several values, the

funtion is said multifratal. In the �rst part of this thesis, we study in details the regularity

and the multifratality of some funtions: the Darboux funtion, the Cantor bijetion and a

generalization of the Riemann funtion.

The theory of wavelets notably provides a tool to investigate the Hölder ontinuity of a

funtion. Wavelets also take part in other ontexts. In the seond part of this thesis, we

onsider a nonstationary version of the lassial theory of wavelets. More preisely, we study

the nonstationary orthonormal bases of wavelets and their onstrution from a nonstationary

multiresolution analysis. We also present the nonstationary ontinuous wavelet transform.

For some irregular funtions, it is di�ult to determine its Hölder exponent at eah point.

In order to get some information about this one, new funtion spaes based on wavelet leaders

have been introdued. In the third and last part of this thesis, we present these new spaes and

their �rst properties. We also de�ne a natural topology on them and we study some properties.
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Résumé

Il existe beauoup de fontions ontinues et nulle part dérivables, mais es fontions n'ont pas

toutes la même irrégularité. La ontinuité höldérienne et plus préisément l'exposant de Hölder

permettent de quanti�er ette irrégularité. Lorsque l'exposant de Hölder d'une fontion prend

plusieurs valeurs, ette fontion est dite multifratale. Dans la première partie de ette thèse,

nous étudions en détail la régularité et la multifratalité de quelques fontions : la fontion de

Darboux, la bijetion de Cantor et une généralisation de la fontion de Riemann.

La théorie des ondelettes fournit notamment un outil pour examiner la ontinuité höldéri-

enne d'une fontion. Les ondelettes interviennent également dans d'autres ontextes. Dans

la deuxième partie de ette thèse, nous onsidérons une version non-stationnaire de la théorie

lassique des ondelettes. Plus préisément, nous étudions les bases orthonormées d'ondelettes

non-stationnaires et leur onstrution à partir d'une analyse multirésolution non-stationnaire.

Nous présentons aussi la transformée ontinue en ondelette non-stationnaire.

Pour ertaines fontions irrégulières, il est di�ile de déterminer son exposant de Hölder en

haque point. A�n d'obtenir tout de même des informations sur elui-i, de nouveaux espaes de

fontions basés sur les oe�ients d'ondelettes dominants ont été introduits. Dans la troisième et

dernière partie de ette thèse, nous présentons es nouveaux espaes et leurs premières propriétés.

Nous dé�nissons une topologie naturelle sur eux-i et nous en étudions quelques propriétés.
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Introdution

Continuous but nowhere di�erentiable funtions? Mathematiians of the early 19

th

entury

thought they did not exist. Moreover, Ampère [2℄ tried to prove that any ontinuous funtion

is di�erentiable, exept possibly at a �nite number of points. In 1872, Weierstrass [121℄

showed that

x 7→
+∞∑

n=0

an cos(bnπx)

where a ∈ (0, 1) and b is an odd integer suh that ab > 1 + 3π/2 is a ontinuous nowhere di�er-

entiable funtion. A lot of suh funtions were then onstruted (see [114℄ for some examples).

The mathematial ommunity was extremely astonished about this disovery (see Setions 5.7

and 6.8 in [77℄). Some mathematiians, as Hermite and Poinaré, even rejeted the relevane

of suh funtions, whih they alled �monsters� (see page 132 in [102℄).

Suh funtions are irregular, but they an behave in many di�erent ways. Hölder ontinuity,

and more preisely Hölder exponent, allows to quantify the irregularity (see [116℄). This notion

provides a tool to analyse whether some regularity ours in the irregularity of a funtion. On

the one hand, the Hölder exponent of a funtion an be the same everywhere, whih means that

this funtion has the same irregularity at every point. On the other hand, the Hölder exponent

of a funtion an also be irregular. In this ase, the funtion is said to be multifratal and its

behaviour is ompletely errati.

Many mathematiians have been interested in the Hölder ontinuity and in the multifratality

of irregular funtions. From the Weierstrass funtion (see [49, 65, 121℄) to Eisenstein series

(see [100℄) reently, through the Takagi funtion (see [110, 113℄) and the Riemann funtion

(see [49,55,61℄), many other funtions have been investigated (see also [62℄ for other examples

and [70℄ for some spae-�lling maps).

A tool to study the Hölder ontinuity of a funtion is given by the theory of wavelets (see [33,

55, 59�61, 68, 92, 115℄). The behaviour of its wavelet oe�ients (that are its oe�ients in

an orthonormal basis of wavelets) or the behaviour of its ontinuous wavelet transform allows

to obtain its Hölder ontinuity. Atually, Hölder ontinuity an be ompletely haraterized by

wavelet oe�ients or by ontinuous wavelet transform. This tehnique established by Jaffard

and Meyer has already proven its worth in the study of the regularity of some funtions

(see [55,61,100℄ for some examples).

The theory of wavelets takes also part in other ontexts. In the nineties, the notion of �non-

stationarity� appeared in the lassial theory of orthonormal basis of wavelets (see [16,35,40,41,

98,119℄). In the nonstationary setting, orthonormal bases of wavelets using Exponential-Splines

have been obtained in [35℄. The problem of the onstrution of regular ompatly supported or-

thonormal bases of wavelets in the general ontext of Sobolev spaes have been studied in [15,16℄.

Moreover, in�nitely di�erentiable orthonormal bases of wavelets with ompat support have been

onsidered in [41℄.
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2 Introdution

Typially, an orthonormal basis of wavelets of L2(R) is an orthonormal basis of L2(R) of

type

2j/2ψ(2j · −k), j, k ∈ Z,

where ψ ∈ L2(R). The nonstationary version of this de�nition onsists in introduing a depen-

dene on the parameter j for the funtion ψ. More preisely, a nonstationary orthonormal basis

of wavelets of L2(R) is an orthonormal basis of L2(R) of type

2j/2ψ(j)(2j · −k), j, k ∈ Z,

where ψ(j) ∈ L2(R) for j ∈ Z.

As in the lassial ase, it is possible to onstrut suh a basis from a proedure alled

multiresolution analysis, with some adaptations to the nonstationary ase. A family of saling

funtions an lead to a nonstationary multiresolution analysis (see [16,35,98℄).

The present thesis is onerned with the Hölder ontinuity of funtions and the theory of

wavelets. This is the explanation of the title. It is mainly based on the papers [14,17,18,96,97℄.

It is divided into three parts.

Part I studies the Hölder ontinuity of several funtions. After some realls about pointwise

and uniform Hölder ontinuity in Chapter 1, we �rst determine the Hölder exponent of the

Darboux funtion. Chapter 2 fouses on a well-known spae-�lling funtion, alled Cantor's

bijetion. We explore the multifratal nature of this one-to-one orrespondene between the

unit segment [0, 1] and the unit square [0, 1]2. Moreover, in the appendix, we onstrut another

bijetion between [0, 1] and [0, 1]2 inspired by an idea of Cantor. Finally, in Chapter 4, we study

the uniform Hölder ontinuity of a generalization of the Riemann funtion. To do so, we use

the known haraterization of Hölder ontinuity with ontinuous wavelet transform formulated

in Chapter 3. We also analyse the behaviour of this generalized Riemann funtion aording to

its parameters.

Part II mainly fouses on the theory of wavelets. We investigate the lassial notions of

orthonormal basis of wavelets and of ontinuous wavelet transform in a nonstationary setting.

Firstly, in Chapter 5, we onsider the onstrution of a nonstationary orthonormal basis of

wavelets in L2(R) from a nonstationary multiresolution analysis. Under some additional asymp-

toti assumption, we present a neessary and su�ient ondition about suh a proedure. We

notably illustrate the results on the example of Exponential-Splines. Seondly, we propose

a nonstationary version of the ontinuous wavelet transform of a square integrable funtion in

Chapter 6. After having given some examples, we study the reonstrution of a square integrable

funtion from its nonstationary ontinuous wavelet transform.

Part III studies new spaes �rst introdued in the ontext of multifratal analysis. These

spaes provide a tool to investigate the regularity (and more preisely some information about

the Hölder exponent) of a funtion from its wavelet leaders, that is to say from quantities using

the oe�ients of the funtion in an orthonormal basis of wavelets. Sine these new spaes do

not depend on the hosen orthonormal basis of wavelets, they an be onsidered as sequene

spaes. We present these new sequene spaes and their �rst properties in Chapter 7. Then,

in Chapter 8, we study them from the funtional analysis point of view. We de�ne a natural

topology on these spaes and study some of its properties.



Introdution 3

Let us end this introdution with some explanations about this thesis. Exept for the begin-

ning of Chapter 1, we have inluded the proofs of new results and the proofs of known results

for whih we have not found a proof in the literature. If a result is given without a proof, at

least one referene is mentioned to �nd the result and a proof of the latter.

The notations of this thesis are lassial. The symbol N denotes the set of stritly positive

natural numbers and N0 := N∪{0}. Both f̂ and F−f designate the (negative) Fourier transform

of the funtion f . For f ∈ L1(R), we have

f̂(ξ) = F−
ξ f =

∫

R

e−ixξf(x) dx, ξ ∈ R .

A list of symbols lassi�ed by setion is given at the end of this thesis.





Part I

Hölder Continuity of

Partiular Funtions
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Chapter 1

Continuous Nowhere Di�erentiable

Funtions and Hölder Continuity

There exist a lot of funtions whih are ontinuous, but nowhere di�erentiable (see [4,56,91℄).

The most famous example of suh funtions is ertainly the Weierstrass funtion W de�ned by

W (x) :=

+∞∑

n=0

an cos(bnπx), x ∈ R (1.1)

where a ∈ (0, 1) and b > 0 with ab > 1 (see [49,121℄). Another well-known ontinuous nowhere

di�erentiable funtion is the Takagi funtion T de�ned by

T (x) :=
+∞∑

n=0

1

2n
dist(2nx,Z), x ∈ R

(see [113℄). The graphis of W and T are represented in Figure 1.1. Amazingly, W and T are

not the �rst onstrutions of ontinuous nowhere di�erentiable funtions. In fat, Bolzano and

also Cellérier earlier built suh a funtion, without publishing their disovery (see [57℄ for

some historial information).

The Hölder spaes allow to de�ne a notion of smoothness or regularity for a funtion and, in

partiular, they roughly provide an �intermediate level� between ontinuity and di�erentiability.

In this hapter, we �rst give the de�nition of Hölder spaes and Hölder ontinuity in this ontext.

The general de�nition is also onsidered in the pointwise ase. We then introdue the notion of

Hölder exponent. We �nish with the Hölder ontinuity of a detailed �rst example: the Darboux

funtion.

1.1 Hölder Continuity and Hölder Spaes

1.1.1 Pointwise Hölder Continuity

Let us begin with the de�nition of pointwise Hölder ontinuity (see [33,65,88,95,115℄).

De�nition 1.1.1. Let α ∈ (0, 1] and x0 ∈ R. The funtion f is Hölder ontinuous of order α

at x0 if there exist C, δ > 0 suh that

|f(x)− f(x0)| ≤ C|x− x0|α (1.2)

for all x ∈ (x0 − δ, x0 + δ). We denote by Λα(x0) the spae of Hölder ontinuous funtions of

order α at x0 and it is alled Hölder spae of order α at x0.

7
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Figure 1.1. Graphial representations of W (with a = 1/2 and b = 4) and of T .



1.1. Hölder Continuity and Hölder Spaes 9

The de�nition implies that f is bounded in a neighbourhood of x0 if f ∈ Λα(x0) for some

α ∈ (0, 1]. Inidentally, if we onsider the ase α = 0, Λ0(x0) would simply be the spae of

bounded funtions in a neighbourhood of x0. The ase α = 1 orresponds to the spae of

Lipshitz funtions at x0.

Hölder spaes are learly embedded: if α, β ∈ (0, 1] suh that α > β, we have Λα(x0) ⊂
Λβ(x0) for all x0 ∈ R. This property will be proved in a more general ase (see Proposi-

tion 1.1.12).

The following proposition investigates the links between di�erentiability, Hölder ontinuity

and ontinuity at a point.

Proposition 1.1.2. Let x0 ∈ R.

(a) If f ∈ Λα(x0) for some α ∈ (0, 1], then f is ontinuous at x0.

(b) If f is di�erentiable at x0, then f ∈ Λα(x0) for all α ∈ (0, 1].

Proof. The �rst item is evident and let us prove the seond item. By hypothesis, there exists

δ ∈ (0, 1) suh that ∣∣∣∣(Df)(x0)−
f(x)− f(x0)

x− x0

∣∣∣∣ ≤ 1

and then

|f(x)− f(x0)| ≤ (1 + |(Df)(x0)|) |x− x0|

for all x ∈ (x0 − δ, x0 + δ). So f ∈ Λ1(x0), whih su�es using the embedding of pointwise

Hölder spaes. �

The onverse of eah item of the previous proposition is false. On the one hand, the funtion

x 7→ −χ(0,1)(x)/ log(x) is ontinuous at 0, but there exists no α ∈ (0, 1] suh that it belongs

to Λα(0). On the other hand, the funtion x 7→ |x| belongs to Λα(0) for all α ∈ (0, 1], but is not

di�erentiable at 0.

1.1.2 Uniform Hölder Continuity

Let us go on with the uniform Hölder ontinuity (see [33,80,92,95,115℄). Before that, let

us make the following remark about De�nition 1.1.1.

Remark 1.1.3. If f is moreover bounded on R in De�nition 1.1.1, Condition (1.2) holds every-

where. Indeed, for x ∈ R suh that |x− x0| ≥ δ, we have

|f(x)− f(x0)| ≤ 2 sup
y∈R

|f(y)| ≤ 2

δα
sup
y∈R

|f(y)||x− x0|α.

Then, the bounded funtion f belongs to Λα(x0) if and only if there exists C > 0 suh that

|f(x)− f(x0)| ≤ C|x− x0|α

for all x ∈ R.
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De�nition 1.1.4. Let α ∈ (0, 1] and f be a bounded funtion on R. The funtion f is uniformly

Hölder ontinuous of order α (on R) if there exists C > 0 suh that

|f(x)− f(x0)| ≤ C|x− x0|α

for all x, x0 ∈ R. We denote by Λα(R) the spae of uniformly Hölder ontinuous funtions of

order α (on R) and it is alled uniform Hölder spae of order α (on R).

In omparison with De�nition 1.1.1, the onstant C does not depend here on x0. If we

onsider the ase α = 0, Λ0(R) would be the spae of bounded funtions. The ase α = 1

orresponds to the spae of uniformly Lipshitz funtions.

Remark 1.1.5. If f is uniformly Hölder ontinuous (of order α ∈ (0, 1]) on R, then f is learly

Hölder ontinuous (of order α) at eah point in R. The reverse is false. For example, the

funtion f de�ned by

f(x) :=





x sin

(
1

x

)
if x 6= 0

0 if x = 0

is Hölder ontinuous of order 1 at eah point in R, but is not uniformly Hölder ontinuous of

order 1. Indeed, it is easy to hek that f ∈ Λ1(0). If x0 > 0, there exists δ > 0 suh that

x0 − δ > 0 and

|f(x)− f(x0)| ≤ |x− x0|
∣∣∣∣sin

(
1

x0

)∣∣∣∣+ |x|
∣∣∣∣sin

(
1

x

)
− sin

(
1

x0

)∣∣∣∣

≤ |x− x0|+ |x|
∣∣∣∣
∫ x

x0

−1

t2
cos

(
1

t

)
dt

∣∣∣∣

≤ |x− x0|+ |x|
∣∣∣∣
1

x0
− 1

x

∣∣∣∣

≤
(
1 +

1

|x0|

)
|x− x0|

for all x ∈ (x0 − δ, x0 + δ). The ase x0 < 0 is similar. Then, f ∈ Λ1(x0) for all x0 ∈ R. Let us

now show that f /∈ Λ1(R). Let C > 0 and let us set

xn :=
1

π(n + 1
2 )
, n ∈ N .

There exists N ∈ N suh that 2(2n + 1) > C for all n ≥ N . For suh n, we have

|f(x2n)− f(x2n+1)| =
2

π

2n+ 1

(2n + 1
2)(2n + 3

2)
> C|x2n − x2n+1|,

hene the onlusion.

Uniform Hölder spaes are also embedded, and this omes from the hypothesis of bounded-

ness in the de�nition of uniform Hölder ontinuity. This is the objet of the following proposition.

Proposition 1.1.6. If α, β ∈ (0, 1] suh that α > β, we have Λα(R) ⊂ Λβ(R).
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Proof. Let f ∈ Λα(R). By hypothesis, there exists C > 0 suh that

|f(x)− f(x0)| ≤ C|x− x0|α

for all x, x0 ∈ R. If |x− x0| ≤ 1, we have

|f(x)− f(x0)| ≤ C|x− x0|β

and if |x− x0| > 1, we have

|f(x)− f(x0)| ≤ 2 sup
y∈R

|f(y)| |x− x0|β

beause f is bounded. With C ′ := max{C, 2 supy∈R |f(y)|}, we thus have

|f(x)− f(x0)| ≤ C ′|x− x0|β

for all x, x0 ∈ R and f ∈ Λβ(R). �

Let us investigate the links between di�erentiability, uniform Hölder ontinuity and (uniform)

ontinuity.

Proposition 1.1.7. Let f be a bounded funtion.

(a) If f ∈ Λα(R) for some α ∈ (0, 1], then f is uniformly ontinuous (and so ontinuous) on R.

(b) If f is di�erentiable on R and if Df is bounded, then f ∈ Λα(R) for all α ∈ (0, 1].

Proof. (a) By hypothesis, there exists C > 0 suh that

|f(x)− f(x0)| ≤ C|x− x0|α

for all x, x0 ∈ R. Let ε > 0 and let η := (ε/C)1/α. We have |f(x)− f(x0)| ≤ ε for all x, x0 ∈ R

suh that |x− x0| ≤ η and so, f is uniformly ontinuous on R.

(b) By Proposition 1.1.6, it su�es to show that f ∈ Λ1(R). For all x, x0 ∈ R, we have

|f(x)− f(x0)| =
∣∣∣∣
∫ x

x0

Df(t) dt

∣∣∣∣ ≤ sup
t∈R

|Df(t)| |x− x0|

beause Df is bounded. Hene the onlusion. �

Remark 1.1.8. The ondition �Df is bounded� is also neessary. More preisely, if f is di�er-

entiable and uniformly Hölder of order 1, then Df is bounded. Indeed, there exists C > 0 suh

that ∣∣∣∣
f(x)− f(x0)

x− x0

∣∣∣∣ ≤ C

for all x, x0 ∈ R with x 6= x0 and taking the limit for x → x0, we have |Df(x0)| ≤ C for all

x0 ∈ R.
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1.1.3 Extension

Let us now onsider Hölder ontinuity of order stritly bigger than 1. Before that, let us

make the following remark.

Remark 1.1.9. Let α > 1 and f be a funtion de�ned on R. If there exists C > 0 suh that

|f(x)− f(x0)| ≤ C|x− x0|α

for all x, x0 ∈ R, then f is onstant on R. Indeed, for x, x0 ∈ R with x 6= x0, we have

|f(x)− f(x0)|
|x− x0|

≤ C|x− x0|α−1.

Consequently, f is di�erentiable and Df = 0 on R, hene the onlusion.

Let us give the general de�nition of Hölder ontinuity (see [65,95,115℄).

De�nition 1.1.10. Let α > 0 and x0 ∈ R. The funtion f is Hölder ontinuous of order α

at x0 if there exist C, δ > 0 and a polynomial P of degree stritly smaller than α suh that

|f(x)− P (x− x0)| ≤ C|x− x0|α (1.3)

for all x ∈ (x0 − δ, x0 + δ). We still denote by Λα(x0) the set of Hölder ontinuous funtions of

order α at x0 and this set is alled Hölder spae of order α at x0.

De�nition 1.1.10 is learly a generalization of De�nition 1.1.1. Indeed, taking x = x0 in

Inequality (1.3), we diretly have P (0) = f(x0) and so, the independent term of P is f(x0).

Remark 1.1.11. In the following, we write the polynomial P of De�nition 1.1.10 as

P (x) :=

α∑

k=0

pkx
k, x ∈ R

where α is the greatest natural number stritly smaller than α and pk ∈ C for k ∈ {0, . . . , α}
(whih eventually depend on x0). We already know that p0 = f(x0). Moreover, P is unique.

To show that, let us assume that there exists a polynomial Q of degree stritly smaller than α

suh that

|f(x)−Q(x− x0)| ≤ C|x− x0|α

for all x ∈ (x0 − δ, x0 + δ). Let us write

Q(x) :=

α∑

k=0

qkx
k, x ∈ R

with qk ∈ C for k ∈ {0, . . . , α}. For x ∈ (x0 − δ, x0 + δ), we have

|P (x− x0)−Q(x− x0)| ≤ 2C|x− x0|α.

Taking x = x0, we diretly have q0 = Q(0) = P (0) = p0. For x 6= x0, we �rst have
∣∣∣∣∣

α∑

k=1

(pk − qk)(x− x0)
k−1

∣∣∣∣∣ =
∣∣∣∣
P (x− x0)−Q(x− x0)

x− x0

∣∣∣∣ ≤ 2C|x− x0|α−1

and then q1 = p1 taking the limit for x → x0. Step by step, we get qk = pk for k ∈ {2, . . . , α}
sine α < α.
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These pointwise Hölder spaes remain embedded.

Proposition 1.1.12. If α > β > 0, we have Λα(x0) ⊂ Λβ(x0) for all x0 ∈ R.

Proof. Let f ∈ Λα(x0). There then exist C, δ > 0 and a polynomial P of degree stritly smaller

than α suh that

|f(x)− P (x− x0)| ≤ C|x− x0|α

for all x ∈ (x0 − δ, x0 + δ). Let us set

P ′(x) :=

β∑

k=0

pkx
k, x ∈ R .

If β = α, it is evident sine P ′ = P on R and |x− x0|α ≤ |x− x0|β for all x ∈ (x0 − 1, x0 + 1).

If β > α, we have

|f(x)− P ′(x− x0)| ≤ |f(x)− P (x− x0)|+
α∑

k=β+1

|pk||x− x0|k ≤


C +

α∑

k=β+1

|pk|


 |x− x0|β

for x ∈ (x0 − δ′, x0 + δ′) with δ′ := min{δ, 1}. Hene f ∈ Λβ(x0). �

We know that if a funtion is di�erentiable at x0 ∈ R, then it belongs to Λα(x0) for α ∈ (0, 1].

The following result shows that a Hölder ontinuous funtion of order stritly bigger than 1 at x0
is di�erentiable at x0.

Proposition 1.1.13. Let x0 ∈ R. If f ∈ Λα(x0) for some α > 1, then f is di�erentiable at x0.

Proof. By hypothesis, there exist C, δ > 0 and a polynomial P of degree stritly smaller than α

suh that

|f(x)− P (x− x0)| ≤ C|x− x0|α

and then ∣∣∣∣
f(x)− f(x0)

x− x0
− p1

∣∣∣∣ ≤ C|x− x0|α−1 +
m∑

k=2

|pk||x− x0|k−1

for all x ∈ (x0 − δ, x0 + δ) \ {x0}, with the notations of Remark 1.1.11. Consequently, f is

di�erentiable at x0 and (Df)(x0) = p1. �

We know that p0 = f(x0). With the previous proof, we see that p1 = (Df)(x0). In fat, if

f ∈ Λα(x0) is α times ontinuously di�erentiable on a neighbourhood of x0, we an show that

the polynomial P in De�nition 1.1.10 is the Taylor's polynomial of degree α at x0. This is the

objet of the following proposition.

Proposition 1.1.14. Let x0 ∈ R, ε > 0, p ∈ N and α > 0.

(a) If f is p times ontinuously di�erentiable on (x0− ε, x0+ ε), then f ∈ Λp(x0). In partiular,

the polynomial in De�nition 1.1.10 is the Taylor's polynomial of degree p− 1 at x0.

(b) If f ∈ Λα(x0) is α times ontinuously di�erentiable on (x0 − ε, x0 + ε), then the polynomial

in De�nition 1.1.10 is the Taylor's polynomial of degree α at x0.
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Proof. (a) By Taylor's formula, for all x ∈ (x0− ε/2, x0+ ε/2), there exists θ between x and x0
suh that

f(x) =

p−1∑

k=0

(Dkf)(x0)

k!
(x− x0)

k +
(Dpf)(θ)

p!
(x− x0)

p

and then

∣∣∣∣∣f(x)−
p−1∑

k=0

(Dkf)(x0)

k!
(x− x0)

k

∣∣∣∣∣ ≤
1

p!
sup

y∈[x0−ε/2,x0+ε/2]
|(Dpf)(y)| |x− x0|p.

Consequently, f ∈ Λp(x0) and, by the uniqueness of polynomial in De�nition 1.1.10 (see Re-

mark 1.1.11), we have the onlusion.

(b) By hypothesis, there exist C, δ > 0 and a polynomial P of degree stritly smaller than α

suh that

|f(x)− P (x− x0)| ≤ C|x− x0|α

for all x ∈ (x0 − δ, x0 + δ). Let us use the same notations of Remark 1.1.11. By the previous

item and the uniqueness of polynomial in De�nition 1.1.10, we have

P (x− x0) = pα(x− x0)
α +

α−1∑

k=0

(Dkf)(x0)

k!
(x− x0)

k

for x ∈ R and it only remains to show that pα = (Dαf)(x0)/α!. Let us set η := min{ε, δ}. By

Taylor's formula, for all x ∈ (x0 − η, x0 + η) \ {x0}, there exists θ between x and x0 suh that

f(x)− P (x− x0) =

(
(Dαf)(θ)

α!
− pα

)
(x− x0)

α

and then ∣∣∣∣
(Dαf)(θ)

α!
− pα

∣∣∣∣ ≤ C|x− x0|α−α.

Sine α− α > 0, we have the onlusion. �

Uniform Hölder ontinuity an also be de�ned for order stritly greater than 1 (see [80,92,

95℄). We will not need it in this thesis and therefore, we will not onsider the general de�nition.

1.2 Hölder Exponent

The embedding of Hölder spaes allows to de�ne a notion of regularity, known as Hölder

exponent.

De�nition 1.2.1. The Hölder exponent of the funtion f at x0 ∈ R is

hf (x0) := sup{α > 0 : f ∈ Λα(x0)}.

Following this de�nition and the previous setion, if f is di�erentiable at x0, then hf (x0) ≥ 1.

Moreover, hf (x0) < 1 implies that f is not di�erentiable at x0 and hf (x0) > 1 implies that f is

di�erentiable at x0. However, there exist funtions whih are not di�erentiable at x0 and with

an Hölder exponent at x0 equal to 1; the funtion x 7→ |x| with the point 0 is a trivial example.



1.2. Hölder Exponent 15

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

y

x

y=R(x)

Figure 1.2. Graphial representation of R.

Let us note that the Hölder exponent of a funtion at a point an be in�nite. This is the ase

for in�nitely ontinuously di�erentiable funtions. By onvention, we set hf (x0) := 0 if there

exists no α > 0 suh that f ∈ Λα(x0).

Let us mention the ases of the Weierstrass funtion and the Takagi funtion. On the one

hand, W belongs to Λw(x) and hW (x) = w for all x ∈ R where w := − log(a)/ log(b) (see [65℄).

Let us remark that it shows diretly that W is a ontinuous and nowhere di�erentiable funtion

sine w < 1 (in fat, b > 1/a > 1 with the hypotheses on a and b, see Expression (1.1)). On the

other hand, T belongs to Λ1(x) and hT (x) = 1 for all x ∈ R (see [110℄). In omparison with W ,

it does not imply that T is nowhere di�erentiable. We an note that the Hölder exponent of W

or T remains the same at eah point. The Weierstrass funtion and the Takagi funtion are then

monofratal funtions.

De�nition 1.2.2. The funtion f is monofratal if there exists h > 0 suh that hf (x) = h for

all x ∈ R. Otherwise, f is multifratal.

Let us now onsider the Riemann funtion R de�ned by

R(x) :=

+∞∑

n=1

sin(πn2x)

n2
, x ∈ R .

The graphi of R is represented in Figure 1.2. We know that hR(0) = 1/2 and hR(1) = 3/2

(see [61, 68℄ for the omplete result) and so, R is a multifratal funtion. More information

about R is given in Chapter 4, where we study the uniform Hölder ontinuity of generalized

Riemann funtion.

The Hölder exponent of a ontinuous nowhere di�erentiable funtion is everywhere smaller

(or equal) than 1. Therefore, in this ontext, we onsider rather the restrited pointwise and

uniform Hölder exponent.
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De�nition 1.2.3. (a) The restrited Hölder exponent of the funtion f at x0 ∈ R is

Hf (x0) := sup{α ∈ (0, 1] : f ∈ Λα(x0)}.

(b) The restrited uniform Hölder exponent of the bounded funtion f (on R) is

Hf (R) := sup{α ∈ (0, 1] : f ∈ Λα(R)}.

We learly have hf (x0) ≥ Hf (x0) ≥ Hf (R) for all x0 ∈ R. Moreover, hf (x0) = Hf(x0) if

x0 ∈ R with hf (x0) ∈ (0, 1]. For example, HW (R) = − log(a)/ log(b) (see [65℄), HT (R) = 1

(see [110℄) and HR(R) = 1/2 (see [55℄).

A way to alulate restrited pointwise Hölder exponent is given by the following formula

(see [69℄ for example). Other methods to determine Hölder exponent will be exposed later.

Proposition 1.2.4. Let x0 ∈ R and let f ∈ Λα(x0) for some α ∈ (0, 1]. We have

Hf (x0) = lim inf
x→x0

log |f(x)− f(x0)|
log |x− x0|

. (1.4)

Proof. By hypothesis, there exist C > 0 and δ ∈ (0, 1) suh that

|f(x)− f(x0)| ≤ C|x− x0|α

and then

log |f(x)− f(x0)|
log |x− x0|

≥ log(C)

log |x− x0|
+ α

for all x ∈ (x0 − δ, x0 + δ) \ {x0}. Consequently, we have

inf
x∈(x0−δ,x0+δ)\{x0}

log |f(x)− f(x0)|
log |x− x0|

≥ log(C)

log(δ)
+ α

and

lim inf
x→x0

log |f(x)− f(x0)|
log |x− x0|

≥ Hf (x0).

Let us show that this inequality is an equality. By ontradition, let us assume that there exists

α ∈ (0, 1] suh that

lim inf
x→x0

log |f(x)− f(x0)|
log |x− x0|

> α > Hf (x0).

Then, there exists δ ∈ (0, 1) suh that

|f(x)− f(x0)| ≤ |x− x0|α

for all x ∈ (x0 − δ, x0 + δ) and so f ∈ Λα(x0). Hene a ontradition sine α > Hf (x0). �

Remark 1.2.5. Sine the funtion f de�ned by

f(x) :=





1

x
if x 6= 0

0 if x = 0

is not ontinuous at 0, there exists no α ∈ (0, 1] suh that f ∈ Λα(0) and then Hf (0) = 0 by

onvention. However, we have

lim inf
x→0

log |f(x)− f(0)|
log |x− 0| = −1

and thus, Equality (1.4) is not veri�ed.
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Figure 1.3. Graphial representation of D.

Let us end this hapter by the investigation of the Hölder ontinuity of the Darboux funtion.

In next hapters, we will study other funtions: the Cantor's bijetion is onsidered in Chapter 2

and the generalized Riemann funtion in Chapter 4. Other examples an be found in [62,71℄.

1.3 A First Detailed Example: the Darboux Funtion

Darboux [31,32℄ showed that the funtion D de�ned by

D(x) :=

+∞∑

n=0

sin((n+ 1)!x)

n!
, x ∈ R,

is ontinuous, but nowhere di�erentiable on R. The graphi of D is represented in Figure 1.3.

Let us prove that D and T have the same Hölder exponent, whih is everywhere equal to 1.

Proposition 1.3.1. We have D ∈ Λ1−2θ(R) for all θ ∈ (0, 1/2) and then HD(R) = 1. Moreover,

hD(x) = 1 for all x ∈ R and D is a monofratal funtion.

Proof. Let us �x x, x0 ∈ R. We have

|D(x)−D(x0)| ≤
N∑

n=0

(n+ 1)

∣∣∣∣
∫ x

x0

cos((n+ 1)!t) dt

∣∣∣∣ + 2

+∞∑

n=N+1

1

n!

≤ |x− x0|
N∑

n=0

(n+ 1) + 2

+∞∑

n=N+1

2−n+1

≤ 3N2|x− x0|+ 22−N
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for all N ∈ N. Let us also �x θ ∈ (0, 1/2). There exists δ ∈ (0, 1) suh that

2
− 1

|x−x0|
θ ≤ |x− x0|

for x, x0 ∈ R with 0 < |x − x0| ≤ δ beause t1/θ2−t → 0 if t → +∞. For suh x and x0, there

exists a unique N ∈ N suh that

N ≤ 1

|x− x0|θ
< N + 1

and then

22−N ≤ 8 2
− 1

|x−x0|
θ ≤ 8|x− x0|.

So, we obtain

|D(x)−D(x0)| ≤ 3|x− x0|1−2θ + 8|x− x0| ≤ |x− x0|1−2θ
(
3 + 8δ2θ

)

if |x− x0| ≤ δ. Moreover, sine D is bounded on R, we diretly have

|D(x)−D(x0)| ≤
(

2

δ1−2θ
sup
t∈R

|D(t)|
)
|x− x0|1−2θ

if |x− x0| > δ. Finally, we have shown that for all θ ∈ (0, 1/2), there exists C > 0 suh that

|D(x)−D(x0)| ≤ C|x− x0|1−2θ

for all x, x0 ∈ R. Consequently, D ∈ Λ1−2θ(R) for all θ ∈ (0, 1/2) and hene HD(R) = 1.

Sine D is nowhere di�erentiable on R, hD(x) ≤ 1 for all x ∈ R. We know that hD(x) ≥
HD(R) = 1 for all x ∈ R. Thus, we obtain hD(x) = 1 for all x ∈ R. �



Chapter 2

Cantor's Bijetion(s)

At the end of the 19

th

entury, Cantor spent a lot of his time on proving the existene of

one-to-one mappings between sets. In partiular, as borne out by the epistolary relation with

Dedekind (see [34,38℄), he was onerned about �nding suh a orrespondene between the set

of natural numbers and the set of positive real numbers. Even if, following Dedekind, this

work was only of theoretial interest, Cantor [24℄ showed in 1874 that there does not exist

any bijetion between the set of all natural numbers and the unit interval. Suh a result was

the preursor of the notion of ardinality and paved the way for the set theory.

One this problem solved, Cantor addressed to Dedekind a question that an be resumed

as follows: �Can a surfae (e.g. the unit square) be put into relation with a urve (e.g. the unit

segment)?� (see [34,38℄). At the time, suh a question was surprising and even onsidered as

an absurdity, beause mathematiians were onvined that two (independent) variables annot

be redued to one.

In 1877, Cantor [25℄ proved that there exists a one-to-one orrespondene between the

points of the unit line segment [0, 1] and the points of the unit square [0, 1]2. About this

disovery, he wrote to Dedekind (see [34,38,46,120℄): �Je le vois, mais je ne le rois pas !� (�I

see it, but I don't believe it!�). With suh a result, the notion of dimension had to be reonsidered

and this helped to larify the onfusion between dimension and ardinality.

The bijetion between [0, 1] and [0, 1]2 onstruted by Cantor is de�ned via ontinued

frations. It is therefore hallenging to have any intuition about its regularity. When looking at

its de�nition or at the graphial representation of eah omponent, it is not hard to onvine

oneself that the behaviour of suh a funtion is neessarily �errati�. It is well known that most

of the �historial� spae-�lling funtions are monofratal with Hölder exponent equal to 1/2

(see [70,71℄). Is it still the ase of Cantor's bijetion?

In this hapter, after some preliminaries about the spae of sequenes of natural numbers

and the theory of ontinued frations, we �rst reall the onstrution of Cantor's bijetion based

on ontinued frations and give a graphial representation of the two omponents of this map.

We then investigate the regularity (ontinuity and Hölder ontinuity) of this appliation. In

partiular, we explore its multifratal nature showing that its Hölder exponent lies in an interval

whih ontains 1/2. We �nish by an appendix with another onstrution of a bijetion between

[0, 1] and [0, 1]2, also based on a idea of Cantor. The results presented in this hapter are

mainly from [96,97℄.
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2.1 Some Preliminaries

In this hapter, we set E := [0, 1], D := E ∩Q and I := E \D.

2.1.1 The Spae of Sequenes of Natural Numbers

The spae of the (in�nite) sequenes of natural numbers is denoted by N := NN
. Sine this

spae is a ountable produt of metri spaes, we de�ne the usual distane d by

d(a, b) :=

∞∑

j=1

2−j
|aj − bj|

|aj − bj|+ 1

for two elements a := (aj)j∈N and b := (bj)j∈N of N . We will impliitly onsider that N is

equipped with this distane and that E, D and I are endowed with the Eulidean distane.

Remark 2.1.1. Considering a and b as two in�nite words on the alphabet N (see [85℄), we

an also use the following ultrametri distane on N : for a, b ∈ N , let a ∧ b denote the longest

ommon pre�x of a and b, so that the length |a∧ b| of this pre�x is equal to the lowest natural

number j suh that aj 6= bj minus 1. A distane between a and b is given by

d′(a, b) :=

{
0 if a = b

2−|a∧b|
if a 6= b

.

The distanes d et d′ are equivalent. More preisely, we have the following inequalities.

Proposition 2.1.2. We have

1

4
d′ ≤ d ≤ d′.

Proof. Let a, b ∈ N . If a = b, we learly have d(a, b) = d′(a, b). Let us assume that a 6= b

and let us set J := |a ∧ b|. We then have aj = bj for all j ∈ {1, . . . , J} and aJ+1 6= bJ+1. On

the one hand, we have

d(a, b) ≤
+∞∑

j=J+1

2−j = d′(a, b)

and on the other hand, we have

d(a, b) ≥ 2−(J+1) |aJ+1 − bJ+1|
1 + |aJ+1 − bJ+1|

≥ 1

4
d′(a, b).

�

For the sake of ompleteness, let us reall the following result (see [75℄).

Proposition 2.1.3. The spae (N , d) is a separable omplete metri spae.
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2.1.2 Continued Frations

Let us reall the basi fats about the ontinued frations (see [23,76,112℄). Here, we state

the results for E, but they an be easily extended to the whole real line.

If n ∈ N, let a := (aj)j∈{1,...,n} be a �nite sequene of stritly positive real numbers. Let us

set

[a1] :=
1

a1
and [a1, . . . , am] :=

1

a1 + [a2, . . . , am]
,

for any m ∈ {2, . . . , n}. In the following and unless stated otherwise (as in Proposition 2.1.14

for example), we will only onsider the ase where the elements of a are natural numbers.

De�nition 2.1.4. A ontinued fration is an expression of the form

[a1, a2, . . . , an] =
1

a1 +
1

a2 +
1

.

.

. +
1

an

where a1, a2, . . . , an ∈ N and n ∈ N.

Proposition 2.1.5. For any a ∈ Nn with n ∈ N, [a1, . . . , an] belongs to D \ {0}. Conversely,

for any x ∈ D \ {0}, there exist n ∈ N and a ∈ Nn suh that x = [a1, . . . , an].

The representation of a rational number as a ontinued fration is not unique, as shown by

the following remark. This will be used in the proof of Proposition 2.3.6.

Remark 2.1.6. If a ∈ Nn with n ∈ N is suh that an > 1, we have

[a1, . . . , an] = [a1, . . . , an − 1, 1].

Let us now de�ne the notion of onvergent. For all a ∈ Nn with n ∈ N and for eah integer

j ∈ {−1, . . . , n}, let us de�ne reursively the quantities pj(a) and qj(a) as follows: we set

p−1(a) := 1, q−1(a) := 0, p0(a) := 0, q0(a) := 1 and

{
pj(a) := ajpj−1(a) + pj−2(a)

qj(a) := ajqj−1(a) + qj−2(a)
(2.1)

for j ∈ N.

De�nition 2.1.7. For a ∈ Nn with n ∈ N and j ∈ {1, . . . , n}, the quotient pj(a)/qj(a) is alled
the onvergent of order j of a.

Convergents are losely related to the ontinued frations.

Proposition 2.1.8. Let a ∈ Nn with n ∈ N. For j ∈ {1, . . . , n}, we have

pj(a)

qj(a)
= [a1, . . . , aj ].
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Furthermore, we have

{
qj(a)pj−1(a)− pj(a)qj−1(a) = (−1)j for j ∈ {1, . . . , n}
qj(a)pj−2(a)− pj(a)qj−2(a) = (−1)j−1aj for j ∈ {2, . . . , n} .

As a onsequene, we also have





pj−1(a)

qj−1(a)
− pj(a)

qj(a)
=

(−1)j

qj(a)qj−1(a)
for j ∈ {2, . . . , n}

pj−2(a)

qj−2(a)
− pj(a)

qj(a)
=

(−1)j−1aj
qj(a)qj−2(a)

for j ∈ {3, . . . , n}
.

Of ourse, we an de�ne the numbers pj(a) and qj(a) for an element a of N . The onvergents

allow to introdue the notion of in�nite ontinued fration, thanks to the following result, whih

is simply a onsequene of the previous proposition and of the property:

lim
j→+∞

qj(a) = +∞. (2.2)

Corollary 2.1.9. For any a ∈ N , we have

p2(a)

q2(a)
<
p4(a)

q4(a)
< . . . <

p2j(a)

q2j(a)
<
p2j−1(a)

q2j−1(a)
< . . . <

p3(a)

q3(a)
<
p1(a)

q1(a)

for all j ∈ N. As a onsequene, the sequene

(
pj(a)

qj(a)

)

j∈N

onverges.

De�nition 2.1.10. If a ∈ N , we say that

[a1, . . .] := lim
n→+∞

[a1, . . . , an]

is an in�nite ontinued fration.

If a is an element of N or Nn with n ∈ N, we will sometimes simply write [a] instead of

[a1, . . .] or [a1, . . . , an] respetively.

We know that the rational numbers (of E \ {0}) an be represented by a �nite ontinued

fration. The following result onsiders the ase of irrational numbers (of E \ {0}).

Theorem 2.1.11. We have x ∈ I if and only if x is represented by an in�nite ontinued fration,

i.e. there exists a ∈ N suh that x = [a]. Moreover, this in�nite ontinued fration is unique.

If the real number x ∈ E \ {0} is equal to the ontinued fration [a], we say that [a] is a

ontinued fration orresponding to x. We know that if x ∈ I, then a ∈ N and [a] is the unique

ontinued fration orresponding to x. If x ∈ D \ {0}, then a ∈ Nn with n ∈ N and [a] is not

the single ontinued fration orresponding to x (see Remark 2.1.6).

Let us mention the quite partiular ase of ultimately periodi ontinued fration (see [23,

76℄).
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De�nition 2.1.12. A sequene a ∈ N is ultimately periodi of period k ∈ N if there exists

J ∈ N suh that aj+k = aj for any j ≥ J . In this ase, the orresponding ontinued fration [a]

is also alled ultimately periodi of period k.

The quadrati numbers (of E), i.e. the numbers (of E) whih are zeros of a polynomial with

integer oe�ients, are haraterized by their partiular orresponding ontinued frations. This

is the objet of the following result.

Theorem 2.1.13. An element of I is a quadrati number if and only if the orresponding

ontinued fration is ultimately periodi.

Let us now give a brief introdution of the notion of the metri theory of ontinued frations

(see [76,112℄). Let us �rst reall the following result.

Proposition 2.1.14. If x ∈ E \ {0} an be written as x = [a1, . . . , an, rn+1] with n ∈ N,

a1, . . . , an ∈ N and rn+1 ∈ [1,+∞), the following relation holds:

x =
pn(a)rn+1 + pn−1(a)

qn(a)rn+1 + qn−1(a)

where a := (aj)j∈{1,...,n}.

For any a ∈ N , we know that [a] orresponds to an irrational number x ∈ I. For eah j ∈ N,

the term aj an be so onsidered as a funtion of x: aj := aj(x). Let us �x j ∈ N and write

x = [a1, . . . , aj−1, rj ] with rj ∈ [1,+∞). It is easy to hek that, for any k ∈ N, we have

aj = k if and only if

1

k + 1
< rj ≤

1

k

if j is odd and

aj = k if and only if k ≤ rj < k + 1

if j is even. Thus, aj is a pieewise onstant funtion. Moreover, aj is non-inreasing if j is odd

and non-dereasing if j is even. The funtions a1 and a2 are represented in Figure 2.1.

Let x = [a] be an irrational number. For n ∈ N, we set

In(x) := {y ∈ I : ∃b ∈ N suh that y = [b] and bj = aj ∀j ∈ {1, . . . , n}} .

We will say that In(x) is an interval of rank n. For any n ∈ N, In+1(x) ⊂ In(x) ⊂ I and

⋂

n∈N

In(x) = {x}.

Indeed, using Proposition 2.1.14 with rn+1 = 1 and rn+1 → +∞, we get

In(x) =

(
pn(a)

qn(a)
,
pn(a) + pn−1(a)

qn(a) + qn−1(a)

)
∩ I,

if n is even (if n is odd, the endpoints of the interval are reversed). Every interval of rank n is

partitioned into a ountable in�nite number of intervals of rank n+1. We will denote by |In(x)|
the Lebesgue measure of In(x). Using Proposition 2.1.8, we have

|In(x)| =
1

qn(a)(qn(a) + qn−1(a))
. (2.3)

Thanks to Property (2.2), we diretly obtain

lim
n→+∞

|In(x)| = 0. (2.4)
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Figure 2.1. The graphis of funtions x 7→ a1(x) and x 7→ a2(x) if a1(x) = 1. This illustrates

the fat that I1(x) is partitioned into a ountable in�nite number of intervals of rank 2; in this

ase, I2(x) ⊂ [1/2, 1] ∩ I, sine a1(x) = 1 if and only if x ∈ [1/2, 1] ∩ I.
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2.2 Cantor's Bijetion

Cantor's bijetion on I (see [25℄) is a one-to-one mapping from I onto I2. It is onstruted

as follows. If x ∈ I, let [a] be the orresponding ontinued fration and let C1 and C2 be the

appliations de�ned by

C1(x) := [a1, a3, . . . , a2j+1, . . .] and C2(x) := [a2, a4, . . . , a2j , . . .].

These appliations are represented in Figure 2.2. Theorem 2.1.11 implies that the appliation

C : I → I2; x 7→ (C1(x), C2(x))

is a one-to-one mapping. It is alled Cantor's bijetion. If Q denotes the quadrati numbers

of I, C is a one-to-one mapping from Q onto Q2
by Theorem 2.1.13. Sine the ardinals of E

and I are equal, C an be extended to a one-to-one mapping from E onto E2
.

2.3 Continuity of Cantor's Bijetion

Let us study the ontinuity of Cantor's bijetion on I.

Proposition 2.3.1. Cantor's bijetion C is ontinuous on I.

Proof. For any n ∈ N and any x ∈ I, C1 maps the interval In(x) onto Im(C1(x)) where

m = n/2 if n is even and m = (n + 1)/2 if n is odd. This shows that C1 is a ontinuous

funtion on I. Indeed, let x0 ∈ I and ε > 0. With Property (2.4), there exists M ∈ N suh that

|IM (C1(x0))| ≤ ε. If x ∈ I2M (x0), we have |x− x0| ≤ |I2M (x0)| and

| C1(x)− C1(x0)| ≤ |IM (C1(x0))| ≤ ε.

Obviously, the same argument an be applied to C2 and we have the onlusion. �

In fat, Cantor's bijetion is even an homeomorphism between I and I2. To show that, we

�rst de�ne a map from I onto N . For x ∈ I, we write σ(x) := a if a ∈ N satis�es x = [a]. The

appliation σ is learly a bijetion from I onto N by Theorem 2.1.11.

Proposition 2.3.2. The appliation σ is an homeomorphism from I onto N .

Proof. Let x0 ∈ I and ε > 0. There exists N ∈ N suh that 2−N ≤ ε. For x ∈ IN (x0), we have

|x− x0| ≤ |IN (x0)| and

d(σ(x), σ(x0)) ≤ d′(σ(x), σ(x0)) ≤ 2−N ≤ ε.

So, σ is ontinuous on I.

Conversely, let a0 ∈ N and ε > 0. With Property (2.4), there exists N ∈ N suh that

|IN (σ−1(a0))| ≤ ε. For a ∈ N suh that d′(a,a0) ≤ 2−N , we have σ−1(a) ∈ IN (σ
−1(a0)) and

|σ−1(a)− σ−1(a0)| ≤ |IN (σ−1(a0))| ≤ ε.

So, σ−1
is ontinuous on N . �
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Figure 2.2. Graphial representations of C1 and C2.
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Remark 2.3.3. We obviously have [·] = σ−1
on N .

Sine (N , d) is a separable omplete metri spae (see Proposition 2.1.3), we have reobtained

the following well-known result (see [75℄).

Corollary 2.3.4. The spae I is a Polish spae.

Proposition 2.3.5. Cantor's bijetion C is an homeomorphism between I and I2.

Proof. Sine the appliation

(a, b) ∈ N ×N 7→ c := (cj)j∈N ∈ N

where

cj :=

{
a(j+1)/2 if j is odd

bj/2 if j is even

is an homeomorphism, we have the onlusion, using Proposition 2.3.2. �

Netto's theorem (see [108℄) guarantees that suh a funtion C an not be extended to a

ontinuous funtion from E to E2
. The following result gives additional information.

Proposition 2.3.6. Any extension of Cantor's bijetion to E is disontinuous at any rational

number.

Proof. Let x ∈ D \ {0}. There exists k ∈ N and a ∈ Nk with ak > 1 suh that

x = [a1, . . . , ak] = [a1, . . . , ak − 1, 1].

Let b ∈ N . For n ∈ N, let us set xn := [a1, . . . , ak, rn], yn := [a1, . . . , ak − 1, 1, rn] with

rn := n+ [b]. By onstrution, xn and yn are irrational numbers for all n ∈ N and

lim
n→+∞

rn = +∞.

By Proposition 2.1.14 and Proposition 2.1.8, we have

lim
n→+∞

xn = lim
n→+∞

rnpk(σ(xn)) + pk−1(σ(xn))

rnqk(σ(xn)) + qk−1(σ(xn))
=
pk(σ([a1, . . . , ak]))

qk(σ([a1, . . . , ak]))
= x (2.5)

sine pk(σ(xn)) = pk(σ([a1, . . . , ak])) and qk(σ(xn)) = qk(σ([a1, . . . , ak])) for all n ∈ N. Similarly,

we have

lim
n→+∞

yn = lim
n→+∞

rnpk+1(σ(yn)) + pk(σ(yn))

rnqk+1(σ(yn)) + qk(σ(yn))
=
pk+1(σ([a1, . . . , ak − 1, 1]))

qk+1(σ([a1, . . . , ak − 1, 1]))
= x.

Let us assume that k is odd, the other ase is similar. We have

lim
n→+∞

C(xn) = lim
n→+∞

([a1, a3, . . . , ak, b1, b3, . . .], [a2, a4, . . . , ak−1, n, b2, b4, . . .])

= ([a1, . . . , ak, b1, b3, . . .], [a2, . . . , ak−1])

and

lim
n→+∞

C(yn) = lim
n→+∞

([a1, a3, . . . , ak − 1, n, b2, b4, . . .], [a2, a4, . . . , ak−1, 1, b1, b3, . . .])

= ([a1, a3, . . . , ak − 1], [a2, a4, . . . , ak−1, 1, b1, b3, . . .]) ,

using a similar development as Expression (2.5). Thus, these two limits are not equal, while

both sequenes (xn)n∈N and (yn)n∈N onverge to x. Hene the onlusion. �
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2.4 Hölder Continuity of Cantor's Bijetion

In this setion, we give some preliminary results about the Hölder ontinuity of Cantor's

bijetion.

Theorem 2.4.1. Let x = [a] be an element of I and y ∈ In(x) \ In+1(x) with n ∈ N. We have

1

n

⌈n/2⌉∑

j=1

log(a2j−1)

1

n

n+3∑

j=1

log(aj + 1) +
1

n
C1(n)

≤ log | C1(x)− C1(y)|
log |x− y| ≤

1

n

⌈n/2⌉+3∑

j=1

log(a2j−1 + 1) +
1

2n
C2(n)

1

n

n∑

j=1

log(aj)

where

C1(n) :=
log(2)

2
+ log

(
max

{
an+2 + 2

an+2 + 1
,
an+3 + 2

an+3 + 1

})

and

C2(n) :=
log(2)

2
+ log

(
max

{
a2⌈n/2⌉+3 + 2

a2⌈n/2⌉+3 + 1
,
a2⌈n/2⌉+5 + 2

a2⌈n/2⌉+5 + 1

})
.

Proof. By hypothesis, we have

y = [a1, . . . , an, bn+1, bn+2, . . .]

with bn+1 6= an+1. Let us suppose that n is even, the other ase is similar. We will bound |x−y|
and | C1(x)− C1(y)| with terms depending on a and n only.

Sine y ∈ In(x), we have |x− y| ≤ |In(x)| and

|x− y| ≤ |In(x)| =
1

q2n(a)

1

1 + qn−1(a)
qn(a)

≤ 1

q2n(a)
(2.6)

using Equality (2.3). Moreover, sine

qn(a) = anqn−1(a) + qn−2(a) ≥ anqn−1(a)

≥ an(an−1qn−2(a) + qn−3(a)) ≥ an · · · a3(a2q1(a) + q0(a))

≥ an · · · a1

thanks to Equality (2.1), we get

|x− y| ≤ 1

a21 · · · a2n
. (2.7)

The same reasoning an be applied to

C1(x) = [a1, a3, . . . , an−1, an+1, . . .]

and

C1(y) = [a1, a3, . . . , an−1, bn+1, bn+3, . . .]

to obtain

| C1(x)− C1(y)| ≤ |In/2(C1(x))| ≤
1

a21a
2
3 · · · a2n−1

. (2.8)
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Figure 2.3. Illustration of the hoie of z with In+1(z) = In+1(x) 6= In+1(y) in the ase y < x.

For the lower bound of |x − y|, let us remark that In+1(x) ∩ In+1(y) = ∅, but the distane

between In+1(x) and In+1(y) an be zero. However, for any �xed j ∈ N, there exists a ountable

in�nite number of intervals of rank n + 1 + j in between In+1+j(x) and In+1+j(y), i.e. there

exists a ountable in�nite number of z ∈ I suh that z′ ∈ In+1+j(z) implies x < z′ < y or

y < z′ < x. If z = [c] is suh an element, we have

|x− y| ≥ |In+3(z)| ≥
1

qn+3(c)(qn+3(c) + qn+2(c))
≥ 1

2q2n+3(c)
. (2.9)

The relations

qn+3(c) = cn+3qn+2(c) + qn+1(c) ≤ (cn+3 + 1)qn+2(c)

≤ (cn+3 + 1)(cn+2qn+1(c) + qn(c)) ≤ (cn+3 + 1) · · · (c1 + 1)

lead to

|In+3(z)| ≥
1

2(c1 + 1)2 · · · (cn+3 + 1)2
.

Now let

j0 :=

{
n+ 2 if x < y

n+ 3 if y < x

and we an hoose z suh that cj := aj for any j ∈ N exept for the index j0 for whih

cj0 := aj0 + 1, so that z > x in ase x < y and z < x in ase y < x. Moreover, In+1(z) =

In+1(x) 6= In+1(y), so that x < z < y in ase x < y and y < z < x in ase y < x. Figure 2.3

gives a sketh of this last situation. We therefore have

|x− y| ≥ |In+3(z)| ≥
1

2(a1 + 1)2 · · · (an+2 + 1)2(an+3 + 2)2
(2.10)

or

|x− y| ≥ |In+3(z)| ≥
1

2(a1 + 1)2 · · · (an+2 + 2)2(an+3 + 1)2
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depending on the value of j0. Without loss of generality, let us assume that j0 orresponds to

the largest integer in suh inequalities, i.e. n+ 3 here.

There also exists w = [d] suh that In/2+3(w) lies between In/2+3(C1(x)) and In/2+3(C1(y)).

Moreover, we an hoose w suh that dj := a2j−1 for any j exept for one index j′0 ∈ {n/2 +

2, n/2 + 3}, for whih dj′0 := a2j′0−1 +1. Without loss of generality again, let us suppose that j′0
is equal to n/2 + 3. We thus have

| C1(x)− C1(y)| ≥ |In/2+3(w)| ≥
1

2(a1 + 1)2(a3 + 1)2 · · · (an+3 + 1)2(an+5 + 2)2
. (2.11)

Putting Inequalities (2.7), (2.8), (2.10) and (2.11) together and taking the logarithm, we get

−2

n/2∑

j=1

log(a2j−1)

− log(2)− 2

n+3∑

j=1

log(aj + 1)− 2 log

(
an+3 + 2

an+3 + 1

) ≤ log | C1(x)− C1(y)|
log |x− y|

and

log | C1(x)− C1(y)|
log |x− y| ≤

− log(2) − 2

n/2+3∑

j=1

log(a2j−1 + 1)− 2 log

(
an+5 + 2

an+5 + 1

)

−2
n∑

j=1

log(aj)

,

whih are the desired results. �

Of ourse, the same reasoning an be applied to C2, leading to the same result.

Theorem 2.4.2. Let x = [a] be an element of I and y ∈ In(x) \ In+1(x) with n ∈ N. We have

1

n

⌊n/2⌋∑

j=1

log(a2j)

1

n

n+3∑

j=1

log(aj + 1) +
1

n
C1(n)

≤ log | C2(x)− C2(y)|
log |x− y| ≤

1

n

⌊n/2⌋+3∑

j=1

log(a2j + 1) +
1

n
C2(n)

1

n

n∑

j=1

log(aj)

where C1(n) is de�ned as in Theorem 2.4.1 and

C2(n) :=
log(2)

2
+ log

(
max

{
a2⌊n/2⌋+4 + 2

a2⌊n/2⌋+4 + 1
,
a2⌊n/2⌋+6 + 2

a2⌊n/2⌋+6 + 1

})
.

To obtain a generi result about the regularity of Cantor's bijetion, we need a diret on-

sequene of the ergodi theorem on ontinued frations (see [107℄). We say that a property P

onerning sequenes of N holds almost everywhere if for almost every x ∈ I (with respet to

the Lebesgue measure), the sequene a ∈ N suh that x = [a] satis�es P . The following result

an be obtained from the main theorem of [94℄.

Theorem 2.4.3. Let k ∈ N0. For almost every sequene a ∈ N , we have

lim
n→+∞

1

n

n∑

j=1

log(aj + k) = lim
n→+∞

1

n

n∑

j=1

log(a2j + k) = lim
n→+∞

1

n

n∑

j=1

log(a2j−1 + k) = log(κk)
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where κk is de�ned by

κk :=
∞∏

j=1

(
1 +

1

j(j + 2)

) log(j+k)
log(2)

.

The result

1
n

∑n
j=1 log(aj) → log(κ0) if n → +∞ was proved in [76℄ and the onstant κ0 is

alled the Khinthine's onstant. Here, we will be interested in the values

log(κ0) ≈ 0.987849056 · · · and log(κ1) ≈ 1.409785988 · · ·

Using Theorem 2.4.1 and Theorem 2.4.2 as n goes to in�nity (or equivalently as y tends

to x), Theorem 2.4.3 and Proposition 1.2.4, we get the following result.

Corollary 2.4.4. For almost every x ∈ I, we have

hC1(x), hC2(x) ∈
[
log(κ0)

2 log(κ1)
,
log(κ1)

2 log(κ0)

]
.

Thus, the Hölder exponent of C1 and C2 lies between 0.35 and 0.72 almost everywhere.

In fat, thanks to Theorem 2.4.1 (and Theorem 2.4.2), we an exatly determine the Hölder

exponent of C1 (and of C2) at some points of I. For example, let a
(1),a(2),a(3) ∈ N be the

sequenes de�ned by

a
(1)
j :=

{
2j if j is even

1 if j is odd
, a

(2)
j := 2j and a

(3)
j :=

{
1 if j is even

2j if j is odd

for any j ∈ N. Using Theorem 2.4.1, it is easy to hek that

hC1([a
(1)]) = 0, hC1([a

(2)]) =
1

2
and hC1([a

(3)]) = 1.

We then obtain the following orollary.

Corollary 2.4.5. The funtions C1 and C2 are multifratal. Consequently, C is multifratal.

Let us �nish this setion with some improvements of Corollary 2.4.4 under some onditions.

Atually, we an re�ne the bounds of Theorem 2.4.1 and Theorem 2.4.2. Indeed, taking the

notations and onventions of the proof of Theorem 2.4.1, we have

1

2q2n+3(c)
≤ |x− y| ≤ 1

q2n(a)

and

1

2q2n/2+3(d)
≤ | C1(x)− C1(y)| ≤

1

q2n/2(a
′)

with Inequalities (2.6) and (2.9), where a
′ := (a2j−1)j∈N. We then have

2 log(qn/2(a
′))

log(2) + 2 log(qn+3(c))
≤ log | C1(x)− C1(y)|

log |x− y| ≤ log(2) + 2 log(qn/2+3(d))

2 log(qn(a))
. (2.12)

Of ourse, we have similar inequalities for C2. What happens when taking the limit as n→ +∞?

Is it possible to obtain the Hölder exponent of C1 (and of C2) at x? On the one hand, we have

the following result (see [76,84,101℄).
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Theorem 2.4.6. For almost every sequene b ∈ N , we have

lim
n→+∞

1

n
log(qn(b)) =

π2

12 log(2)
.

The real number π2/(12 log(2)) is alled the Lévy's onstant. On the other hand, sine

qn+3(a) ≤ qn+3(c) ≤ 2qn+3(a) (using the de�nition of c and Equality (2.1)), we have

lim
n→+∞

1

n+ 3
log(qn+3(c)) = lim

n→+∞

1

n
log(qn(a)) (2.13)

and similarly, we also have

lim
n→+∞

1
n
2 + 3

log(qn/2+3(d)) = lim
n→+∞

2

n
log(qn/2(a

′)) (2.14)

(if all these limits exist). It only remains to ompare Expressions (2.13) and (2.14), whih is

not evident. In any ase, from Inequality (2.12) and from the above, we have the following

proposition.

Proposition 2.4.7. Let x = [a] be an element of I and let a
′ := (a2j−1)j∈N. If we assume that

lim
n→+∞

1

n
log(qn(a)) = lim

n→+∞

1

n
log(qn(a

′)) =
π2

12 log(2)
, (2.15)

then we have

hC1(x) =
1

2
.

There is of ourse a similar result for C2. With Theorem 2.4.6, we an hope that Equal-

ity (2.15) is satis�ed for almost every sequene a ∈ N and thus we an make the following

onjeture.

Conjeture 2.4.8. For almost every x ∈ [0, 1], we have

hC1(x) = hC2(x) =
1

2
.

Let us give an idea to attempt to prove Equality (2.15) and then Conjeture 2.4.8.

Let τ be the left shift operator on N , i.e. the appliation de�ned by

τ((bj)j∈N) := (bj+1)j∈N

We denote by τm the mth

iterate of τ for m ∈ N and by τ0 the identity. The next lemma based

on the properties of the onvergents of a sequene an be useful (see the proof of Theorem 8.3

in [112℄ for example).

Lemma 2.4.9. For all b ∈ N and n ∈ N, we have

log(qn(b)) = −
n−1∑

j=0

log

(
pn−j(τ

j(b))

qn−j(τ j(b))

)
.
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Using this formula, we then have

1

n
log(qn(b)) = − 1

n

n−1∑

j=0

log([τ j(b)]) +Rn(b) (2.16)

for all b ∈ N and n ∈ N, where

Rn(b) :=
1

n

n−1∑

j=0

(
log([τ j(b)])− log

(
pn−j(τ

j(b))

qn−j(τ j(b))

))
.

The limit of Rn(b) as n → +∞ is given by the following lemma (see again the proof of Theo-

rem 8.3 in [112℄ for example).

Lemma 2.4.10. For all b ∈ N , we have

lim
n→+∞

Rn(b) = 0.

Let x = [a] ∈ I. By de�nition, we have C1(x) = [a′] where a
′ := (a2j−1)j∈N. Using

Equality (2.16) with a
′
, we obtain

1

n
log(qn(a

′)) = − 1

n

n−1∑

j=0

log([τ j(a′)]) +Rn(a
′)

= − 1

n

n−1∑

j=0

log([τ2j(a)]) + Sn(a) +Rn(a
′) (2.17)

where

Sn(a) :=
1

n

n−1∑

j=0

(
log([τ2j(a)])− log([τ j(a′)])

)
=

1

n

n−1∑

j=0

log

(
[τ2j(a)]

C1([τ2j(a)])

)
.

Thanks to Lemma 2.4.10, we know that

lim
n→+∞

Rn(a
′) = 0.

We also have the following theorem, whih is a onsequene of the main result of [94℄.

Theorem 2.4.11. For almost all b ∈ N , we have

lim
n→+∞

1

n

n−1∑

j=0

log([τ2j(b)]) =
1

log(2)

∫ 1

0

log(t)

t+ 1
dt = − π2

12 log(2)

From Equality (2.17), we then have

lim
n→+∞

1

n
log(qn(a

′)) =
π2

12 log(2)
+ lim
n→+∞

Sn(a)

and it only remains to show that

lim
n→+∞

Sn(a) = 0, (2.18)

whih is not evident. In fat, it is di�ult to reasonably ompare [τ2j(a)] and C1([τ
2j(a)]). The

sequenes whih de�ne these two ontinued frations only have the �rst element in ommon. Un-

fortunately, this observation is not su�ient to obtain Equality (2.18) and then Conjeture 2.4.8.
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2.5 Appendix: Another Cantor's Bijetion

Atually, the appliation C (with the use of ontinued frations) was not the �rst idea of

Cantor to onstrut a one-to-one mapping between [0, 1] and [0, 1]2. In 1877 (the same year

as the onstrution of C), Cantor �rst proposed the following example, based on the (unique)

proper deimal expansion of the real numbers. If x and y both belong to the unit segment [0, 1),

let us write

x :=
+∞∑

k=1

xk
10k

= 0.x1x2 · · · and y :=
+∞∑

k=1

yk
10k

= 0.y1y2 · · ·

(where xk, yk ∈ {0, . . . , 9} for k ∈ N) with proper expansions (i.e. there does not exist k0 ∈ N

suh that xk = 9 for all k > k0). Let C be the map de�ned as

C : [0, 1)2 → [0, 1); (x, y) 7→
+∞∑

k=1

xk
102k−1

+
+∞∑

k=1

yk
102k

= 0.x1y1x2y2x3y3 · · · .

Dedeking objeted that suh a funtion is not surjetive, sine a number of the form

z :=
l∑

k=1

zk
10k

+
+∞∑

k=1

9

10l+2k−1
+

+∞∑

k=1

zl+2k

10l+2k
= 0.z1z2 · · · zl9zl+29zl+49 · · ·

(where zk ∈ {0, . . . , 9} for k ∈ N) with l ∈ N has no preimage under C : if l is even, there is

no x suh that C (x, y) = z and if l is odd, there is no y suh that C (x, y) = z. Cantor then

overame this problem by replaing the deimal expansion in C with the expansion in terms

of ontinued frations. His work was published in [25℄, with a praragraph explaining why his

�rst idea ould not work and omitting any referene to Dedekind (see [38℄ for some historial

referenes).

In this last setion, we go bak on Cantor's �rst idea. We start from the map C relying on

the deimal expansion and use the Shröder-Bernstein theorem to de�ne the desired bijetion

between [0, 1]2 and [0, 1]. This theorem was �rst onjetured by Cantor and independently

proved by Bernstein and Shröder in 1896 (see [19,27,109℄, let us also notie that other

names, suh as Dedekind, should be added to this list). In other words, Cantor's �rst idea

ould have led to the raved mapping, but he did not have suh a result at the time he was

working on the topi. It would be onjetured by himself a few years later in [26℄. Before

building the bijetive map, we reall the Shröder-Bernstein theorem and give a lassial proof

that will be used in the sequel.

2.5.1 A �Pratial� Proof of Shröder-Bernstein Theorem

There exist several proofs of Shröder-Bernstein theorem (see [53℄): the most lassial ones

use Tarski's �xed point theorem, or follow the idea of Dedekind [36℄ or König [78℄. The

advantage of the one we present below (whih is largely inspired by ideas of [20,104℄) is that it

expliitly shows how to build a bijetion between two non-empty sets, starting from injetions

between these sets.

Theorem 2.5.1 (Shröder-Bernstein). Let A and B be non-empty sets. If there exist an

injetion from A to B and an injetion from B to A, then there exists a bijetion from A

onto B.
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Proof. Let f be an injetion from A to B and g be an injetion from B to A. We de�ne the

sequenes (An)n∈N0 of subsets of A and (Bn)n∈N0 of subsets of B as follows:





A0 := A \ g(B)

Bn := f(An), for n ∈ N0

An := g(Bn−1), for n ∈ N

. (2.19)

If A0 = ∅, then g(B) = A and thus g is surjetive. The appliation g−1
is then a bijetion

from A onto B. Therefore, we an assume that A0 is not empty.

None of the elements of the sequenes (An)n∈N0 and (Bn)n∈N0 are empty and thus

⋃

n∈N0

An 6= ∅,
⋃

n∈N0

Bn 6= ∅ and f


 ⋃

n∈N0

An


 6= ∅.

Moreover, we have

f


 ⋃

n∈N0

An


 ⊂

⋃

n∈N0

Bn

and the restrition f̃ of f to

⋃
n∈N0

An is learly a bijetion from

⋃
n∈N0

An onto

⋃
n∈N0

Bn.

If B =
⋃
n∈N0

Bn, then A =
⋃
n∈N0

An beause f is injetive and thus f̃ is a bijetion from A

to B.

Let us now assume that B \⋃n∈N0
Bn 6= ∅. Sine g is injetive, we have

g


B \

⋃

n∈N0

Bn


 ⊂ A \

⋃

n∈N0

An

and A \⋃n∈N0
An 6= ∅. Let us denote by g̃ the restrition of g to B \⋃n∈N0

Bn and show that g̃

is a bijetion from B \⋃n∈N0
Bn onto A \⋃n∈N0

An. It is lear that g̃ is injetive. Sine

A \
⋃

n∈N0

An = (A \ A0) ∩
(
⋂

n∈N

(A \ An)
)

= g(B) ∩
(
⋂

n∈N

(A \ g(Bn−1))

)

= g(B) ∩


A \ g


 ⋃

n∈N0

Bn




 ,

g̃ is also surjetive.

It only remains to put the piees together in order to onstrut a bijetion from A onto B.

Sine f̃ is a bijetion from

⋃
n∈N0

An onto

⋃
n∈N0

Bn and g̃−1
is a bijetion from A \⋃n∈N0

An
onto B \⋃n∈N0

Bn, the appliation h de�ned by

h(a) :=





f̃(a) if a ∈
⋃

n∈N0

An

g̃−1(a) if a ∈ A \
⋃

n∈N0

An

is a bijetion from A onto B, hene the onlusion. �
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Remark 2.5.2. Let us note that the de�nition of the map h given above is non-onstrutive

(see [117℄): there is no general method to deide whether or not an element of A belongs to⋃
n∈N0

An in a �nite number of steps. However, in the spei� ase we will onsider, the problem

beomes simpler.

2.5.2 A Bijetion between the Unit Square and the Unit Segment Based on

the Deimal Expansion

Let us build a bijetion between the unit square [0, 1]2 and the unit segment [0, 1] starting

from the funtion C (see [97℄). Sine the onstrution is entirely based on the proof of the

previous theorem, we will use the notations of this proof.

Let us set A := [0, 1]2, B := [0, 1] and let f be the funtion de�ned by

f(x, y) :=





+∞∑

k=1

xk
102k−1

+
+∞∑

k=1

yk
102k

= 0.x1y1x2y2x3y3 · · · if (x, y) ∈ [0, 1)2

+∞∑

k=1

9

102k−1
+

+∞∑

k=1

yk
102k

= 0.9y19y29y3 · · · if (x, y) ∈ {1} × [0, 1)

+∞∑

k=1

xk
102k−1

+

+∞∑

k=1

9

102k
= 0.x19x29x3 · · · if (x, y) ∈ [0, 1) × {1}

1 if (x, y) = (1, 1)

where (xk)k∈N and (yk)k∈N are the proper deimal expansions of the real numbers x and y

of [0, 1). In fat, we have f(x, y) = C (x, y) for (x, y) ∈ [0, 1)2, so that f is simply an extension

of C to [0, 1]2. Let g be the funtion de�ned by g(t) := (t, 0) for t ∈ B. It easy to hek that

both f and g are injetive.

Let us onstrut the sequenes (An)n∈N0 and (Bn)n∈N0 step by step as in Expression (2.19).

For n = 0, we have

A0 = A \ g(B) = [0, 1] × (0, 1]

and

B0 = f(A0) = {1} ∪ {t ∈ [0, 1) : t2k 6= 0 for some k ∈ N}

where (tk)k∈N is the proper deimal expansion of the real number t belonging to [0, 1).

For n = 1, we diretly have A1 = g(B0) = B0 × {0}. In order to onstrut B1 = f(A1), let

us take (x, 0) ∈ A1. We have x2k 6= 0 for some k ∈ N by de�nition of B0 and thus

f(x, 0) =





+∞∑

k=1

9

102k−1
= 0.909090 · · · if x = 1

+∞∑

k=1

xk
102k−1

= 0.x10x20x30 · · · if x 6= 1

.

We an then write

f(x, 0) =

+∞∑

k=1

sk
102k−1

= 0.s10s20s30 · · ·

where (sk)k∈N is a sequene satisfying only one of the two following onditions:



2.5. Appendix: Another Cantor's Bijetion 37

(a) sk = 9 for all k ∈ N,

(b) (sk)k∈N is the proper deimal expansion of a real number of [0, 1) and s2k 6= 0 for some

k ∈ N.

We will denote by Σ the set of sequenes whih satisfy one of the two previous onditions. We

therefore have

B1 =

{
t ∈ [0, 1) : t =

+∞∑

k=1

sk
102k−1

with (sk)k∈N ∈ Σ

}
.

For n = 2, the argument is similar. We have A2 = g(B1) = B1 × {0}. If (x, 0) ∈ A2, then

x2k = 0 for all k ∈ N and x4k−1 6= 0 for some k ∈ N. Consequently, we have

f(x, 0) =

+∞∑

k=1

x2k−1

104k−3
= 0.x1000x3000x5000 · · ·

and so

B2 =

{
t ∈ [0, 1) : t =

+∞∑

k=1

sk
104k−3

with (sk)k∈N ∈ Σ

}
.

Going on in this way, we obtain An = Bn−1 × {0} and

Bn =

{
t ∈ [0, 1) : t =

+∞∑

k=1

sk
102

nk−(2n−1)
with (sk)k∈N ∈ Σ

}
,

for all n ∈ N.

Sine A0 6= ∅, B \ ⋃n∈N0
Bn 6= ∅ (we have 0 /∈ Bn for any n ∈ N0) and g

−1(x, y) = x for

(x, y) ∈ A \⋃n∈N0
An, we have proved the following proposition thanks to Theorem 2.5.1.

Proposition 2.5.3. The funtion f∗ de�ned by

f∗(x, y) :=





f(x, y) if (x, y) ∈
⋃

n∈N0

An

x otherwise

is a bijetion from [0, 1]2 onto [0, 1].

Remark 2.5.4. As expeted, we have f∗ = f almost everywhere on [0, 1]2 (with respet to the

Lebesgue measure), sine the set [0, 1]2 \⋃n∈NAn is inluded in the segment [0, 1]×{0}, whih
is a negligible set in R2

. Therefore, we have f∗ = C almost everywhere.





Chapter 3

Continuous Wavelet Transform

and Hölder Continuity

The ontinuous wavelet transform, initially introdued by Grossmann andMorlet [48℄ in

the eighties, is a tool to study the Hölder ontinuity of a funtion. More preisely, the behaviour

of the ontinuous wavelet transform of a funtion gives the (pointwise and uniform) Hölder

ontinuity of this funtion. This desription, established twenty years ago, is espeially due to

Jaffard and Meyer [59�61,68,92℄ and also Holshneider and Thamihian [55℄.

In this brief hapter, we reall the notions of wavelet and of ontinuous wavelet transform,

�rstly in the general setting and seondly in the ontext of bounded and ontinuous funtions

(with a partiular wavelet). We then present the tool given by the ontinuous wavelet transform

to haraterize Hölder spaes.

3.1 Continuous Wavelet Transform

Let us �rst reall the notions of wavelet and ontinuous wavelet transform (see [30,33,54,

55,61,69,115℄).

3.1.1 General Setting

In the literature, the word �wavelet� is used for several types of funtions depending on the

ontext. We take here the following de�nition.

De�nition 3.1.1. The funtion ψ is a wavelet if ψ ∈ L1(R) ∩ L2(R) and if ψ satis�es the

admissibility ondition:

ξ 7→ |ψ̂(ξ)|2
|ξ| ∈ L1(R). (3.1)

Using the wavelet ψ, the ontinuous wavelet transform of a funtion f ∈ L2(R) is the fun-

tion Wψf de�ned by

Wψf(a, b) :=

∫

R

f(x)ψa,b(x) dx = 〈f, ψa,b〉 , a ∈ R \{0}, b ∈ R

where

ψa,b(x) :=
1

a
ψ

(
x− b

a

)
, x ∈ R .

The admissibility ondition plays an important role in the reonstrution of a funtion from

its ontinuous wavelet transform (see Theorem 3.1.3). Moreover, it implies that ψ̂(0) = 0 beause

39
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ψ ∈ L1(R). Indeed, by ontradition, if we suppose that |ψ̂(0)| ≥ C with C > 0, there exists

ε > 0 suh that

|ψ̂(ξ)|2
|ξ| >

C2

4|ξ|
for ξ ∈ (−ε, ε) \ {0} by ontinuity of ψ̂ and we then have a ontradition with Condition (3.1).

Remark 3.1.2. The general setting of the ontinuous wavelet transform is the spae L2(R).

Sine a wavelet is an integrable funtion (in our de�nition), we an alulate the ontinuous

wavelet transform of a funtion whih belongs to L∞(R) (and whih is not neessarily in L2(R)).

This will just allow to investigate the Hölder ontinuity of bounded (and ontinuous) funtions

from the ontinuous wavelet transform of these funtions.

A square integrable funtion an be reonstruted from its wavelet ontinuous transform.

This is the objet of the following result, whih will be proved later in the more general ontext

of nonstationary ontinuous wavelet transform (see Theorem 6.2.1).

Theorem 3.1.3. Let ψ be a wavelet suh that

∫

R

|ψ̂(ξ)|2
|ξ| dξ = 1. (3.2)

For all f, g ∈ L2(R), we have
∫∫

R2
Wψ f(a, b)Wψ g(a, b)

dadb

|a| = 〈f, g〉 .

Moreover, for f ∈ L2(R), we have

lim
ε→0+
r→+∞

∥∥∥∥∥f(·)−
∫

{a′∈R:ε<|a′|<r}

(∫

R

Wψ f(a, b)ψa,b(·) db
)
da

|a|

∥∥∥∥∥
L2(R)

= 0.

There exist some variants of this reonstrution formula. For example, we an reover f from

Wψ f(a, b) with a > 0 only and b ∈ R. In this ase, Condition (3.2) is slightly more restritive.

Theorem 3.1.4. Let ψ be a wavelet suh that

∫ +∞

0

|ψ̂(ξ)|2
ξ

dξ =

∫ +∞

0

|ψ̂(−ξ)|2
ξ

dξ = 1.

For all f, g ∈ L2(R), we have
∫∫

(0,+∞)×R

Wψ f(a, b)Wψ g(a, b)
dadb

a
= 〈f, g〉 .

Moreover, for f ∈ L2(R), we have

lim
ε→0+
r→+∞

∥∥∥∥∥f(·)−
∫ r

ε

(∫

R

Wψ f(a, b)ψa,b(·) db
)
da

a

∥∥∥∥∥
L2(R)

= 0.

Another possibility onsists in the introdution of another wavelet with some spei� prop-

erties. In the next setion, we will ome bak on this idea in the partiular ase of a wavelet

whih belongs to the Hardy spae

H2(R) :=
{
f ∈ L2(R) : f̂ = 0 a.e. on (−∞, 0)

}
.
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3.1.2 The Partiular Setting of Continuous and Bounded Funtions

In the next hapter, in order to study the Hölder ontinuity of generalized Riemann funtion,

we will use a partiular wavelet whih belongs to H2(R). The generalized Riemann funtion is

not square integrable, but it is ontinuous and bounded on R. As announed in the previous

subsetion (see Remark 3.1.2), its ontinuous wavelet transform an be investigated. An exat

reonstrution formula exists in suh a situation: if the wavelet ψ belongs to H2(R) and if f

belongs to a ertain lass of ontinuous and bounded funtions on R, we an reover f from Wψf

using a seond wavelet satisfying some additional properties. This result is given below. It is just

mentioned in a remark of [55℄ without a proof of this partiular setting. We propose here a proof

strongly inspired by Proposition 2.4.2 in [33℄ and Theorem 2.2 in [55℄ with some adaptations to

our ase.

Theorem 3.1.5. Let ψ be a wavelet whih belongs to H2(R). Let ϕ be a di�erentiable wavelet

suh that x 7→ xϕ(x) is integrable on R, suh that Dϕ is square integrable on R and suh that

∫ +∞

0
ψ̂(ξ)ϕ̂(ξ)

dξ

ξ
= 1. (3.3)

If f is a ontinuous and bounded funtion on R and is weakly osillating around the origin, i.e.

suh that

lim
r→+∞

sup
x∈R

∣∣∣∣
1

2r

∫ x+r

x−r
f(t) dt

∣∣∣∣ = 0,

then we have

f(x) = lim
ε→0+
r→+∞

2

∫ r

ε

(∫ +∞

−∞
Wψf(a, b)ϕa,b(x) db

)
da

a

for all x ∈ R.

Proof. Let us �x x ∈ R and r > ε > 0. We write

fε,r(x) :=

∫ r

ε

(∫ +∞

−∞
Wψf(a, b)ϕa,b(x) db

)
1

a
da.

Then, we have

fε,r(x) = (Mε,r ⋆ f)(x)

by Fubini's theorem, where Mε,r is de�ned by

Mε,r(t) :=

∫ r

ε

(∫ +∞

−∞
ψ

(
− b
a

)
ϕ

(
t− b

a

)
db

)
1

a3
da, t ∈ R .

Sine Mε,r ∈ L1(R) and the support of ψ̂ is inluded in [0,+∞), we have

M̂ε,r(ξ) =

∫ r

ε
ψ̂(aξ)ϕ̂(aξ)

1

a
da =





0 if ξ ≤ 0∫ rξ

εξ
ψ̂(a)ϕ̂(a)

1

a
da if ξ > 0

.

Moreover, we have

M̂ε,r(ξ) = m(εξ)−m(rξ) (3.4)
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for all ξ ∈ R, where m is de�ned by

m(ξ) :=





∫ +∞

ξ
ψ̂(a)ϕ̂(a)

1

a
da if ξ ≥ 0

∫ +∞

−ξ
ψ̂(−a)ϕ̂(−a)1

a
da if ξ < 0

.

It is easy to hek that m(0) = 1, m = 0 on (−∞, 0) and that m is ontinuous only on R \{0}.
Sine we have the three following properties: ψ̂ is bounded, ϕ is di�erentiable and Dϕ ∈ L2(R),

we obtain

|m(ξ)| ≤
(∫ +∞

0
|aϕ̂(a)|2da

)1/2
(∫ +∞

ξ

|ψ̂(a)|2
a4

da

)1/2

≤ C ′

ξ3/2

for all ξ > 0, by Cauhy-Shwarz inequality, where C ′
is a positive onstant. Then, m is bounded

and there exists C > 0 suh that

|m(ξ)| ≤ C

(1 + |ξ|)3/2

for all ξ ∈ R. So m ∈ L1(R) ∩ L2(R) and we an de�ne M by M(ξ) := m̂(−ξ)/π for all ξ ∈ R.

By de�nition, M is ontinuous and bounded on R.

Moreover, m is di�erentiable on R \{0} and

Dm(ξ) =





−ψ̂(ξ)ϕ̂(ξ)1
ξ

if ξ > 0

0 if ξ < 0
.

Sine ϕ̂(0) = 0 and x 7→ xϕ(x) is integrable on R, we have

|ϕ̂(ξ)| =
∣∣∣∣
∫

R

ϕ(x)
(
e−ixξ − 1

)
dx

∣∣∣∣ =
∣∣∣∣
∫

R

xϕ(x)

(∫ ξ

0
−ie−ixt dt

)
dx

∣∣∣∣ ≤ C ′′|ξ|

for all ξ ∈ R, where C ′′
is a positive onstant. Consequently, Dm ∈ L2(R) beause ψ ∈ L2(R).

So M ∈ L1(R) sine we an write M as the produt of two square integrable funtions: for all

x ∈ R, we have

M(x) =
1√

1 + x2

(√
1 + x2M(x)

)
,

where the seond fator is square integrable, beause m and Dm are square integrable on R.

Moreover, by the Dirihlet ondition for Fourier inversion theorem (sinem andDm are pieewise

ontinuous), we have ∫

R

M(x) dx = M̂(0) = m(0+) +m(0−) = 1

using Equality (3.3) where m(0±) = limξ→0± m(ξ).

By de�nition of M and by Fourier inversion theorem in Equality (3.4), we have

Mε,r(t) =
1

2

(
1

ε
M

(
t

ε

)
− 1

r
M

(
t

r

))

for all t ∈ R and we then obtain

fε,r(x) =
1

2

(∫

R

1

ε
M

(
x− t

ε

)
f(t) dt−

∫

R

1

r
M

(
x− t

r

)
f(t) dt

)
.
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Using the ontinuity of f , the �rst integral onverges to f(x) as ε tends to 0+ by Lebesgue's

theorem. The seond integral onverges to 0 as r tends to +∞ beause f is bounded and weakly

osillating around on the origin, and M ∈ L1(R) is of integral equal to 1 (see Lemma 6.3.3

page 142 in [54℄ for the proof of this property). The onlusion follows. �

An example of wavelet whih belongs to H2(R) is the Lusin wavelet ψL de�ned by

ψL(x) :=
1

π(x+ i)2
, x ∈ R . (3.5)

It is lear that ψL ∈ H2(R) beause

ψ̂L(ξ) =

{
−2ξe−ξ if ξ ≥ 0

0 if ξ < 0
.

In the next hapter, we will use the Lusin wavelet in order to study Hölder ontinuity of gen-

eralized Riemann funtion. We will see that this hoie of wavelet will allow to obtain a simple

expliit expression of the ontinuous wavelet transform of the studied funtion (in omparison

with other wavelets as the derivatives of a gaussian funtion for example).

3.2 Charaterization of Hölder Spaes

Thanks to the previous reonstrution formula, the Hölder ontinuity of a funtion an be

haraterized with its ontinuous wavelet transform (see [55,61,69℄). This is the objet of the

following theorem. We will use it in the next hapter (see also [55,61,100℄ for other examples).

Theorem 3.2.1. Let α ∈ (0, 1), let ψ be a wavelet suh that x 7→ xαψ(x) is integrable on R

and let f be a funtion as in Theorem 3.1.5.

(a) We have f ∈ Λα(R) if and only if there exists C > 0 suh that

|Wψf(a, b)| ≤ C aα

for all a > 0 and b ∈ R.

(b) Let x0 ∈ R. If f ∈ Λα(x0), then there exist C > 0 and η > 0 suh that

|Wψf(a, b)| ≤ C aα
(
1 +

( |b− x0|
a

)α)

for all a ∈ (0, η) and b ∈ (x0 − η, x0 + η). Conversely, if there exist α′ ∈ (0, α), C > 0 and

η > 0 suh that

|Wψf(a, b)| ≤ C aα

(
1 +

( |b− x0|
a

)α′
)

for all a ∈ (0, η) and b ∈ (x0 − η, x0 + η), then f ∈ Λα(x0).

The proof of this theorem (sometimes with some minor variants) an be found in [33,55,61,

69,115℄. Hölder spaes with exponent greater than 1 an be also haraterized with ontinuous

wavelet transform.

Remark 3.2.2. Let us note that the neessary onditions in Theorem 3.2.1 do not need all the

hypotheses on the funtion f : the ontinuity and the weak osillation around the origin of f are

not useful for these impliations.





Chapter 4

Generalized Riemann Funtion

In the 19

th

entury, Riemann introdued the funtion R de�ned by

R(x) :=

+∞∑

n=1

sin(πn2x)

n2
, x ∈ R,

in order to onstrut a ontinuous but nowhere di�erentiable funtion (see [37℄ for some historial

information). The regularity of this funtion has been extensively studied by many authors.

In 1916, Hardy [49℄ showed that R is not di�erentiable at irrational numbers and at some

rational numbers. Deades later, Gerver [44℄ and other people [55,58,93,103,111℄ proved

that R is only di�erentiable at the rational numbers (2p+ 1)/(2q + 1) (with p ∈ Z and q ∈ N0)

with a derivative equal to −1/2.

Moreover, the Hölder ontinuity of R was also investigated. Based on a work with Little-

wood [50℄, Hardy [49℄ showed that R is not Hölder ontinuous with exponent 3/4 at irra-

tional numbers and at some rational numbers. Using the ontinuous wavelet transform (of R),

Holshneider and Thamithian [55℄ established that R is uniformly Hölder ontinuous

with exponent 1/2 and gave some results about its Hölder ontinuity at some partiular points.

With some similar tehniques, Jaffard and Meyer [61,68℄ determined the Hölder exponent

of R at eah point and proved that R is a multifratal funtion.

A generalization of R is given by the funtion Rα,β de�ned by

Rα,β(x) :=
+∞∑

n=1

sin(πnβx)

nα
, x ∈ R, (4.1)

with α > 1 and β > 0. Other generalizations of R are possible; for example, we an replae the

element nβ in the de�nition of Rα,β by a polynomial with integer oe�ients (see [29,103℄).

The funtion Rα,β de�ned in Expression (4.1) is learly ontinuous and bounded on R. If

β ∈ (0, α−1), it is easy to hek that Rα,β is ontinuously di�erentiable on R (beause the series

of derivatives onverges uniformly on R). If β ≥ α+1, Luther [86℄ proved that Rα,β is nowhere

di�erentiable. If β ∈ [α− 1, α+ 1), several partial results about the di�erentiability of Rα,β are

known (see [86,103℄). Moreover, some results are also known for the ases β = 2 (see [49,61℄),

β = 3 (see [45℄) and β ∈ N (see [28℄). Conerning the Hölder ontinuity and also the Hölder

exponent of Rα,β, several partiular ases have been studied (see [21,28,61,68,73,118℄).

In this hapter, we study the uniform Hölder ontinuity of Rα,β with β ≥ α − 1. We apply

some obtained results to the more general ase of nonharmoni Fourier series. We then present

the graphial representation of R2,β for some partiular values of β. We analyse the partiular

and amazing behaviour ofRα,β as β inreases. The results presented in this hapter are from [17℄.

45
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4.1 Hölder Continuity of Generalized Riemann Funtion

In 2010, Johnsen [73℄ showed that if β > α− 1, then Rα,β is uniformly Hölder ontinuous

with an exponent greater or equal to (α− 1)/β. In order to omplete and generalize this result,

we use some tehniques di�erent from the ones of Johnsen. Our approah is based on the

ontinuous wavelet transform of Rα,β related to the Lusin wavelet presented in the previous

hapter, and follows the approahes used to obtain the Hölder ontinuity of R in [55,61,69℄.

This method has two advantages: we an onsider both ases β = α− 1 and β > α− 1 to study

the uniform Hölder ontinuity of Rα,β and then show the optimality of the obtained exponent.

In other words, we alulate the uniform Hölder exponent of Rα,β for β ≥ α− 1. These results

are summarized in the following theorem.

Theorem 4.1.1. For β ≥ α− 1, we have

HRα,β
(R) =

α− 1

β
.

The generalized Riemann funtion and the Lusin wavelet satisfy the onditions of Theo-

rem 3.2.1. Indeed, we know that Rα,β is ontinuous and bounded and that the Lusin wavelet ψL
belongs to H2(R). Moreover, Rα,β is weakly osillating around the origin beause

∣∣∣∣
1

2r

∫ x+r

x−r
Rα,β(t) dt

∣∣∣∣ ≤
∣∣∣∣∣
1

2r

+∞∑

n=1

cos((x− r)πnβ)− cos((x+ r)πnβ)

πnα+β

∣∣∣∣∣ ≤
ζ(α+ β)

πr

for all x ∈ R and r > 0, where ζ is the well-known Riemann zeta funtion de�ned by

ζ(z) :=

+∞∑

n=1

1

nz
, ℜz > 1.

The funtion x 7→ xαψL(x) is learly integrable for α ∈ (0, 1). Besides, it is easy to �nd

a di�erentiable wavelet ϕ suh that x 7→ xϕ(x) is integrable on R, suh that Dϕ is square

integrable on R and suh that ∫ +∞

0
ϕ̂(ξ)e−ξ dξ = −1

2
.

The funtion

x 7→ 2i

π(x+ i)3

is a suitable example (of ϕ).

To prove Theorem 4.1.1, we �rst need to determine the ontinuous wavelet transform of Rα,β
related to the Lusin wavelet ψL given in Expression (3.5), as in [55, 61, 69℄ where the ase

α = β = 2 is treated.

Proposition 4.1.2. We have

WψL
Rα,β(a, b) = iaπ

+∞∑

n=1

eiπn
β(b+ia)

nα−β
(4.2)

for all a > 0 and b ∈ R.
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Proof. We an write

Rα,β(x) =
1

2

(
Tα,β(x)− T̃α,β(x)

)

for x ∈ R with

Tα,β(x) := −i
+∞∑

n=1

eiπn
βx

nα
and T̃α,β(x) := Tα,β(−x).

In other words, Rα,β is the odd part of Tα,β .

Let us �x a > 0 and b ∈ R. We have

WψL
Tα,β(a, b) =

∫

R

Tα,β(x)
1

a
ψL

(
x− b

a

)
dx =

a

π

∫

R

Tα,β(x)

(x− (b+ ia))2
dx.

For η > 0 and r > 0, let us denote by γη,r the losed path formed by the juxtaposition of the

two following ones: the �rst path desribes the segment [−r+ iη, r+ iη] and the seond one the

half-irle of enter iη and radius r inluded in H := {z ∈ C : ℑz > 0}. The funtion Tα,β is

holomorphi on H beause the series onverges uniformly on every ompat set of H. As the

point b+ ia is situated inside the urve desribed by γη,r for η ∈ (0, a) and r > a, we obtain

WψL
Tα,β(a, b) =

a

π
lim

r→+∞
lim
η→0+

∫

γη,r

Tα,β(z)

(z − (b+ ia))2
dz

= 2ia (DTα,β)(b+ ia)

= 2iaπ

+∞∑

n=1

eiπn
β(b+ia)

nα−β
,

thanks to Cauhy's integral formula. Similarly, the ontinuous wavelet transform of T̃α,β is given

by

WψL
T̃α,β(a, b) =

∫

R

Tα,β(−x)
1

a
ψL

(
x− b

a

)
dx =

a

π
lim

r→+∞
lim
η→0+

∫

γη,r

Tα,β(z)

(z − (−b− ia))2
dz = 0

by homotopy invariane, beause the point −b − ia does not belong to H. We thus have the

onlusion. �

Let us now analyse WψL
Rα,β in order to study the uniform Hölder ontinuity of Rα,β with

Theorem 3.2.1. We have

|WψL
Rα,β(a, b)| ≤ aπ

+∞∑

n=1

e−aπn
β

nα−β
= |WψL

Rα,β(a, 0)| (4.3)

for a > 0 and b ∈ R. The funtion fα,β : x 7→ xβ−α e−aπx
β
is di�erentiable on (0,+∞) and

Dfα,β(x) = e−aπx
β

xβ−α−1
(
(β − α)− aπβxβ

)
, x > 0.

Then, fα,β is dereasing on (0,+∞) if β ∈ [α − 1, α) and on (((β − α)/aπβ)1/β ,+∞) if β ≥ α.

The next developments are mainly based on the lassial omparison priniple between series

and integral (when the general term is dereasing).

We note that fα,β is integrable on (0,+∞) only if β > α − 1. We therefore split the study

of the uniform Hölder ontinuity and the alulus of the uniform Hölder exponent of Rα,β into

two ases: β > α− 1 and β = α− 1.
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Proposition 4.1.3. If β > α− 1, then Rα,β ∈ Λ
α−1
β (R) and

HRα,β
(R) =

α− 1

β
.

Proof. 1. Let us �rst onsider the ase β ∈ (α − 1, α). The funtion fα,β is dereasing on

[1,+∞) and we have

|WψL
Rα,β(a, b)| ≤ aπ

(
e−aπ +

+∞∑

n=2

e−aπn
β

nα−β

)
≤ aπ

(
e−aπ +

∫ +∞

1

e−aπx
β

xα−β
dx

)

for a > 0 and b ∈ R. For the seond term of the right hand side of the last inequality, we obtain

∫ +∞

1

e−aπx
β

xα−β
dx ≤

∫ +∞

0

e−aπx
β

xα−β
dx =

1

β
π

α−1
β

−1 Γ

(
1 + β − α

β

)
a

α−1
β

−1

for a > 0, where Γ is de�ned by

Γ(x) :=

∫ +∞

0
e−t tx−1 dt, x > 0,

as usual. For the �rst term, we note that the funtion a 7→ e−aπa
1−α−1

β
is bounded on (0,+∞)

beause α− 1 < β. Then, there exists Cα,β > 0 suh that

|WψL
Rα,β(a, b)| ≤ Cα,β a

α−1
β

for all a > 0 and b ∈ R, whih implies Rα,β ∈ Λ
α−1
β (R) using Theorem 3.2.1.

Let us show the optimality of this exponent (α−1)/β related to the uniform Hölder ontinuity.

Let C > 0 and η > 0; we have

|WψL
Rα,β(a, 0)| = aπ

+∞∑

n=1

e−πn
βa

nα−β
≥ aπ

∫ +∞

1

e−aπx
β

xα−β
dx =

1

β
(aπ)

α−1
β Γ

(
β − α+ 1

β
, aπ

)

for a > 0, where Γ is the inomplete Gamma funtion de�ned by

Γ(x, y) :=

∫ +∞

y
e−ttx−1 dt, (x, y) ∈ (0,+∞)× [0,+∞).

Sine Γ((β − α+ 1)/β, aπ) → Γ((β − α+ 1)/β) and aη → 0 as a→ 0+, there exists A > 0 suh

that, for all a ∈ (0, A), we have

|WψL
Rα,β(a, 0)| > C a

α−1
β

+η
.

Hene the onlusion, using Theorem 3.2.1.

2. Let us now onsider the ase β ≥ α and let us write Na := ⌊((β − α)/aπβ)1/β⌋ + 1. If

a > 1, then Na = 1 and we an proeed as in the previous ase. Let us therefore suppose that
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a ∈ (0, 1]. We have

|WψL
Rα,β(a, b)| ≤ aπ

(
Na∑

n=1

e−aπn
β

nα−β
+

+∞∑

n=Na+1

e−aπn
β

nα−β

)

≤ aπ

(
NaN

β−α
a +

∫ +∞

Na

e−aπx
β

xα−β
dx

)

≤ aπ



((

β − α

πβ

) 1
β

+ a
1
β

)β−α+1

a
α−1
β

−1 +

∫ +∞

0

e−aπx
β

xα−β
dx




≤ a
α−1
β π



((

β − α

πβ

) 1
β

+ 1

)β−α+1

+
1

β
π

α−1
β

−1
Γ

(
1 + β − α

β

)
 .

We then have Rα,β ∈ Λ
α−1
β (R), using Theorem 3.2.1.

Let us show the optimality of the exponent related to the uniform Hölder ontinuity. Let

C > 0 and η > 0; we have

|WψL
Rα,β(a, 0)| = aπ

+∞∑

n=1

e−πn
βa

nα−β

≥ aπ

+∞∑

n=Na

e−πn
βa

nα−β

≥ aπ

∫ +∞

Na

e−aπx
β

xα−β
dx

=
1

β
(aπ)

α−1
β

∫ +∞

aπNβ
a

e−u u
β−α+1

β
−1 du

≥ 1

β
(aπ)

α−1
β Γ


β − α+ 1

β
,

((
β − α

β

)1/β

+ (aπ)1/β

)β


for a > 0. As in the ase β ∈ (α− 1, α), there exists A > 0 suh that, for all a ∈ (0, A), we have

|WψL
Rα,β(a, 0)| > C a

α−1
β

+η,

hene the onlusion, using one again Theorem 3.2.1. �

Remark 4.1.4. In fat, taking b = 2k with k ∈ Z, we an show that Rα,β ∈ Λ
α−1
β (2k) and that

the exponent annot be improved beause WψL
Rα,β(a, 2k) = WψL

Rα,β(a, 0) for all a > 0. In

other words, we have

HRα,β
(2k) =

α− 1

β
.

Sine this quantity is stritly smaller than 1, Rα,β is onsequently not di�erentiable at 2k.

Proposition 4.1.5. We have Rα,α−1 ∈ Λ1−δ(R) for all δ ∈ (0, 1) and HRα,α−1(R) = 1.

Proof. We have

|WψL
Rα,α−1(a, b)| ≤ aπ

(
e−aπ +

∫ +∞

1

e−aπx
α−1

x
dx

)
= aπ

(
e−aπ +

1

α− 1
E1(aπ)

)
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for a > 0 and b ∈ R, where E1 is the exponential integral de�ned by

E1(x) :=

∫ +∞

1

e−xt

t
dt, x > 0.

Sine we have

1

2
e−x ln

(
1 +

2

x

)
< E1(x) < e−x ln

(
1 +

1

x

)
(4.4)

for all x > 0 (see [1℄ page 229), we obtain

|WψL
Rα,α−1(a, b)| ≤ aπ e−aπ

(
1 +

1

α− 1
ln

(
1 +

1

aπ

))

for a > 0 and b ∈ R. Let us �x δ ∈ (0, 1). There exists A > 0 suh that, for all a ∈ (0, A), we

have

1

α− 1

ln
(
1 + 1

aπ

)
(
1 + 1

aπ

)δ < 1

and then

|WψL
Rα,α−1(a, b)| ≤ aπ e−aπ

(
1 +

(
1 +

1

aπ

)δ)
≤ aπ

(
1 + 2δ

(
1 +

(
1

aπ

)δ))
.

There also exists A′ ∈ (0, A) suh that, for all a ∈ (0, A′), we have

|WψL
Rα,α−1(a, b)| ≤ C ′

δa
1−δ,

where C ′
δ is a positive onstant (depending only on δ). Sine the funtion

a 7→ aδe−aπ
(
1 +

1

α− 1
ln

(
1 +

1

aπ

))

is bounded on [A′,+∞), we also have

|WψL
Rα,α−1(a, b)| ≤ C ′′

δ a
1−δ

for a ∈ [A′,+∞), where C ′′
δ is another positive onstant. We thus obtain

|WψL
Rα,α−1(a, b)| ≤ Cδ a

1−δ

for all a > 0 and b ∈ R where Cδ := max{C ′
δ, C

′′
δ }, whih implies Rα,α−1 ∈ Λ1−δ(R) using

Theorem 3.2.1.

Let us now show that this exponent of uniform Hölder ontinuity is optimal. Let C > 0; we

have

|WψL
Rα,α−1(a, 0)| ≥ aπ

∫ +∞

1

e−aπx
α−1

x
dx =

aπ

α− 1
E1(aπ) ≥ a

π

2(α − 1)
e−aπ ln

(
1 +

2

aπ

)

for all a > 0 thanks to Inequality (4.4). There so exists A > 0 suh that, for all a ∈ (0, A), we

have

|WψL
Rα,α−1(a, 0)| > Ca,

hene the onlusion using one last time Theorem 3.2.1.

�
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4.2 Extension to Nonharmoni Fourier Series

A part of Theorem 4.1.1 an be adapted for partiular nonharmoni Fourier series. Let us

�rst reall the notion of nonharmoni Fourier series (see [66,86,122℄).

De�nition 4.2.1. Let a := (an)n∈N be a sequene of omplex numbers and let λ := (λn)n∈N be

an inreasing sequene of positive numbers whih onverges to in�nity. A nonharmoni Fourier

series (related to the sequenes a and λ) is a funtion Sa,λ de�ned by

Sa,λ(x) :=
+∞∑

n=1

an e
iλnx, x ∈ R,

if the series onverges.

If the series

∑+∞
n=1 an is absolutely onvergent, then the above series (related to Sa,λ) on-

verges uniformly on R. We will assume that this is the ase in what follows. Suh a funtion

Sa,λ is then ontinuous and bounded on R. As for Rα,β, we an alulate the ontinuous wavelet

transform of Sa,λ (related to the Lusin wavelet).

Sine λn > 0 for all n ∈ N, Sa,λ is a holomorphi funtion on H and we have

WψL
Sa,λ(a, b) = −2a

+∞∑

n=1

anλn e
iλn(b+ia)

for a > 0 and b ∈ R, similarly to Equality (4.2). If we assume that there exist C1, C2, C3 > 0,

α > 1 and β > 0 suh that

|an| ≤
C1

nα
and C2n

β ≤ λn ≤ C3n
β

for all n ∈ N, we then obtain

|WψL
Sa,λ(a, b)| ≤ 2aC1C3

+∞∑

n=1

e−C2anβ

nα−β

for a > 0 and b ∈ R, i.e. an expression similar to the one obtained for |WψL
Rα,β(a, b)| in

Expression (4.3). Using the same development as in the study of the uniform Hölder ontinuity

of Rα,β with α > 1 and β ≥ α− 1, we get the following orollary.

Corollary 4.2.2. With the previous assumptions on a and λ, we have Sa,λ ∈ Λ
α−1
β (R) if

β > α− 1 and Sa,λ ∈ Λ1−δ(R) for all δ ∈ (0, 1) if β = α− 1.

For example, we obtain the uniform Hölder ontinuity of the funtion Sa,λ with λn = n3+n2

and an = n−α for n ∈ N where α ∈ (1, 4) for example. By the previous orollary, we have

Sa,λ ∈ Λ
α−1
3 (R) sine n3 ≤ λn ≤ 3n3 for n ∈ N. In fat, this example is a part of another

generalisation of Riemann funtion (see [29℄).
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Figure 4.1. Graphial representations of R2,1 and R2,3/2.
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Figure 4.2. Graphial representations of R2,2 and R2,4.
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Figure 4.3. Graphial representation of R2,10.

4.3 Behaviour of Rα,β as β Inreases

If we �x α > 1, we know that the uniform Hölder exponent of Rα,β dereases as β inreases,

thanks to Theorem 4.1.1. Moreover, we know that this exponent is exatly the Hölder exponent

of Rα,β at the origin. This phenomenon is learly illustrated in Figure 4.1, Figure 4.2 and

Figure 4.3 in the ase α = 2.

As β tends to in�nity, we note that the graphial representation of Rα,β looks like to the one

of the funtion s : x 7→ sin(πx) (in a ertain sense to establish), with some noise, �utuations or

osillations all around. In fat, s is simply the �rst term of the series de�ning Rα,β. In the next

two propositions, we give a onvergene result and show that the �utuations have a onstant

amplitude (i.e. independent of β). To do so, let us reall the usual de�nition of the mean of an

integrable funtion over a bounded interval.

De�nition 4.3.1. Let a, b ∈ R be suh that a < b and let f be an integrable funtion on (a, b).

The mean of the funtion f over the inverval (a, b) is de�ned by

ma,b
f :=

1

b− a

∫ b

a
f(x) dx.

Proposition 4.3.2. Let α > 1. For all a, b ∈ R suh that a < b, we have

lim
β→+∞

ma,b
Rα,β

= ma,b
s .

Proof. We have

∣∣∣∣
∫ b

a
(Rα,β(x)− sin(πx)) dx

∣∣∣∣ =
∣∣∣∣∣

+∞∑

n=2

cos(πnβa)− cos(πnβb)

πnα+β

∣∣∣∣∣ ≤
2

π
(ζ(α+ β)− 1)

and we know that ζ(x) → 1 as x→ +∞, hene the onlusion. �
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Proposition 4.3.3. Let α > 1 and let β ∈ N. The funtion Rα,β is periodi of period 2 and we

have ∫ 1

−1
(Rα,β(x)− sin(πx))2 dx = ζ(2α) − 1.

Proof. The periodiity of Rα,β is easy to hek. Let us alulate the integral. By developing

x 7→ Rα,β(x)− sin(πx) in Fourier series, we have

Rα,β(x)− sin(πx) =
a0
2

+

+∞∑

m=1

(am cos(πmx) + bm sin(πmx))

in L2([−1, 1]) where a0 = am = 0 and

bm = 2

∫ 1

0
(Rα,β(x)− sin(πx)) sin(πmx) dx

=
+∞∑

n=2

1

nα

∫ 1

0

(
cos(xπ(nβ −m))− cos(xπ(nβ +m))

)
dx

=





1

mα/β
if m = kβ for one k ∈ N \{1}

0 otherwise

for all m ∈ N. Consequently, by Parseval formula, we obtain

∫ 1

−1
(Rα,β(x)− sin(πx))2 dx =

+∞∑

m=1

b2m =

+∞∑

k=2

1

k2α
= ζ(2α)− 1,

as expeted. �

The two previous propositions are illustrated in Figure 4.4. Let us end this setion with a

simple remark about the behaviour of Rα,β as α tends to in�nity.

Remark 4.3.4. Proposition 4.3.2 is also �satis�ed� for α: we have

lim
α→+∞

ma,b
Rα,β

= ma,b
s

for all β > 0 and all a, b ∈ R suh that a < b. Moreover, by Proposition 4.3.3, we have

lim
α→+∞

∫ 1

−1
(Rα,β(x)− sin(πx))2 dx = 0

for all β ∈ N. In fat, a stronger result holds: for any �xed β > 0, Rα,β onverges uniformly

on R to s as α tends to in�nity beause we have

|Rα,β(x)− sin(πx)| ≤
+∞∑

n=2

1

nα
= ζ(α)− 1

for all x ∈ R.
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Figure 4.4. Mean value and amplitude of �utuations of x 7→ R2,10(x)− sin(πx)
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Chapter 5

Nonstationary Orthonormal Basis

of Wavelets

The lassial theory of wavelets in L2(R) is now a well known topi and tool in various on-

texts (funtional analysis, signal analysis, multifratal analysis,. . . ). Typially, an orthonormal

basis of wavelets of L2(R) is an orthonormal basis of L2(R) of type

2j/2ψ(2j · −k), j, k ∈ Z,

where the square integrable funtion ψ is alled the �mother wavelet�. Many examples are known

and the usual method to obtain suh bases onsists to use a standard proedure (see [33,87,92℄)

starting from a multiresolution analysis (or a saling funtion). The question arising naturally

is whether every orthonormal basis of wavelets an always be obtained from a multiresolution

analysis with suh a proedure. The answer is negative (see the example given by Journé

in [52,87℄) and neessary and su�ient onditions have been proposed by several authors in [11,

47,52,81,82℄.

In several ontexts, to answer preise problems whih an not be solved in the standard

setting, a generalization of the lassial de�nition of multiresolution analysis and orthonormal

basis of wavelets have been proposed (see [15,16,35,119℄). This new point of view is onerned

with the introdution of a �nonstationary� situation, in the sense that the mother wavelet is now

admitted to depend on the sale j. The proposed de�nition (either in the L2(R) ase, see [35℄,

or in the Sobolev ase, see [16℄) is the following: a nonstationary orthonormal basis of wavelets

of L2(R) is an orthonormal basis of L2(R) of type

2j/2ψ(j)(2j · −k), j, k ∈ Z,

where the square integrable funtions ψ(j)
, j ∈ Z, are again alled the �mother wavelets�. Several

expliit examples are known, even in the more general ase of biorthogonal wavelets, and all of

them have been onstruted from a nonstationary multiresolution analysis in a very similar way

to the stationary ase (see [12,15,16,35,41,119℄). More preisely, the papers [12,15,16,35,119℄

involve Exponential-Splines while the paper [41℄ is onerned with Splines. On the one hand,

the paper [41℄ shows that it is possible to onstrut an in�nitely di�erentiable orthonormal basis

of wavelets with ompat support in a nonstationary setting (it is known that this is not possible

in the stationary ase). On the other hand, some of the onstrutions of [15,16,119℄ lead to

funtions of the same type, but starting from a di�erent point of view. Firstly, the paper [119℄ is

onerned with L2(R) and with signal analysis purposes, involving reonstrution of exponential

polynomials. Seondly, the papers [15,16℄ fous on the problem of the onstrution of regular

59
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orthonormal ompatly supported basis of wavelets in Sobolev spaes, as a generalization of

Daubehies' ompatly supported wavelets.

Similarly to the stationary ase, a natural question arising in the nonstationary ontext

is whether every nonstationary orthonormal basis of wavelets an always be obtained from a

multiresolution analysis, with the introdution of some natural dependene on the sale. The

purpose of this hapter is to try to answer this question.

In this hapter, we �rst give the de�nition of nonstationary orthonormal basis of wavelets

of L2(R) and a theoretial haraterization of suh bases. We then onsider the onstrution of

suh bases from a nonstationary multiresolution analysis of L2(R) and we present a neessary

and su�ient ondition about suh a building proedure (under some additional asymptoti as-

sumption on the mother wavelets). Finally, we show the non existene of �regular� nonstationary

bases of wavelets in the Hardy spae H2(R). The results presented in this hapter are mainly

from [18℄.

5.1 Nonstationary Orthonormal Basis of Wavelets

Let us �rst reall the notion of nonstationary basis of wavelets of L2(R) (see [16,35,98℄).

De�nition 5.1.1. Let ψ(j) ∈ L2(R) for j ∈ Z. A nonstationary orthonormal basis of wavelets

of L2(R) is an orthonormal basis of L2(R) of type

2j/2ψ(j)(2j · −k), j, k ∈ Z .

The funtions ψ(j)
, j ∈ Z, are alled the mother wavelets of this basis.

Remark 5.1.2. The mother wavelets ψ(j)
are not wavelets in the sense of De�nition 3.1.1. They

are just square integrable funtions.

The study of two series involving a sequene of square integrable funtions allows to de-

termine whether this sequene leads to a nonstationary orthonormal basis of wavelets. It is

the objet of the following �theoretial� haraterization of nonstationary orthonormal bases of

wavelets. This result will be useful in the following, espeially for the theorem onerning the

onstrution of a nonstationary orthonormal basis of wavelets starting from a nonstationary

multiresolution analysis. The proof is inspired from the stationary ase (see [47, 52℄) and is

presented in Setion 5.5.

Theorem 5.1.3. For j ∈ Z, let ψ(j) ∈ L2(R) suh that ‖ψ(j)‖L2(R) = 1.

(a) If we have ∑

j∈Z

|ψ̂(−j)(2jξ)|2 = 1 (5.1)

for almost all ξ ∈ R and

tp,q(ξ) :=

+∞∑

j=0

ψ̂(p−j)(2jξ) ψ̂(p−j)(2j(ξ + 2qπ)) = 0 (5.2)

for almost all ξ ∈ R and for all p ∈ Z and q ∈ 2Z+1, then {2j/2ψ(j)(2j · −k) : j, k ∈ Z} is

an orthonormal basis of L2(R).



5.2. Nonstationary Multiresolution Analysis 61

(b) Conversely, if {2j/2ψ(j)(2j · −k) : j, k ∈ Z} is an orthonormal basis of L2(R) and if there

exist α,A > 0 suh that ∫

R

(1 + |ξ|)α|ψ̂(−j)(ξ)|2 dξ ≤ A (5.3)

for all j ∈ N, Equalities (5.1) and (5.2) are satis�ed almost everywhere on R.

Contrary to the stationary ase, some additional dependenes on the sale j appear. More-

over, Condition (5.3) has also been added and will be alled it Additional asymptoti ondition

in the following of this hapter. We mainly use it to show the integrability of some series on

the sale index j of mother wavelets (see Expressions (5.13) and (5.19)). It is inspired from

Condition (5.6) (see [16℄).

Remark 5.1.4. In [98℄, at the same time, independently, the authors got the same result with

the following additional ondition instead of Condition (5.3): the series

+∞∑

j=1

2j |ψ̂(−j)(2j ·)|2 (5.4)

onverges in L1
loc(R \{0}). In fat, this ondition is weaker than Condition (5.3) and is atually

also visible in the proof of Theorem 5.1.3 (see the end of the proof of Lemma 5.5.4).

Let us already analyse the onvergene of the series appearing in Theorem 5.1.3. The seond

series (i.e. the series tp,q in Equality (5.2)) onverges in L1(R) thanks to Cauhy-Shwarz's

inequality and ‖ψ(j)‖L2(R) = 1 for all j ∈ Z. It then onverges almost everywhere on R by

Levi's theorem. By ontrast, it is di�ult to show that the �rst series onverges almost every-

where beause the sum is over all the integers. We wait for Setion 5.5 and more preisely for

Proposition 5.5.5.

5.2 Nonstationary Multiresolution Analysis

A lassial method to onstrut a nonstationary orthonormal basis of wavelets of L2(R) on-

sists to start from a nonstationary multiresolution analysis (or from saling funtions) of L2(R)

(see [16,35,98,119℄).

De�nition 5.2.1. A nonstationary multiresolution analysis of L2(R) is an inreasing sequene

(Vj)j∈Z of losed linear subspaes of L2(R) suh that

(a)

⋂

j∈Z

Vj = {0} and

⋃

j∈Z

Vj = L2(R),

(b) for j ∈ Z, there exists ϕ(j) ∈ Vj suh that {2j/2ϕ(j)(2j ·−k) : k ∈ Z} is an orthonormal basis

of Vj .

The funtions ϕ(j)
, j ∈ Z, are alled saling funtions.

In fat, the seond point of this de�nition an be weakened as follows: for j ∈ Z, there exists

g(j) ∈ Vj suh that {2j/2g(j)(2j · −k) : k ∈ Z} is a Riesz basis of Vj . For �xed j ∈ Z, it means

that
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(a) for eah f ∈ Vj , there exists a unique sequene (ck)k∈Z ∈ ℓ2(Z) suh that

f(·) =
∑

k∈Z

ck2
j/2g(j)(2j · −k)

in L2(R),

(b) there exist Aj , Bj > 0 suh that

Aj
∑

k∈Z

|ck|2 ≤
∥∥∥∥∥
∑

k∈Z

ck2
j/2g(j)(2j · −k)

∥∥∥∥∥

2

L2(R)

≤ Bj
∑

k∈Z

|ck|2

for all sequene (ck)k∈Z ∈ ℓ2(Z).

Thanks to Lemma below (see [16℄), it then su�es to de�ne ϕ(j)
by

ϕ̂(j)(ξ) :=
ĝ(j)(ξ)√∑

k∈Z

|ĝ(j)(ξ + 2kπ)|2

for almost every ξ ∈ R and {2j/2ϕ(j)(2j · −k) : k ∈ Z} is an orthonormal basis of Vj .

Lemma 5.2.2. Let g ∈ L2(R) and j ∈ Z. The funtions 2j/2g(2j · −k), k ∈ Z, are orthonormal

in L2(R) if and only if ∑

k∈Z

|ĝ(ξ + 2kπ)|2 = 1

for almost every ξ ∈ R.

Without going into the details, let us give some information about the onstrution of a

nonstationary multiresolution analysis of L2(R) from saling funtions (see [16℄).

Proposition 5.2.3. For j ∈ Z, let ϕ(j) ∈ L2(R). Let us assume that, for eah j ∈ Z, the

funtions 2j/2ϕ(j)(2j · −k), k ∈ Z, are orthonormal in L2(R). Let us set

Vj := span
{
2j/2ϕ(j)(2j · −k) : k ∈ Z

}
, j ∈ Z .

(a) We have Vj ⊂ Vj+1 for all j ∈ Z if and only if, for all j ∈ Z, there exists a 2π-periodi and

loally square integrable funtion m
(j+1)
0 suh that

ϕ̂(j)(2ξ) = m
(j+1)
0 (ξ)ϕ̂(j+1)(ξ) (5.5)

for almost every ξ ∈ R.

(b) The union of (Vj)j∈Z is dense in L2(R) if and only if

lim
j→+∞

|ϕ̂(j)(2−jξ)| = 1

for almost every ξ ∈ R.

() If there exist A,α > 0 suh that

∫

R

(1 + |ξ|)α |ϕ̂(j)(ξ)|2 dξ ≤ A (5.6)

for all j ∈ −N, then the intersetion of (Vj)j∈Z is redued to {0}.
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The funtions m
(j)
0 , j ∈ Z, are alled �lters. Let us mention that, for all j ∈ Z, they satisfy

the equality

|m(j)
0 (ξ)|2 + |m(j)

0 (ξ + π)|2 = 1 (5.7)

for almost all ξ ∈ R. Equation (5.5) is often alled the saling equation. Condition (5.6) is

similar to Additional asymptoti ondition (5.3).

The following result allows to onstrut a nonstationary orthonormal basis of wavelets

of L2(R) from saling funtions (and �lters).

Theorem 5.2.4. For j ∈ Z, let ϕ(j) ∈ L2(R). Let us assume that the spaes

Vj := span
{
2j/2ϕ(j)(2j · −k) : k ∈ Z

}
, j ∈ Z

form a nonstationary multiresolution analysis of L2(R). For j ∈ Z, let us de�ne ψ(j) ∈ L2(R) by

ψ̂(j)(ξ) = e−iξ/2m
(j+1)
0 (ξ/2 + π) ϕ̂(j+1)(ξ/2)

for almost every ξ ∈ R, where m
(j+1)
0 is a �lter oming from Saling equation (5.5). Then,

{2j/2ψ(j)(2j · −k) : j, k ∈ Z} is an orthonormal basis of L2(R).

Under Additional asymptoti ondition (5.3) (of the theoretial haraterization of nonsta-

tionary orthonormal bases of wavelets), the following result gives a neessary and su�ient

ondition to obtain a nonstationary basis of wavelets from a nonstationary multiresolution anal-

ysis. Again, we generalize the proof of [52℄ to the nonstationary ase, whih is presented in

Setion 5.6.

Theorem 5.2.5. For j ∈ Z, let ψ(j) ∈ L2(R). Let us assume that {2j/2ψ(j)(2j · −k) : j, k ∈ Z}
is an orthonormal basis of L2(R).

(a) If the mother wavelets ψ(j)
, j ∈ Z, ome from a nonstationary multiresolution analysis, then

Dj(ξ) :=
+∞∑

n=1

∑

k∈Z

|ψ̂(j−n)(2n(ξ + 2kπ))|2 = 1 (5.8)

for almost all ξ ∈ R and for all j ∈ Z.

(b) Conversely, if Dj = 1 almost everywhere on R for all j ∈ Z and if we assume that Additional

asymptoti ondition (5.3) is satis�ed, then the mother wavelets ψ(j)
, j ∈ Z, ome from a

nonstationary multiresolution analysis of L2(R).

For j ∈ Z, the funtion Dj is sometimes alled the dimension funtion of the mother

wavelet ψ(j)
(see [22℄). For all j ∈ Z, the double series in Expression (5.8) onverges in L1([0, 2π])

beause ‖ψ(j)‖L2(R) = 1 and then almost everywhere on R by Levi's theorem and by periodiity.

Additional asymptoti ondition (5.3) is mentioned beause we use the theoretial hara-

terization of wavelets in the seond part of the proof of Theorem 5.2.5 (and more preisely in

Lemma 5.6.2). In fat, it is not neessary if the nonstationary orthonormal basis of wavelets

veri�es Equalities (5.1) and (5.2) of Theorem 5.1.3.

In the seond part of Theorem 5.2.5, it atually su�es to have Dj > 0 almost everywhere

on (0, 2π) for all j ∈ Z. This is the purpose of the following proposition.
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Proposition 5.2.6. For j ∈ Z, let ψ(j) ∈ L2(R). Let us assume that {2j/2ψ(j)(2j ·−k) : j, k ∈ Z}
is an orthonormal basis of L2(R). Let also assume that Additional asymptoti ondition (5.3) is

satis�ed. For all j ∈ Z, we have Dj = 1 almost everywhere on R if and only if we have Dj > 0

almost everywhere on (0, 2π).

We give the proof of this proposition later, sine it uses some onsiderations of the proof of

Theorem 5.2.5 (see Setion 5.6).

5.3 The Example of Exponential-Splines

In this setion, we illustrate the previous results with the example of the Exponential-Splines.

The Exponential-Spline of parameter λ ∈ Cn (n ∈ N) is the funtion Nλ de�ned by

N̂λ(ξ) :=

n∏

ℓ=1

eλℓ−iξ − 1

λℓ − iξ

for almost every ξ ∈ R (see [35, 79℄). The lassial Spline orresponds to the ase λ = 0.

Exept this partiular ase, the usual struture of (stationary) multiresolution analysis annot

be applied to onstrut a (stationary) orthonormal basis of wavelets of L2(R) from Exponential-

Splines (beause Nλ annot be expressed in terms of its 2-dilates). The nonstationary setting

allows it (see [35,79℄).

Let us onsider in details the ase of the Exponential-Spline Mµ := Niµ with µ ∈ R \{0}.
By de�nition, we learly have

Mµ(x) = eiµx χ[0,1](x), x ∈ R

and

M̂µ(ξ) =





ei
µ−ξ
2

sin
(
µ−ξ
2

)

µ−ξ
2

if ξ 6= µ

1 if ξ = µ

.

For all j ∈ Z, it is easy to hek that {2j/2M2−jµ(2
j · −k) : k ∈ Z} is an orthonormal family

of L2(R). Let us set

Vj := span
{
2j/2M2−jµ(2

j · −k) : k ∈ Z
}

for j ∈ Z and let us show that (Vj)j∈Z is a nonstationary multiresolution analysis of L2(R) with

Proposition 5.2.3.

(a) For all j ∈ Z, we have Vj ⊂ Vj+1 beause we have the following saling equation:

M̂2−jµ(2ξ) = e
i
2
(2−(j+1)µ−ξ) cos

(
2−(j+1)µ− ξ

2

)
M̂2−(j+1)µ(ξ)

for almost every ξ ∈ R.

(b) For almost every ξ ∈ R, we diretly have

lim
j→+∞

|M̂2−jµ(2
−jξ)| = lim

j→+∞

∣∣∣∣∣
sin(2−j µ−ξ2 )

2−j µ−ξ2

∣∣∣∣∣ = 1

and the union of Vj , j ∈ Z, is therefore dense in L2(R).



5.3. The Example of Exponential-Splines 65

() Let α > 0; the funtion ξ 7→ (1 + |ξ|)α|M̂2−jµ(ξ)|2 is integrable on R only for α ∈ (0, 1). We

have ∫

R

(1 + |ξ|)α|M̂2−jµ(ξ)|2 = 2

∫

R

(1 + |2−jµ− 2t|)α
∣∣∣∣
sin(t)

t

∣∣∣∣
2

dt (5.9)

and then, Proposition 5.2.3 does not allow to show that the intersetion of Vj , j ∈ Z, is

redued to {0}. However, [35℄ studies the dimension of the intersetion of Vj , j ∈ Z, and

proves that it is well redued to {0} sine µ is a real parameter.

Consequently, (Vj)j∈Z is a nonstationary multiresolution analysis of L2(R). If we de�ne the

square integrable funtion ψ(j)
by

ψ̂(j)(ξ) := i e−i
ξ
2

sin2
(
2−jµ−ξ

4

)

2−jµ−ξ
4

for almost every ξ ∈ R and for all j ∈ Z, the family {2j/2ψ(j)(2j ·−k) : j, k ∈ Z} is a nonstationary
orthonormal basis of wavelets of L2(R) by Theorem 5.2.4.

Remark 5.3.1. The previous example shows that Condition (5.6) is only su�ient, but not

neessary to have the triviality of the intersetion of Vj , j ∈ Z, de�ned in Proposition 5.2.3.

Let us now show that the nonstationary orthonormal basis of wavelets onstruted from the

saling funtions M2−jµ, j ∈ Z, satis�es Equalities (5.1) and (5.2) of Theorem 5.1.3. To get

that, we use the following equalities.

Lemma 5.3.2. For all x ∈ R, we have

+∞∑

j=0

sin4(2jx)

22j
= sin2(x) and

+∞∑

j=1

sin4(2−jx)

2−2j
= x2 − sin2(x).

Proof. The two series are learly onvergent. Let us �rst remark that

sin4(y) = sin2(y)− 1

4
sin2(2y)

for all y ∈ R. Then, we have

+∞∑

j=0

sin4(2jx)

22j
= lim

J→+∞




J∑

j=0

(
sin(2jx)

2j

)2

−
J∑

j=0

(
sin(2j+1x)

2j+1

)2



= lim
J→+∞

sin2(x)−
(
sin(2J+1x)

2J+1

)2

= sin2(x)

for all x ∈ R. Similarly, we also have

+∞∑

j=1

sin4(2−jx)

2−2j
= lim

J→+∞

((
sin(2−Jx)

2−J

)2

− sin2(x)

)
= x2 − sin2(x)

for all x ∈ R. �
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Firstly, for almost every ξ ∈ R, we have

∑

j∈Z

|ψ̂(−j)(2jξ)|2 =
∑

j∈Z

sin4
(
2jµ−2jξ

4

)

(
2jµ−2jξ

4

)2 =
1

θ2

∑

j∈Z

sin4(2jθ)

22j
= 1,

setting θ := (µ − ξ)/4 and using Lemma 5.3.2. Seondly, for all p ∈ Z and q ∈ 2Z+1 and for

almost every ξ ∈ R, we have

tp,q(ξ) =

+∞∑

j=0

ei2
jqπ

sin2
(
2j−p−2jξ

4

)

2j−pµ−2jξ
4

sin2
(
2j−p−2j(ξ+2qπ)

4

)

2j−pµ−2j (ξ+2qπ)
4

=
1

θ(θ − qπ
2 )


− sin2(θ) cos2(θ) +

+∞∑

j=1

sin4(2jθ)

22j




=
− sin2(θ) cos2(θ) + sin2(θ)− sin4(θ)

θ(θ − qπ
2 )

= 0

setting θ := (2−pµ−ξ)/4 and using again Lemma 5.3.2. Consequently, thanks to Theorem 5.1.3,

we have again proved that {2j/2ψ(j)(2j · −k) : j, k ∈ Z} is a nonstationary orthonormal basis of

wavelets of L2(R).

Remark 5.3.3. The funtions ψ(j)
, j ∈ Z, satisfy the Equalities (5.1) and (5.2) of Theorem 5.1.3

and are the mother wavelets of a nonstationary orthonormal basis of wavelets of L2(R). How-

ever, they do not verify Additional asymptoti ondition (5.3) by an argument similar to Ex-

pression (5.9). Moreover, they do not verify Condition (5.4) (i.e. the other ondition proposed

in [98℄). Indeed, for J ∈ N and for a, b > 0 suh that a < |µ| < b, we have

J∑

j=1

2j
∫

R

|ψ̂(−j)(2jξ)|2 χ[a,b](|ξ|) dξ =

J∑

j=1

∫

R

χ[2ja,2jb](|t|)
sin4

(
2jµ−t

4

)

(
2jµ−t

4

)2 dt

= 4
J∑

j=1

(∫ 2j µ−a
4

2j µ−b
4

sin4(y)

y2
dy +

∫ 2j b+µ
4

2j a+µ
4

sin4(y)

y2
dy

)

and the general term of this sum does not tend to 0 if j → +∞ sine 0 belongs to one of the two

domains of integration of the previous integrals. Consequently, this example shows that both

Conditions (5.3) and (5.4) of Theorem 5.1.3 are only su�ient, but not neessary.

Let us end this setion with the omputation of the dimension Dj of the mother wavelet ψ(j)

for all j ∈ Z. We know that they verify the two equalities of Theorem 5.1.3. If we show that

Dj = 1 almost everywhere for all j ∈ Z, then the mother wavelets ome from a nonstationary

multiresolution analysis of L2(R) by Theorem 5.2.5, what we already know sine we use the

saling funtions M2−jµ, j ∈ Z, to onstrut ψ(j)
, j ∈ Z. For all j ∈ Z and for almost all ξ ∈ R,
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we have

Dj(ξ) =

+∞∑

n=1

∑

k∈Z

|ψ̂(j−n)(2n(ξ + 2kπ))|2

=
+∞∑

n=1

∑

k∈Z

sin4
(
2n 2−jµ−ξ

4 − 2n kπ2

)

(
2n
(
2−jµ−ξ

4 − kπ
2

))2

= 4

+∞∑

n=1

sin4(2nθ)

22n

∑

k∈Z

1

(2θ − kπ)2
,

setting θ := (2−jµ − ξ)/4. The �rst series is equal to sin2(θ) − sin4(θ) = sin2(2θ)/4 by

Lemma 5.3.2 and the seond series to 1/ sin2(2θ), using the summation by residues. Thus,

we obtain Dj(ξ) = 1.

5.4 Smooth Nonstationary Orthonormal Basis of Wavelets in the

Hardy Spae H2(R)

We know that there exists no �regular� orthonormal basis of wavelets in the Hardy spae

H2(R) (see [10,52℄). Is there suh a result in the nonstationary ase? The answer is given by

the following result.

Theorem 5.4.1. There is no sequene (ψ(j))j∈Z of funtions whih belong to H2(R) suh that

(a) |ψ̂(j)| is ontinuous on R for all j ∈ Z,

(b) there exist α,A > 0 suh that

|ψ̂(j)(ξ)| ≤ A

(1 + ξ)α+1/2

for all ξ ≥ 0 and j ∈ Z,

() there exist β,B, η > 0 suh that

|ψ̂(j)(ξ)| ≤ B ξβ

for all ξ ∈ [0, η) and j ∈ N,

and suh that {2j/2ψ(j)(2j · −k) : j, k ∈ Z} forms an orthonormal basis of H2(R).

The proof of this theorem is given in Setion 5.7, beause it is based on some results used

in the developments of the proofs of Theorem 5.1.3 and Theorem 5.2.5 (see the two following

setions). The �rst steps are similar to the stationary ase (see [52℄).

5.5 Proof of Theorem 5.1.3

Before proving Theorem 5.1.3, let us make some observations, similarly to the stationary

ase in [52℄.
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5.5.1 Auxiliary Results and Notations

The following proposition gives a way to hek that the funtions ψj,k(·) := 2j/2ψ(j)(2j ·−k),
j, k ∈ Z, form an orthonormal basis of L2(R) (see for example [33,52℄).

Proposition 5.5.1. Let {ej : j ∈ N} be a family of elements of a Hilbert spae H suh that

‖ej‖H = 1 for j ∈ N. Then, {ej : j ∈ N} is an orthonormal basis of H if and only if

+∞∑

j=1

| 〈f, ej〉 |2 = ‖f‖2H (5.10)

for all f ∈ H. Moreover, if Equality (5.10) is veri�ed for all f ∈ D where D is a dense subset

of H, Equality (5.10) holds for all f ∈ H.

In our ase, sine we assume that ‖ψ(j)‖L2(R) = 1 for all j ∈ Z, the family {ψj,k : j, k ∈ Z}
is an orthonormal basis of L2(R) if and only if

∑

j,k∈Z

| 〈f, ψj,k〉 |2 = ‖f‖2L2(R)

for all f in the dense subspae

D :=
{
f ∈ L2(R) : f̂ ∈ L∞(R) and supp(f̂) is a ompat subset of R \{0}

}

of L2(R). The fat that the support of f̂ is a ompat of R \{0} is used to have the onvergene

of some series (see Expression (5.14) in the proof of Lemma 5.5.4 where a > 0). The following

lemma returns to the density of D in L2(R).

Lemma 5.5.2. The set D is dense in L2(R).

Proof. Let f ∈ L2(R) and ε > 0. Sine f̂ ∈ L2(R), there exists ρ ∈ D(R) suh that

‖f̂ − ρ‖L2(R) ≤
√
π

2
ε.

Let us set ρm := 1
2π (ρ− ρχ[− 1

m
, 1
m
]) for m ∈ N. There exists M ∈ N suh that

‖ρχ[− 1
m
, 1
m
]‖L2(R) ≤

√
π

2
ε

for m ≥M . Consequently, for m ≥M , we obtain

‖f − ρ̌m‖L2(R) ≤
1√
2π

(‖f̂ − ρ‖L2(R) + ‖ρχ[− 1
m
, 1
m
]‖L2(R)) ≤ ε.

Sine ρ̌M ∈ D by onstrution, we have the onlusion. �

Let us then alulate the quantity

I :=
∑

j,k∈Z

| 〈f, ψj,k〉 |2, f ∈ D .
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For f ∈ D, we have

I =
1

(2π)2

∑

j,k∈Z

∣∣∣
〈
f̂ , ψ̂j,k

〉∣∣∣
2

=
1

(2π)2

∑

j,k∈Z

∣∣∣∣
∫

R

2−j/2 f̂(ξ) ei2
−jξk ψ̂(j)(2−jξ) dξ

∣∣∣∣
2

=
1

(2π)2

∑

j,k∈Z

2j
∣∣∣∣
∫

R

f̂(2jξ) ψ̂(j)(ξ) eikξ dξ

∣∣∣∣
2

.

For j ∈ Z, let us set Fj(ξ) := f̂(2jξ)ψ̂(j)(ξ) for almost every ξ ∈ R. By onstrution, Fj ∈
L1(R) ∩ L2(R) and supp(Fj) is a ompat subset of R \{0} for j ∈ Z. We use the following

lemma for Fj (see [30,52℄ for example).

Lemma 5.5.3. Let F ∈ L1(R) ∩ L2(R) suh that supp(F ) is a ompat of R \{0}. Then, the

series ∑

k∈Z

F (·+ 2kπ)

onverges almost everywhere on R to a 2π−periodi and square integrable funtion Φ and we

have ∫

R

Φ(ξ)F (ξ) dξ =
1

2π

∑

k∈Z

|F̂ (k)|2.

For j ∈ Z, we set Φj(ξ) :=
∑

k∈Z Fj(ξ + 2kπ) for almost every ξ ∈ R as in the previous

lemma. We then have

I =
1

(2π)2

∑

j,k∈Z

2j
∣∣∣∣
∫

R

Fj(ξ) e
ikξ dξ

∣∣∣∣
2

=
1

(2π)2

∑

j,k∈Z

2j|F̂j(k)|2

=
1

2π

∑

j∈Z

2j
∫

R

Φj(ξ)Fj(ξ) dξ

=
1

2π

∑

j∈Z

2j
∫

R

f̂(2jξ) ψ̂(j)(ξ)
∑

k∈Z

f̂(2j(ξ + 2kπ)) ψ̂(j)(ξ + 2kπ) dξ.

Taking are of the onvergene of series (see later), we get

I = I0 + I1

with

I0 :=
1

2π

∫

R

|f̂(ξ)|2
∑

j∈Z

|ψ̂(j)(2−jξ)|2 dξ

and

I1 :=
1

2π

∑

j∈Z

2j
∫

R

f̂(2jξ) ψ̂(j)(ξ)
∑

k∈Z \{0}

f̂(2j(ξ + 2kπ)) ψ̂(j)(ξ + 2kπ) dξ. (5.11)

Let us look at the onvergene of the series I0 and I1. To do that, we use the following

lemma.
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Lemma 5.5.4. Under Additional asymptoti ondition (5.3), the series

∑

j∈Z

∑

k∈Z \{0}

2j |f̂(2j ·)| |f̂ (2j(·+ 2kπ))| |ψ̂(j)(·)|2 (5.12)

onverges almost everywhere on R and de�nes an integrable funtion on R for all f ∈ D.

Proof. Sine f ∈ D, we an assume that supp(f̂) ⊂ {ξ ∈ R \{0} : a < |ξ| < b} for b > a > 0.

We write δ := diam(supp(f̂)).

(a) If 2j 2π > δ, then at most one of the points 2jξ or 2j(ξ + 2kπ) belongs to supp(f̂) for

ξ ∈ R \{0} and k ∈ Z \{0}. Hene, in the sum on j in Expression (5.12), we only onsider

j ≤ j0 where j0 is the largest integer number whih veri�es 2j02π ≤ δ.

(b) We have f̂(2j(ξ + 2kπ)) 6= 0 for at most 1 + δ/2j2π integer number k. Using the de�nition

of j0 and the fat that f ∈ D, we have

2j
∑

k∈Z \{0}

|f̂(2j(ξ + 2kπ))| ≤ 2j
(
1 +

δ

2j2π

)
‖f̂‖L∞(R) ≤

(
2j0 +

δ

2π

)
‖f̂‖L∞(R)

≤ δ

π
‖f̂‖L∞(R)

for all j ≤ j0 and almost all ξ ∈ R \{0}.
() If f̂(2jξ) 6= 0, then we have 2−ja ≤ |ξ| ≤ 2−jb.

Hene, for almost all ξ ∈ R \{0}, we have

∑

j∈Z

∑

k∈Z \{0}

2j |f̂(2jξ)| |f̂ (2j(ξ + 2kπ))| |ψ̂(j)(ξ)|2 ≤ δ

π
‖f̂‖2L∞(R)

j0∑

j=−∞

χ[2−ja,2−jb](|ξ|) |ψ̂(j)(ξ)|2.

It only remains to show that the series

j0∑

j=−∞

χ[2−ja,2−jb](| · |) |ψ̂(j)(·)|2 (5.13)

is integrable on R. Indeed, the sequene (gJ )J∈N of integrable funtions on R de�ned by

gJ(ξ) :=

j0∑

j=−J

χ[2−ja,2−jb](|ξ|) |ψ̂(j)(ξ)|2

for almost every ξ ∈ R is learly inreasing. Moreover, using Condition (5.3), we have

∫

R

gJ (ξ) dξ =

j0∑

j=−J

∫

R

χ[2−ja,2−jb](|ξ|)
(1 + |ξ|)α (1 + |ξ|)α|ψ̂(j)(ξ)|2 dξ

≤
j0∑

j=−J

1

(1 + 2−ja)α

∫

R

(1 + |ξ|)α|ψ̂(j)(ξ)|2 dξ

≤ A

j0∑

j=−∞

1

(1 + 2−ja)α
. (5.14)

Thus, by Levi's theorem, the series in Expression (5.13) and then in Expression (5.12) are

integrable on R and onverge almost everywhere on R. �
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Proposition 5.5.5. Under Additional asymptoti ondition (5.3),

(a) the series I1 is onvergent,

(b) the series I onverges if and only if

∑

j∈Z

|ψ̂(j)(2−j ·)|2 ∈ L1
loc(R \{0}). (5.15)

Proof. (a) Sine

2|ψ̂(j)(ξ)||ψ̂(j)(ξ + 2kπ)| ≤ |ψ̂(j)(ξ)|2 + |ψ̂(j)(ξ + 2kπ)|2 (5.16)

for all k ∈ Z \{0} and for almost all ξ ∈ R, I1 is onvergent thanks to Lemma 5.5.4.

(b) With the previous item, I onverges if and only if I0 onverges. We then have to show

that I0 onverges if and only if the series in Expression (5.15) is loally integrable on R \{0}. If
we suppose that I0 is onvergent for all f ∈ D, let K be a ompat of R \{0}. Taking f suh

that f̂ := χK , we have

I0 =
1

2π

∫

R

|f̂(ξ)|2
∑

j∈Z

|ψ̂(j)(2−jξ)|2 dξ = 1

2π

∫

K

∑

j∈Z

|ψ̂(j)(2−jξ)|2 dξ

and then the series in Expression (5.15) is loally integrable on R \{0}. Reiproally, if we

suppose that the series in Expression (5.15) is loally integrable on R \{0}, we have

I0 =
1

2π

∫

R

|f̂(ξ)|2
∑

j∈Z

|ψ̂(j)(2−jξ)|2 dξ ≤ 1

2π
‖f̂‖2L∞(R)

∫

supp(f̂)

∑

j∈Z

|ψ̂(j)(2−jξ)|2 dξ

sine f ∈ D and we have the onlusion. �

The series of Equality (5.1) of Theorem 5.1.3 diretly appears in the de�nition of I0. The

series of Equality (5.2) also appears in I1 when we write I1 as follows:

I1 =
1

2π

∫

R

∑

p∈Z

∑

q∈2Z+1

2p f̂(2pξ) f̂(2p(ξ + 2qπ)) tp,q(ξ) dξ.

Let us get this. For every k ∈ Z \{0}, there exist unique ℓ ∈ N0 and q ∈ 2Z+1 suh that

k = 2ℓq. Then, from Expression (5.11), sine I1 is onvergent, we have

2πI1 =

∫

R

∑

j∈Z

f̂(ξ) ψ̂(−j)(2jξ)
∑

k∈Z \{0}

f̂(ξ + 2−j2kπ) ψ̂(−j)(2jξ + 2kπ) dξ

=

∫

R

∑

j∈Z

f̂(ξ) ψ̂(−j)(2jξ)
∑

q∈2Z+1

+∞∑

ℓ=0

f̂(ξ + 2−j 2 2ℓqπ) ψ̂(−j)(2jξ + 22ℓqπ) dξ

=

∫

R

f̂(ξ)
∑

q∈2Z+1

+∞∑

ℓ=0

∑

p∈Z

ψ̂(p−ℓ)(2ℓ−pξ) ψ̂(p−ℓ)(2ℓ(2−pξ + 2qπ)) f̂(ξ + 2p 2qπ) dξ

=

∫

R

∑

p∈Z

∑

q∈2Z+1

2p tp,q(ξ) f̂(2pξ) f̂(2
p(ξ + 2qπ)) dξ.

Before proving Theorem 5.1.3, let us reall some elements about the notion of Lebesgue point

(see [106℄).
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De�nition 5.5.6. Let F be a measurable and loally integrable funtion on R. The real x0 is

a Lebesgue point for F if

lim
δ→0+

1

2δ

∫ x0+δ

x0−δ
|F (x) − F (x0)| dx = 0.

Proposition 5.5.7. If F is a measurable and loally integrable funtion on R, then almost

every real number is a Lebesgue point for F .

This previous proposition will be useful to prove the neessary ondition of Theorem 5.1.3.

5.5.2 Proof of the Su�ient Condition of Theorem 5.1.3

We are now armed to prove Theorem 5.1.3. We proeed as in [52℄, with some adaptations

to the nonstationary ase. The su�ient ondition is relatively simple.

Using Equalities (5.2) and (5.1) and the previous onsiderations on I, I0 and I1, we sues-

sively obtain

∑

j,k∈Z

| 〈f, ψj,k〉 |2 = I = I0 =
1

2π

∫

R

|f̂(ξ)|2
∑

j∈Z

|ψ̂(j)(2−jξ)|2 dξ = ‖f‖2L2(R)

for all f ∈ D . Hene the onlusion by Proposition 5.5.1.

5.5.3 Proof of the Neessary Condition of Theorem 5.1.3

Let us now show the neessary ondition of Theorem 5.1.3. Let us assume that {2j/2ψ(j)(2j ·
−k) : j, k ∈ Z} is an orthonormal basis of L2(R).

Equality (5.1)

Let us begin with Equality (5.1). Beause the series I onverges by hypothesis (and Propo-

sition 5.5.1), the funtion

S(·) :=
∑

j∈Z

|ψ̂(−j)(2j ·)|2

is loally integrable on R \{0} thanks to Proposition 5.5.5. With Proposition 5.5.7, it su�es to

show that S(ξ0) = 1 for some Lebesgue point ξ0 6= 0 of S. Let δ > 0 suh that [ξ0 − δ, ξ0 + δ] ⊂
R \{0}. We denote by I(δ), I

(δ)
0 and I

(δ)
1 respetively the quantities I, I0 and I1 when we take

f = fδ where

f̂δ(ξ) :=
1√
2δ
χ[ξ0−δ,ξ0+δ](ξ)

for almost every ξ ∈ R. By onstrution, fδ ∈ D. On the one hand, we have

I(δ) =
∑

j,k∈Z

| 〈fδ, ψj,k〉 |2 = ‖fδ‖2L2(R) =
1

2π
‖f̂δ‖2L2(R) =

1

2π

∫ ξ0+δ

ξ0−δ

1

2δ
dξ =

1

2π

and on the other hand, we have

I(δ) = I
(δ)
0 + I

(δ)
1 =

1

2π

∫ ξ0+δ

ξ0−δ

1

2δ

∑

j∈Z

|ψ̂(−j)(2jξ)|2 dξ + I
(δ)
1 =

1

2π

1

2δ

∫ ξ0+δ

ξ0−δ
S(ξ) dξ + I

(δ)
1 .
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Consequently, taking the limit as δ → 0+, we obtain

1 = S(ξ0) + 2π lim
δ→0+

I
(δ)
1

sine ξ0 is a Lebesgue point of S. It only remains to prove that limδ→0+ I
(δ)
1 = 0. We adapt the

proof of Lemma 5.5.4 as follows.

Let us onsider ξ0 > 0 (the ase ξ0 < 0 is similar). Using Inequality (5.16), we have

2π |I(δ)1 | ≤
∫

R

∑

j∈Z

∑

k∈Z \{0}

2j |f̂δ(2jξ)| |f̂δ(2j(ξ + 2kπ))| |ψ̂(j)(ξ)|2 dξ.

Let j0 be the largest integer number whih veri�es 2j0π ≤ δ. Sine ξ0− δ > 0, that ‖f̂δ‖L∞(R) =

1/
√
2δ and that

2jξ ∈ supp(f̂δ) ⇒ ξ ≥ 2−j0(ξ0 − δ)

with j ≤ j0, we obtain

2π |I(δ)1 | ≤ 1

π

∫ +∞

π
δ
(ξ0−δ)

j0∑

j=−∞

χ[2−j(ξ0−δ),2−j(ξ0+δ)](ξ) |ψ̂(j)(ξ)|2 dξ,

as in the proof of Lemma 5.5.4. For �xed δ, we also know that the series

j0∑

j=−∞

χ[2−j(ξ0−δ),2−j (ξ0+δ)](·) |ψ̂(j)(·)|2

is integrable on R. As [2−j(ξ0 − δ), 2−j(ξ0 + δ)] ⊂ [2−j(ξ0 − δ′), 2−j(ξ0 + δ′)] for δ < δ′ with

δ′ ∈ (0, ξ0), we have

2π|I(δ)1 | ≤
∫ +∞

π
δ
(ξ0−δ)

j0∑

j=−∞

χ[2−j(ξ0−δ′),2−j(ξ0+δ′)](ξ) |ψ̂(j)(ξ)|2 dξ → 0

if δ → 0+ by Lebesgue's theorem. Thus, limδ→0+ I
(δ)
1 = 0 and S(ξ0) = 1.

Equality (5.2)

Let us now prove Equality (5.2). Let p0 ∈ Z and q0 ∈ 2Z+1. With Proposition 5.5.7 again,

it su�es to show that tp0,q0(ξ0) = 0 for some Lebesgue point ξ0 of the integrable funtion tp0,q0 .

First, from ‖f‖2L2(R) = I = I0 + I1 (by Proposition 5.5.1) and I0 = ‖f‖2L2(R) (by Equality (5.1),

now aquired with the previous paragraph) for f ∈ D, we get I1 = 0. Then, we have

∫

R

∑

p∈Z

∑

q∈2Z+1

2p f̂(2pξ) ĝ(2p(ξ + 2qπ)) tp,q(ξ) dξ = 0 (5.17)

for all f, g ∈ D thanks to the polarization identity beause the appliation

(f, g) ∈ D×D 7→
∫

R

∑

p∈Z

∑

q∈2Z+1

2p f̂(2pξ) ĝ(2p(ξ + 2qπ)) tp,q(ξ) dξ ∈ C

is a sesquilinear form.
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Let us assume that ξ0 6= 0 and ξ0 +2q0π 6= 0. Let δ > 0 be suh that 0 /∈ [ξ0 − δ, ξ0 + δ] and

0 /∈ [ξ0 + 2q0π − δ, ξ0 + 2q0π + δ]. Let us de�ne the funtions fδ and gδ by

f̂δ(ξ) :=
1√
2δ
χ[2p0(ξ0−δ),2p0 (ξ0+δ)](ξ) and ĝδ(ξ) := f̂δ(ξ − 2p02q0π)

for almost every ξ ∈ R. By onstrution, we have fδ, gδ ∈ D and f̂δ(ξ)ĝδ(ξ + 2p02q0π) =

(1/2δ)χ[2p0 (ξ0−δ),2p0 (ξ0+δ)](ξ) for almost all ξ ∈ R. With Equality (5.17) for f = fδ and g = gδ ,

we then obtain

0 = 2p0
∫

R

f̂δ(2p0ξ) ĝδ(2
p0(ξ + 2q0π)) tp0,q0(ξ) dξ + Jδ =

2p0

2δ

∫ ξ0+δ

ξ0−δ
tp0,q0(ξ) dξ + Jδ

where

Jδ :=

∫

R

∑

p∈Z

∑

q∈2Z+1

(p,q)6=(p0,q0)

2p f̂δ(2pξ) ĝδ(2
p(ξ + 2qπ)) tp,q(ξ) dξ.

Sine ξ0 is a Lebesgue point of tp0,q0, we have

0 = 2p0tp0,q0(ξ0) + lim
δ→0+

Jδ

and it only remains to prove that limδ→0+ Jδ = 0 to have the onlusion.

Let us suppose that ξ0 > 0 (the ase ξ0 < 0 is similar) and δ < π. Let us �x ξ ∈ R and

q ∈ 2Z+1. If f̂δ(2pξ)ĝδ(2
p(ξ +2qπ)) 6= 0, we must have |2pξ − 2p0ξ0| ≤ 2p0δ and |2p(ξ +2qπ)−

2p0(ξ0 + 2q0π)| ≤ 2p0δ. Consequently, we have

|2pq − 2p0q0| ≤
1

2π
(|(2p2qπ − 2p02q0π − (2pξ − 2p0ξ0)|+ |2pξ − 2p0ξ0|) ≤ 2p0

δ

π
< 2p0 . (5.18)

If p ≥ p0, we an easily show that |2p0q0 − 2pq| is greater than 2p0 beause q and q0 are odd,

whih is in ontradition with Inequality (5.18). If p < p0, we have |2p0q0 − 2pq| ≥ 2p. Let j0 be

the largest integer number suh that 2j0 ≤ 2p0δ/π. We so obtain

Jδ =

∫

R

j0∑

p=−∞

∑

q∈2Z+1

2p f̂δ(2pξ) ĝδ(2
p(ξ + 2qπ)) tp,q(ξ) dξ.

Using a similar argument as in Inequality (5.16), we an write

|Jδ| ≤ Jδ,1 + Jδ,2

where we set

Jδ,1 :=

∫

R

j0∑

p=−∞

∑

q∈2Z+1

2p|f̂δ(2pξ)| |ĝδ(2p(ξ + 2qπ))| 1
2
τp(ξ) dξ

and

Jδ,2 :=

∫

R

j0∑

p=−∞

∑

q∈2Z+1

2p|f̂δ(2p(ξ + 2qπ))| |ĝδ(2pξ)|
1

2
τp(ξ) dξ

with

τp(ξ) :=

+∞∑

ℓ=0

|ψ̂(p−ℓ)(2ℓξ)|2
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for almost all ξ ∈ R. Sine ‖ψ(j)‖L2(R) = 1 for j ∈ Z, this last series onverges in L1(R) by

Levi's theorem.

Similarly to the proof of Lemma 5.5.4 (and the proof of the previous paragraph), we obtain

Jδ,1 ≤
2p0

π

∫ +∞

π
δ
(ξ0−δ)

j0∑

p=−∞

χ[2p0−p(ξ0−δ),2p0−p(ξ0+δ)](ξ) τp(ξ) dξ

and the series

j0∑

p=−∞

χ[2p0−p(ξ0−δ),2p0−p(ξ0+δ)](·) τp(·) (5.19)

is integrable on R by Levi's theorem. Indeed, as in the proof of Lemma 5.5.4, the sequene

(hJ )J∈N of integrable funtions on R de�ned by

hJ(ξ) :=

j0∑

p=−J

χ[2p0−p(ξ0−δ),2p0−p(ξ0+δ)](ξ) τp(ξ)

for almost every ξ ∈ R is inreasing beause τp ∈ L1(R) is positive. Moreover, using Additional

asymptoti ondition (5.3), we have

∫

R

hJ (ξ) dξ =

j0∑

p=−J

+∞∑

ℓ=0

∫

R

χ[2p0−p(ξ0−δ),2p0−p(ξ0+δ)](ξ)

(1 + |2ℓξ|)α (1 + |2ℓξ|)α |ψ̂(p−ℓ)(2ℓξ)|2 dξ

≤
j0∑

p=−J

+∞∑

ℓ=0

1

(1 + 2ℓ+p0−p(ξ0 − δ))α

∫

R

(1 + |2ℓξ|)α |ψ̂(p−ℓ)(2ℓξ)|2 dξ

=

j0∑

p=−J

+∞∑

ℓ=0

2−ℓ

(1 + 2ℓ+p0−p(ξ0 − δ))α

∫

R

(1 + |ξ|)α |ψ̂(p−ℓ)(ξ)|2 dξ

≤ A

j0∑

p=−J

+∞∑

ℓ=0

1

2ℓ2α(ℓ+p0−p)(ξ0 − δ)α

=
2−αp0 A

(ξ0 − δ)α

j0∑

p=−J

2pα
+∞∑

ℓ=0

(
1

2α+1

)ℓ

≤ 2−αp0 A

(ξ0 − δ)α
1

1− 2−(α+1)

j0∑

p=−∞

2pα.

As [2p0−p(ξ0 − δ), 2p0−p(ξ0 + δ)] ⊂ [2p0−p(ξ0 − δ′), 2p0−p(ξ0 + δ′)] for δ < δ′ with δ′ ∈ (0, ξ0), we

have

Jδ,1 ≤
2p0

π

∫ +∞

π
δ
(ξ0−δ)

j0∑

p=−∞

χ[2p0−p(ξ0−δ′),2p0−p(ξ0+δ′)](ξ) τp(ξ) dξ → 0

as δ → 0+ by Lebesgue's theorem. Thus, limδ→0+ Jδ,1 = 0 and limδ→0+ Jδ,2 = 0 by a similar

reasoning. Finally, we have limδ→0+ Jδ = 0 and tp0,q0(ξ0) = 0.

5.6 Proofs of Theorem 5.2.5 and Proposition 5.2.6

Let us now prove Theorem 5.2.5 and let us begin with the neessary ondition. We proeed

as in the stationary ase (see [52℄).
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5.6.1 Proof of the Neessary Condition of Theorem 5.2.5

By hypothesis, the mother wavelets ψ(j)
, j ∈ Z, ome from a nonstationary multiresolution

analysis of L2(R) and there exist thus saling funtions ϕ(j)
(and �lters m

(j)
0 ), j ∈ Z, leading to

their onstrution. The following proposition shows how to get |ϕ̂(j)|2 from |ψ̂(m)|2, m ∈ Z suh

that m < j. The proof follows the stationary ase with some easy adaptations (see [52℄).

Proposition 5.6.1. For all j ∈ Z and for almost all ξ ∈ R, we have

|ϕ̂(j)(ξ)|2 =

+∞∑

n=1

|ψ̂(j−n)(2nξ)|2.

Proof. Let j ∈ Z. Using Equality (5.7), Equality (5.5) of Proposition 5.2.3 and Theorem 5.2.4,

we have

|ϕ̂(j)(ξ)|2 = |ϕ̂(j)(ξ)|2
(
|m(j)

0 (ξ)|2 + |m(j)
0 (ξ + π)|2

)
= |ϕ̂(j−1)(2ξ)|2 + |ψ̂(j−1)(2ξ)|2

and then

|ϕ̂(j)(ξ)|2 = |ϕ̂(j−N)(2N ξ)|2 +
N∑

n=1

|ψ̂(j−n)(2nξ)|2

for almost all ξ ∈ R and for all N ∈ N. Sine ‖ψ(m)‖L2(R) = 1 for all m ∈ Z, the series

+∞∑

n=1

|ψ̂(j−n)(2n ·)|2

onverges in L1(R) and then almost everywhere on R by Levi's theorem. Consequently, the

sequene (|ϕ̂(j−N)(2N ·)|)N∈N onverges almost everywhere on R. Moreover,

∫

R

|ϕ̂(j−N)(2N ξ)|2 dξ = 2π2−N → 0

as N → +∞. Hene

lim
N→+∞

|ϕ̂(j−N)(2N ξ)|2 = 0

for almost every ξ ∈ R, whih leads to the onlusion. �

For all j ∈ Z, using Lemma 5.2.2 and Proposition 5.6.1, we have

1 =
∑

k∈Z

|ϕ̂(j)(ξ + 2kπ)|2 =
∑

k∈Z

+∞∑

n=1

|ψ̂(j−n)(2n(ξ + 2kπ))|2 = Dj(ξ)

for almost all ξ ∈ R, sine {2j/2ϕ(j)(2j · −k) : k ∈ Z} is an orthonormal family of L2(R).

5.6.2 Proof of the Su�ient Condition of Theorem 5.2.5

Let us now onsider the su�ient ondition. Let us assume that Dj(ξ) = 1 for all j ∈ Z

and for almost all ξ ∈ R and let us onstrut saling funtions. Basially, for all j ∈ Z and for

almost all ξ ∈ R, sine Dj(ξ) = 1 by hypothesis, we hoose the smallest n ∈ N suh that

∑

k∈Z

|ψ̂(j−n)(2n(ξ + 2kπ))|2 6= 0
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and then we de�ne ϕ(j)
by

ϕ̂(j)(ξ) :=
ψ̂(j−n)(2nξ)√∑

k∈Z

|ψ̂(j−n)(2n(ξ + 2kπ))|2

for almost all ξ ∈ R.

Let us look more preisely at the onstrution. Let us �x j ∈ Z and n ∈ N and let us de�ne

the in�nite vetor

Ψj,n(ξ) :=
(
ψ̂(j−n)(2n(ξ + 2kπ))

)
k∈Z

of ℓ2(Z) for almost all ξ ∈ R. The following lemma will be useful later. The proof uses the

theoretial haraterization of nonstationary orthonormal bases of wavelets (see Theorem 5.1.3)

and thus Additional asymptoti ondition (5.3).

Lemma 5.6.2. For all j ∈ Z and n ∈ N, for almost every ξ ∈ R, we have

ψ̂(j−n)(2nξ) =

+∞∑

r=1

∑

k∈Z

ψ̂(j−n)(2n(ξ + 2kπ)) ψ̂(j−r)(2r(ξ + 2kπ)) ψ̂(j−r)(2rξ). (5.20)

Proof. Let us give the idea of the proof. The double series onverges almost everywhere for all

j ∈ Z and n ∈ N thanks to Cauhy-Shwarz's inequality, the onvergene of Dj for j ∈ Z and

Equality (5.1) of Theorem 5.1.3. For the equality, if we denote Gj,n(ξ) the seond member of

Expression (5.20), we have Gj,n(ξ) = Gj−1,n−1(2ξ) for all j ∈ Z, all n ∈ N \{1} and almost all

ξ ∈ R by Theorem 5.1.3 and Proposition 5.6.3 below. In onsequene, for all j ∈ Z, all n ∈ N

and almost all ξ ∈ R, we have Gj,n(ξ) = Gj−(n−1),1(2
n−1ξ) by reursion and thus the onlusion

beause Gj−(n−1),1(ξ) = ψ̂(j−n)(2ξ). �

Proposition 5.6.3. The family {2j/2ψ(j)(2j · −k) : j, k ∈ Z} is orthonormal in L2(R) if and

only if ∑

k∈Z

|ψ̂(j)(·+ 2kπ)|2 = 1

almost everywhere for all j ∈ Z and

∑

k∈Z

ψ̂(j−p)(2p(·+ 2kπ)) ψ̂(j)(·+ 2kπ) = 0

almost everywhere for all j ∈ Z and p ∈ N.

Proof. It su�es to adapt the proof of the stationary ase (see [52℄) to the nonstationary ase.

Let us note that the �rst equality is similar to the one of Lemma 5.2.2 (see [16℄). �

Let us ome bak to the su�ient ondition. Thanks to Lemma 5.6.2, we an write

Ψj,n(ξ) =
+∞∑

r=1

〈Ψj,n(ξ),Ψj,r(ξ)〉 Ψj,r(ξ) (5.21)

for almost all ξ ∈ R. Moreover, for almost all ξ ∈ R, we an see that

+∞∑

n=1

‖Ψj,n(ξ)‖2ℓ2(Z) =
+∞∑

n=1

∑

k∈Z

|ψ̂(j−n)(2n(ξ + 2kπ))|2 = Dj(ξ) = 1. (5.22)
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For all j ∈ Z, we de�ne

Fj(ξ) := span {Ψj,n(ξ) : n ∈ N}

for almost all ξ ∈ R. It is a subspae of ℓ2(Z) of dimension 1 by the following proposition

(see [52℄) thanks to Equalities (5.21) and (5.22).

Proposition 5.6.4. Let {vn : n ∈ N} be a family of vetors in a Hilbert spae H suh that

+∞∑

n=1

‖vn‖2 = C and vm =
+∞∑

r=1

〈vm, vr〉 vr

for all m ∈ N. Then, the dimension of the subspae span {vn : n ∈ N} of H is equal to C.

In onsequene, Fj(ξ) is generated by only one unit vetor Uj(ξ). To onstrut it, we �rst

make a partition of [0, 2π]:

Ej,n := {ξ ∈ [0, 2π] : Ψj,n(ξ) 6= 0 and Ψj,m(ξ) = 0 for m < n} , n ∈ N

and the null set Ej,0 := {ξ ∈ [0, 2π] : Dj(ξ) = 0}. We an then de�ne Uj almost everywhere on

[0, 2π] by

Uj(ξ) :=
Ψj,n(ξ)

‖Ψj,n(ξ)‖ℓ2(Z)
if ξ ∈ Ej,n.

Let us write Uj(ξ) := (u
(j)
k (ξ))k∈Z and de�ne ϕ(j)

almost everywhere on R by

ϕ̂(j)(ξ) := u
(j)
k (ξ − 2kπ) if ξ ∈ [0, 2π] + 2kπ (k ∈ Z).

As in the stationary ase (see [52℄), these ϕ(j)
, j ∈ Z, are the sought saling funtions.

5.6.3 Proof of Proposition 5.2.6

Let us now prove Proposition 5.2.6. In fat, it su�es to show that, for all j ∈ Z, Dj > 0

almost everywhere on (0, 2π) implies Dj = 1 almost everywhere on R.

Let us �x j ∈ Z. By de�nition, Dj is 2π-periodi. With the notations of Subsetion 5.6.2,

we know that Dj(ξ) is the dimension of Fj(ξ) for almost all ξ ∈ R (see Proposition 5.6.4).

Consequently, Dj(ξ) ∈ N for almost all ξ ∈ R beause Dj > 0 almost everywhere on (0, 2π).

Moreover, we have

∫ 2π

0
Dj(ξ) dξ =

+∞∑

n=1

∑

k∈Z

∫ 2(k+1)π

2kπ
|ψ̂(j−n)(2nξ)|2 dξ =

+∞∑

n=1

2n‖ψ̂(j−n)‖L2(R) = 2π

beause ‖ψ(m)‖L2(R) = 1 for all m ∈ Z. We so have Dj(ξ) = 1 for almost all ξ ∈ R.

5.7 Proof of Theorem 5.4.1

Let us now prove Theorem 5.4.1. By ontradition, let us assume that we have an orthonor-

mal basis {2j/2ψ(j)(2j · −k) : j, k ∈ Z} of H2(R) satisfying the given regularity onditions.
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Using the two �rst onditions of regularity, for j ∈ Z, the series

sj(·) :=
+∞∑

n=1

|ψ̂(j−n)(2n ·)|2

onverges uniformly on ompat subsets of R \{0} and then represents a ontinuous funtion

on R \{0}. Moreover, there exists C > 0 suh that

sj(ξ) ≤
C

ξ2α+1

for all ξ > 0 and j ∈ Z beause

sj(ξ) ≤
+∞∑

n=1

A2

(1 + 2nξ)2α+1
≤ A2

ξ2α+1

+∞∑

n=1

1

2n(2α+1)
≤ C

ξ2α+1
.

By de�nition, for j ∈ Z, we an see that

Dj(·) =
∑

k∈Z

sj(·+ 2kπ).

This series onverges uniformly on ompat subsets of [−π, 0) ∪ (0, π] and then represents a

ontinuous funtion on this set. Sine ‖ψ(m)‖L2(R) = 1 for all m ∈ Z, Dj = 1 almost everywhere

on R by a similar reasoning as in the proof of Proposition 5.2.6 (see Subsetion 5.6.3), adapted

to the ase H2(R) (Additional asymptoti ondition (5.3) is satis�ed thanks to the seond

hypothesis).

Let us �x j ∈ Z. For all k ∈ Z, the funtion sj(· − 2kπ) is ontinuous on R \{2kπ}. The

series

tj(·) :=
∑

k∈Z \{0}

sj(·+ 2kπ)

onverges uniformly on [−π, π] and then represents a ontinuous funtion on [−π, π]. By on-

strution, we have

Dj(ξ) = sj(ξ) + tj(ξ)

for all ξ ∈ [−π, 0) ∪ (0, π]. By ontinuity of eah term, we obtain

1 = lim
ξ→0−

Dj(ξ) = lim
ξ→0−

(sj(ξ) + tj(ξ)) = 0 + tj(0)

beause ψ(j) ∈ H2(R) and

1 = lim
ξ→0+

Dj(ξ) = lim
ξ→0+

(sj(ξ) + tj(ξ)) = lim
ξ→0+

sj(ξ) + tj(0).

Hene, for all j ∈ Z, we get

lim
ξ→0+

sj(ξ) = 0. (5.23)

Let us onsider sj(2
−jξ) for j ∈ N and ξ ∈ (0, η). On the one hand, there exists δ ∈ (0, η)

suh that

0 ≤ sj(2
−jξ) ≤ 1

2
(5.24)
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for all ξ ∈ (0, δ) and all j ∈ N. Indeed, using the third hypothesis, we have

sj(2
−jξ) =

+∞∑

ℓ=1−j

|ψ̂(−ℓ)(2ℓξ)|2 = s0(ξ) +

j−1∑

ℓ=0

|ψ̂(ℓ)(2−ℓξ)|2

≤ s0(ξ) +B2 ξ2β
j−1∑

ℓ=0

2−2ℓβ = s0(ξ) +B2 ξ2β
1− 4−βj

1− 4−β

≤ s0(ξ) +Bβ ξ
2β

for all j ∈ N and for all ξ ∈ (0, η) where Bβ is a onstant depending only on β. It follows that,

using Equality (5.23) with s0, we have Inequality (5.24). On the other hand, using Equality (5.1)

(of Theorem 5.2.5 in the present setting), we have

sj(2
−jξ) =

+∞∑

ℓ=1−j

|ψ̂(−ℓ)(2ℓξ)|2 → 1

as j → +∞ for almost every ξ ≥ 0. Hene we get a ontradition with Inequality (5.24), taking

ξ0 ∈ (0, δ) suh that sj(2
−jξ0) → 1 as j → +∞.



Chapter 6

Nonstationary Continuous

Wavelet Transform

In the previous hapter, we have investigated nonstationary orthonormal bases of wavelets

of L2(R). Initially, this nonstationarity was introdued in various situations: the onstrution

of bases of wavelets in Sobolev spaes (see [15,16℄), the onstrution of in�nitely di�erentiable

ompatly supported bases of wavelets in L2(R) (see [41℄),. . .

Up to now, the nonstationarity has been only onsidered in the ontext of orthonormal bases

of wavelets. What about the ontinuous wavelet transform? In [95℄ (see pages 80-81), the idea

of a nonstationary ontinuous wavelet transform is put forward. Apparently, it ould be useful

in the study of partiular singularities, alled osillating singularities (see [88℄ for example), of

a funtion.

Let us already mention that the ase of the ontinuous wavelet transform in Sobolev spaes

is studied in [105℄. In omparison with the ase of orthonormal basis of wavelets, it appears

that only one wavelet (not a family of wavelets) is su�ient to de�ne the ontinuous wavelet

transform of a distribution whih belongs to a Sobolev spae and to onsider the reonstrution

of this distribution from its ontinuous wavelet transform.

The purpose of this hapter is to present a nonstationary version of the ontinuous wavelet

transform, whih does not seem to have been investigated before. In this hapter, we �rst

de�ne the notions of nonstationary family of wavelets and of nonstationary ontinuous wavelet

transform in L2(R). We then give some examples and we study the reonstrution of a square

integrable funtion from its nonstationary ontinuous wavelet transform.

6.1 Nonstationary Continuous Wavelet Transform

Let us begin with the introdution of the notions of nonstationary family of wavelets and

nonstationary ontinuous wavelet transform.

De�nition 6.1.1. The set Ψ := {ψ(a) : a ∈ R \{0}} is a nonstationary family of wavelets

if ψ(a) ∈ L1(R) ∩ L2(R) for all a ∈ R \{0} and if Ψ satis�es the nonstationary admissibility

ondition: the funtion

a 7→ |ψ̂(a)(aξ)|2
|a|

is integrable on R for all ξ ∈ R and the integral

∫

R

|ψ̂(a)(aξ)|2
|a| da

81
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is independent of ξ for almost all ξ ∈ R.

Using the nonstationary family of wavelets Ψ, the nonstationary ontinuous wavelet trans-

form of a funtion f ∈ L2(R) is the funtion WΨ f de�ned by

WΨ f(a, b) :=

∫

R

f(x)ψa,b(x) dx = 〈f, ψa,b〉 , a ∈ R \{0}, b ∈ R

where

ψa,b(x) :=
1

a
ψ(a)

(
x− b

a

)
, x ∈ R .

Let us onsider some examples of nonstationary family of wavelets.

(a) If ψ is a wavelet, then {ψ} is learly a nonstationary family of wavelets. Indeed, we diretly

have ∫

R

|ψ̂(aξ)|2
|a| da =

∫

R

|ψ̂(t)|2
|t| dt,

whih is independent of ξ for all almost ξ ∈ R. The stationary ase is thus a partiular ase

of the nonstationary ase.

(b) Let ψ be an even or odd wavelet and let p ∈ R \{−1}. For a ∈ R \{0}, let us set

ψ(a)(x) :=
1

|a|pψ
(

x

|a|p
)
, x ∈ R .

Then, Ψ := {ψ(a) : a ∈ R \{0}} is a nonstationary family of wavelets. Indeed, for almost all

ξ ∈ R, we have ψ̂(a)(ξ) = ψ̂(|a|pξ) and
∫

R

|ψ̂(a)(aξ)|2
|a| da =

∫

R

|ψ̂(|a|paξ)|2
|a| da = 2

∫ +∞

0

|ψ̂(ap+1ξ)|2
a

da

beause |ψ̂| is an even funtion. We then have

∫

R

|ψ̂(a)(aξ)|2
|a| da =

2

|p+ 1|

∫ +∞

0

|ψ̂(t)|2
t

dt =
1

|p+ 1|

∫

R

|ψ̂(t)|2
|t| dt,

whih is independent of ξ for almost all ξ ∈ R. For example,

{
1

|a|p
(
−χ[−|a|p,0) + χ[0,|a|p)

)
: a ∈ R \{0}

}

and {
x 7→ − 2x

|a|2p e
−x2/|a|2p : a ∈ R \{0}

}

are suh nonstationary families of wavelets. In this ase, the nonstationary ontinuous

wavelet transform of f ∈ L2(R) related to Ψ is

WΨ f(a, b) = Wψ f(a|a|p, b)

for all a ∈ R \{0} and b ∈ R.
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() If ψ is a wavelet and if ρ is a funtion de�ned on R \{0} suh that |ρ| = 1 on R \{0}, then

Ψ := {ρ(a)ψ(·) : a ∈ R \{0}}

is learly a nonstationary family of wavelets (thanks to the same argument as Item (a)). In

this ase, the nonstationary ontinuous wavelet transform of f ∈ L2(R) related to Ψ is

WΨ f(a, b) = ρ(a) Wψ f(a, b)

for all a ∈ R \{0} and b ∈ R.

(d) Let p and q be the funtions de�ned on R \{0} by

p(a) :=
log(|a|+ 1)

|a| and q(a) :=

√
|a|

|a|+ 1

1√
log(|a|+ 1)

.

For a ∈ R \{0}, let us set

ψ(a)(x) := q(a) (xDx + 1)
p(a)

π(p2(a) + x2)
, x ∈ R

and let us note that we have

ψ(a)(x) =
q(a)

p(a)
ψP

(
x

p(a)

)
=

√( |a|
log(|a|+ 1)

)3 1√
|a|+ 1

ψP

( |a|x
log(|a|+ 1)

)

for all x ∈ R, where ψP is the Poisson wavelet:

ψP (x) :=
1

π

1− x2

(1 + x2)2
, x ∈ R .

Then, Ψ := {ψ(a) : a ∈ R \{0}} is a nonstationary family of wavelets. Indeed, for almost all

ξ ∈ R, we have

∫

R

|ψ̂(a)(aξ)|2
|a| da = 2|ξ|2

∫ +∞

0

log(a+ 1)

a+ 1
e−2|ξ| log(a+1) da = 2

∫ +∞

0
t e−2t dt =

1

2
.

In this ase, the nonstationary ontinuous wavelet transform of f ∈ L2(R) related to Ψ is

WΨ f(a, b) = q(a) WψP
f(ap(a), b) =

√
|a|

|a|+ 1

1√
log(|a| + 1)

WψP
f

(
a log(|a|+ 1)

|a| , b

)

for all a ∈ R \{0} and b ∈ R.

Let us note that all the previous examples of nonstationary families of wavelets are atually

onstruted from one wavelet. All the presented nonstationary ontinuous wavelet transforms

an be then redued to a lassial ontinuous wavelet transform to a multipliative fator. It

is ertainly possible to �nd a nonstationary family of wavelets where suh a situation does not

our.
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6.2 Reonstrution Formula

If Ψ is a nonstationary family of wavelets, it is possible to reonstrut a square integrable

funtion f from WΨ f(a, b) with a ∈ R \{0} and b ∈ R. This is the objet of the following

result (whih is the nonstationary version of Theorem 3.1.3). The proof is very similar to the

stationary ase (see [33℄) and it allows to understand the hoie and the use of the nonstationary

admissibility ondition.

Theorem 6.2.1. Let Ψ := {ψ(a) : a ∈ R \{0}} be a nonstationary family of wavelets suh that

∫

R

|ψ̂(a)(aξ)|2
|a| da = 1 (6.1)

for almost all ξ ∈ R. For all f, g ∈ L2(R), we have
∫∫

R2
WΨ f(a, b)WΨ g(a, b)

dadb

|a| = 〈f, g〉 . (6.2)

Moreover, for f ∈ L2(R), we have

lim
ε→0+
r→+∞

∥∥∥∥∥f(·)−
∫

{a′∈R:ε<|a′|<r}

(∫

R

WΨ f(a, b)ψa,b(·) db
)
da

|a|

∥∥∥∥∥
L2(R)

= 0.

Proof. 1. Let us �rst show that

(a, b) 7→ WΨ h(a, b)√
|a|

is square integrable on R2
for all h ∈ L2(R). We �rst have

WΨ h(a, b) =
1

a

(
h ⋆ ψ(a)

(
− ·
a

))
(b) =

1

2π
F+
ξ→b

(
ĥ(ξ)ψ̂(a)(aξ)

)
(6.3)

for almost all a, b ∈ R, where we notie that ξ 7→ ĥ(ξ)ψ̂(a)(aξ) ∈ L1(R) ∩ L2(R) beause

ĥ ∈ L2(R) and ξ 7→ ψ̂(a)(aξ) ∈ L2(R) ∩ L∞(R) by hypothesis. For almost all �xed a ∈ R, the

funtion

b 7→ |WΨ h(a, b)|2
|a| =

1

4π2|a|
∣∣∣F+

ξ→b

(
ĥ(ξ)ψ̂(a)(aξ)

)∣∣∣
2

is then integrable on R. Moreover, we have

∫

R

|WΨ h(a, b)|2
|a| db =

1

2π

∫

R

|ĥ(b)|2 |ψ̂
(a)(ab)|2
|a| db

and this funtion of a is integrable on R by Fubini's theorem beause the funtion

(a, b) 7→ |ĥ(b)|2 |ψ̂
(a)(ab)|2
|a|

is integrable on R2
by Tonelli's theorem. Indeed, for almost all �xed b ∈ R, the funtion a 7→

|ψ̂(a)(ab)|2/|a| is integrable on R beause Ψ satis�es the nonstationary admissibility ondition.

Using Equality (6.1), we have

∫ +∞

0
|f̂(b)|2 |ψ̂

(a)(ab)|2
|a| da = |ĥ(b)|2
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and b 7→ |ĥ(b)|2 is integrable on R. By Tonelli's theorem again, we then have the integrability

of (a, b) 7→ |WΨ h(a, b)|2/|a| on R2
.

2. Let us now show Equality (6.2). Using Equality (6.3), we suessively have

∫∫

R2
WΨ f(a, b)WΨ g(a, b)

dadb

|a|

=
1

4π2

∫

R

(∫

R

F+
ξ→b

(
f̂(ξ)ψ̂(a)(aξ)

)
F+
ξ→b

(
ĝ(ξ)ψ̂(a)(aξ)

)
db

)
da

|a|

=
1

4π2

∫

R

〈
F̂a, Ĝa

〉 da

|a|

=
1

2π

∫

R

〈Fa, Ga〉
da

|a|

where, for all a ∈ R \{0}, we have setted Fa(ξ) := f̂(ξ)ψ̂(a)(aξ) and Ga(ξ) := ĝ(ξ)ψ̂(a)(aξ) for

almost all ξ ∈ R. Using Equality (6.1), we then have

∫∫

(0,+∞)×R

WΨ f(a, b)WΨ g(a, b)
dadb

a
=

1

2π

∫

R

f̂(ξ)ĝ(ξ)

(∫

R

|ψ̂(a)(aξ)|2
|a| da

)
dξ

=
1

2π

〈
f̂ , ĝ
〉

= 〈f, g〉 .

3. Let us �nish with the onvergene in L2(R) and let us set

Iε,r(·) :=
∫

{a′∈R:ε<|a′|<r}

(∫

R

WΨ f(a, b)ψa,b(·) db
)
da

|a|

for r > ε > 0. With Equality (6.2), we diretly have

‖f − Iε,r‖L2(R) = sup
‖g‖L2(R)=1

| 〈f − Iε,r, g〉 | = sup
‖g‖L2(R)=1

∣∣∣∣
∫∫

X
WΨ f(a, b)WΨ g(a, b)

dadb

|a|

∣∣∣∣

where X := (R \((−r,−ε) ∪ (ε, r))) × R. By Cauhy-Shwarz's inequality, we obtain

‖f − Iε,r‖L2(R) ≤ sup
‖g‖L2(R)=1

√∫∫

X

|WΨ f(a, b)|2
|a| dadb

√∫∫

X

|WΨ g(a, b)|2
|a| dadb.

However, with Equality (6.2), we have

∫∫

X

|WΨ g(a, b)|2
|a| dadb ≤

∫∫

R2

|WΨ g(a, b)|2
|a| dadb = ‖g‖2L2(R).

Consequently, we have

‖f − Iε,r‖L2(R) ≤
√∫∫

X

|WΨ f(a, b)|2
|a| dadb→ 0

if ε → 0+ and r → +∞ by Lebesgue's theorem sine (a, b) 7→ |WΨ f(a, b)|2/|a| is integrable
on R2

. Hene the onlusion. �
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As in the stationary ase, it is possible to reover a square integrable funtion f from

WΨ f(a, b) with a > 0 only and b ∈ R, where Ψ a nonstationary family of wavelets. In this

ontext, we slightly adapt the nonstationary admissibility ondition and then also the notion

of nonstationary family of wavelets. The set Ψ := {ψ(a) : a > 0} is a nonstationary family of

wavelets if ψ(a) ∈ L1(R) ∩ L2(R) for all a > 0, if the funtion

a 7→ |ψ̂(a)(aξ)|2
a

is integrable on (0,+∞) for all ξ ∈ R and if the integral

∫ +∞

0

|ψ̂(a)(aξ)|2
a

da

is independent of ξ ∈ R for almost all ξ ∈ R. We have the following reonstrution formula. The

proof is similar to the one of the previous theorem.

Theorem 6.2.2. Let Ψ := {ψ(a) : a > 0} be a nonstationary family of wavelets suh that

∫ +∞

0

|ψ̂(a)(aξ)|2
a

da = 1

for almost all ξ ∈ R. For all f, g ∈ L2(R), we have

∫∫

(0,+∞)×R

WΨ f(a, b)WΨ g(a, b)
dadb

a
= 〈f, g〉 .

Moreover, for f ∈ L2(R), we have

lim
ε→0+
r→+∞

∥∥∥∥∥f(·)−
∫ r

ε

(∫

R

WΨ f(a, b)ψa,b(·) db
)
da

a

∥∥∥∥∥
L2(R)

= 0.
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Sν
Spaes Revisited

with Wavelet Leaders
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Chapter 7

From Sν
Spaes to Lν

Spaes

The study of the Hölder ontinuity of a funtion by means of its wavelet oe�ients, i.e. its

oe�ients in an orthonormal basis of wavelets, is a widely used tool (see [3,59,92℄). We have

already onsidered this kind of study in Chapter 3 with the ontinuous wavelet transform of a

funtion. In order to investigate the regularity of a funtion with the sequene made up of its

wavelet oe�ients, Sν spaes �rst (see [64℄) and then more reently Lν spaes (see [13℄) have

been introdued.

Up to now, in Chapter 1, we have presented the notions of Hölder ontinuity and Hölder

exponent to study the regularity of a funtion. If a funtion is very irregular, in the sense that its

Hölder exponent hanges at eah point, these notions are not more really relevant. In this ase,

the spetrum of singularities of the funtion gives a more appropriate information (see [65℄ for

example). For eah possible value h taken by the Hölder exponent of a funtion, this quantity

atually measures the �size� of the set of real numbers where the Hölder exponent of the funtion

is equal to h. In general, it is impossible to alulate the spetrum of singularities of a funtion

beause of the determination of several intriate limits whih are in its de�nition. Therefore,

one tries to estimate this spetrum from some quantities whih are numerially omputable

(see [65,67℄). It is just the purpose of the methods developed with Sν spaes and Lν spaes.

From this point of view, the method based on Lν spaes allows to obtain theoretially better

approximations of the spetrum of singularities than the one based on Sν spaes (see [13℄), whih
still improved the one based on Besov spaes (see [64℄) given by the Frish-Parisi onjeture

(see [63,99℄).

At �rst sight, Sν spaes and Lν spaes are spaes of funtions. They are both de�ned from

a ertain quantity, alled wavelet pro�le in the ase of Sν spaes and leader pro�le in the ase of

Lν spaes, whih depends on the wavelet oe�ients of funtions. It has been proved that these

two pro�les and these two types of spaes are atually independent of the hosen orthonormal

basis of wavelets to represent the funtions (see [13,64℄). Therefore, Sν spaes and Lν spaes

an be onsidered as sequene spaes (and no more as funtion spaes). Likewise, the two pro�les

an be diretly assoiated to a sequene (and no more to a funtion). This will be the point of

view that we will adopt in all of this part, exept only for some partiular remarks or omments.

This hapter is a presentation of Lν spaes and a preparation to the next hapter. After

some preliminaries about wavelet oe�ients and wavelet leaders in the ontext of sequenes, we

reall the notions of wavelet pro�le and spae Sν in a �rst time and the notions of leader pro�le

and spae Lν in a seond time. Then, we give some examples and we ompare the spaes Sν
and Lν .
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7.1 Wavelet Coe�ients and Wavelet Leaders

Initially, Sν and Lν spaes have been introdued to study the regularity of funtions from its

wavelet oe�ients. Sine we are interested in loal properties of funtions, we an assume (as

in [9,13,64℄) that the funtions that we onsider are 1-periodi. To represent suh funtions, we

an use an orthonormal basis of wavelets of the spae of the 1-periodi funtions of L2([0, 1]).

For that, we take a mother wavelet ψ ∈ S(R) (as done in [83℄) and we write

ψj,k(·) :=
∑

l∈Z

ψ(2j(· − l)− k), j ∈ N0, k ∈
{
0, . . . , 2j − 1

}
.

We know that the 1-periodi funtions 2j/2ψj,k, j ∈ N0, k ∈ {0, . . . , 2j − 1}, together with

the onstant funtion 1 form an orthonormal basis of the spae of the 1-periodi funtions of

L2([0, 1]) (see [33,88,92℄ for more details). If f is suh a funtion, we have

f = c+

+∞∑

j=0

2j−1∑

k=0

cj,kψj,k

in L2([0, 1]) where c :=
∫ 1
0 f(x) dx and

cj,k := 2j
∫ 1

0
f(x)ψj,k(x) dx, j ∈ N0, k ∈

{
0, . . . , 2j − 1

}
.

In omparison with Chapter 5, the index k does not vary in Z, but in {0, . . . , 2j − 1} for eah

�xed sale j ∈ N0. We are then interested in sequenes with a ouple of indies (j, k) where

j ∈ N0 and k ∈ {0, . . . , 2j − 1}.
Let us denote

Λ :=
⋃

j∈N0

{(j, k) : k ∈ {0, . . . , 2j − 1}}

and Ω := CΛ
. The elements of a sequene ~c ∈ Ω are still alled wavelet oe�ients (of ~c ), even

if we are no more in the ontext of funtions. As mentioned in the introdution of this hapter,

Sν or Lν an be seen as funtion or sequene spaes and thus, there is no problem with this

abuse of language.

For j ∈ N0 and k ∈ {0, . . . , 2j − 1}, we use the notation λ(j, k), or simply λ if there is no

ambiguity, to refer to the dyadi interval

λ(j, k) :=
{
x ∈ R : 2jx− k ∈ [0, 1)

}
=

[
k

2j
,
k + 1

2j

)
.

For j ∈ N0, Λj represents the set of all dyadi intervals of [0, 1) of length 2−j . In the following,

we will use the two equivalent notations cj,k and cλ for (j, k) ∈ Λ to denote the elements of ~c ∈ Ω

(indeed, for any (j, k) ∈ Λ orresponds a unique dyadi interval of [0, 1) and reiproally).

De�nition 7.1.1. The wavelet leaders of ~c ∈ Ω are the quantities

dλ := sup
λ′⊂λ

|cλ′ |, λ ∈ Λj , j ∈ N0 .

With this de�nition, it may happen that dλ = +∞. However, in Setion 7.3, we will see that

all the wavelet leaders of a sequene of Lν are �nite. For the wavelet leaders of ~c, we will also

use the two equivalent notations dλ and dj,k for (j, k) ∈ Λ.
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7.2 Wavelet Pro�le and Spae Sν

7.2.1 De�nitions

Let us reall the notions of wavelet pro�le and spae Sν (see [8,9,42,64℄).

De�nition 7.2.1. The wavelet pro�le of a sequene ~c ∈ Ω is the funtion ν~c de�ned by

ν~c(α) := lim
ε→0+

(
lim sup
j→+∞

(
log(#Ej(1, α + ε)(~c ))

log(2j)

))
, α ∈ R,

where

Ej(C,α)(~c ) :=
{
k ∈ {0, . . . , 2j − 1} : |cj,k| ≥ C2−αj

}

for j ∈ N0, C > 0 and α ∈ R.

This de�nition formalizes the idea that at large sales j, there are about 2ν~c(α)j wavelet

oe�ients larger in modulus than 2−αj (with the onvention 2−∞ := 0). By onstrution, for

~c ∈ Ω, ν~c is non-dereasing, right-ontinuous and with values in {−∞} ∪ [0, 1].

Before giving the de�nition of spae Sν , we need the notion of admissible pro�le.

De�nition 7.2.2. An admissible pro�le is a non-dereasing and right-ontinuous funtion ν

with values in {−∞} ∪ [0, 1] suh that

αmin := inf {α ∈ R : ν(α) ≥ 0} ∈ R .

De�nition 7.2.3. Given an admissible pro�le ν, a sequene ~c ∈ Ω belongs to Sν if

ν~c(α) ≤ ν(α)

for all α ∈ R.

Equivalently, ~c belongs to Sν if and only if for every α ∈ R, ε > 0 and C > 0, there exists

J ∈ N0 suh that

#Ej(C,α)(~c ) ≤ 2(ν(α)+ε)j

for all j ≥ J . When ν(α) = −∞, we use the onvention 2−∞j := 0 for all j ∈ N0. Heuristially,

a sequene ~c of Ω belongs to Sν if at eah large sale j, the number of k suh that |cj,k| ≥ 2−αj

is of order smaller than 2ν(α)j . This spae is a vetor spae (see Setion 2 in [8℄).

Some examples of Sν spaes for partiular admissible pro�le ν are given in [42℄.

7.2.2 Basi Results

In this subsetion, we summarize the topologial properties of Sν established in [8℄. This

will permit to ompare them with the ones of Lν studied in the next hapter.

Theorem 7.2.4. There exists a unique metrizable topology that is stronger than the topology

of the pointwise onvergene and that makes Sν a omplete topologial vetor spae. This

topology is separable.
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More preisely, in order to de�ne a omplete metrizable topology on Sν , auxiliary spaes

were introdued. For any α ∈ R and any β ∈ {−∞} ∪ [0,+∞), the spae A(α, β) is de�ned by

A(α, β) :=
{
~c ∈ Ω : ∃C,C ′ ≥ 0 suh that #Ej(C,α)(~c ) ≤ C ′2βj ∀j ∈ N0

}
.

This spae is endowed with the distane

δα,β(~c,~c
′) := inf

{
C + C ′ : C,C ′ ≥ 0 and #Ej(C,α)(~c − ~c ′) ≤ C ′2βj ∀j ∈ N0

}

for ~c,~c ′ ∈ A(α, β). Let us remark that if β = −∞, then A(α,−∞) is the spae cα, i.e. the

spae of sequenes ~c ∈ Ω suh that the sequene (2αjcj,k)(j,k)∈Λ is bounded. Let us note that

c0 = ℓ∞(Λ). Moreover, (A(α,−∞), δα,−∞) is the topologial normed spae (cα, ‖ · ‖cα) where

‖~c ‖cα := sup
(j,k)∈Λ

2αj |cj,k|, ~c ∈ cα.

If β ≥ 1, then A(α, β) = Ω. Moreover, if β > 1, the topology de�ned by the distane δα,β is

equivalent to the topology of the pointwise onvergene.

Proposition 7.2.5. For any sequene (αn)n∈N dense in R and any sequene (εm)m∈N of stritly

positive numbers dereasing to 0, we have

Sν =
⋂

m∈N

⋂

n∈N

A(αn, ν(αn) + εm).

The topology of Sν is de�ned as the projetive limit topology, i.e. the oarsest topology that

makes eah inlusion Sν ⊂ A(αn, ν(αn) + εm) ontinuous. This topology is equivalent to the

topology given by the distane

δ :=
+∞∑

m=1

+∞∑

n=1

2−(m+n) δαn,ν(αn)+εm

1 + δαn,ν(αn)+εm

(see Setion 5 in [8℄).

Let us reall the haraterization of the ompat sets of Sν (see Setion 6 in [8℄). For

m,n ∈ N, let Cm,n and C ′
m,n be positive or null onstants and let us de�ne

Km,n :=
{
~c ∈ Ω : #{k ∈ {0, . . . , 2j − 1} : |cj,k| > Cm,n 2

−αnj} ≤ C ′
m,n 2

(ν(αn)+εm)j ∀j ∈ N0

}

(taking the usual sequenes of Proposition 7.2.5). We write

K :=
⋂

m∈N

⋂

n∈N

Km,n.

Proposition 7.2.6. A set is a ompat subset of (Sν , δ) if and only if it is losed in (Sν , δ) and
inluded in some K.

7.3 Leader Pro�le and Spae Lν

7.3.1 De�nitions

Let us now de�ne the notions of leader pro�le of a sequene and spae Lν (see �rstly [14℄

and seondly [13℄ whih gives the de�nitions of leader pro�le and spae Lν in a more general

ontext). In fat, there are just the notions of wavelet pro�le and spae Sν where wavelet

oe�ients are replaed by wavelet leaders.
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De�nition 7.3.1. The leader pro�le of ~c ∈ Ω is the funtion ν̃~c de�ned by

ν̃~c(α) := lim
ε→0+

(
lim sup
j→+∞

(
log(#Ẽj(1, α + ε)(~c ))

log(2j)

))
, α ∈ R,

where

Ẽj(C,α)(~c ) :=
{
k ∈ {0, . . . , 2j − 1} : dj,k ≥ C2−αj

}

for j ∈ N0, C > 0 and α ∈ R.

This de�nition formalizes the idea that at large sales j, there are about 2ν̃~c(α)j wavelet

leaders larger than 2−αj .

De�nition 7.3.2. Given an admissible pro�le ν, Lν is the spae of sequenes ~c ∈ Ω suh that

ν̃~c(α) ≤ ν(α)

for all α ∈ R.

Just as in the ase of Sν spaes, we get the following desription of Lν (the proof is a simple

adaptation of the proof of Lemma 2.3 in [8℄).

Proposition 7.3.3. Let ν be an admissible pro�le. A sequene ~c ∈ Ω belongs to Lν if and only

if for every α ∈ R, ε > 0 and C > 0, there exists J ∈ N0 suh that

#Ẽj(C,α)(~c ) ≤ 2(ν(α)+ε)j (7.1)

for all j ≥ J .

Proof. Let ~c ∈ Lν and let α ∈ R, η > 0 and C > 0. By de�nition of ν̃~c, there exists ε > 0 suh

that

inf
J∈N0

sup
j≥J

log(#Ẽj(1, α + ε)(~c ))

log(2j)
≤ ν(α)

and then, there exists J ∈ N0 suh that

log(#Ẽj(1, α + ε)(~c ))

log(2j)
≤ ν(α) + η.

and that 2−εj ≤ C for all j ≥ J . Thus, for j ≥ J , we have

#Ẽj(C,α)(~c ) ≤ #Ẽj(1, α + ε)(~c ) ≤ 2(ν(α)+η)j .

Reiproally, let ~c ∈ Ω be suh that ~c satis�es Inequality (7.1). Let α ∈ R and ε > 0. By

hypothesis, there exists J ∈ N0 suh that

#Ẽj(1, α + ε)(~c ) ≤ 2(ν(α+ε)+ε)j

for all j ≥ J . Then, we diretly obtain

sup
j≥J

log(#Ẽj(1, α + ε)(~c ))

log(2j)
≤ ν(α+ ε) + ε.

Taking the in�mum on J ∈ N0 and then the limit as ε→ 0+, we have the onlusion thanks to

the right-ontinuity of ν. �
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7.3.2 First Properties

Let us begin by showing that Lν is a vetor spae. The proof is similar to the one for Sν
(see [64℄).

Proposition 7.3.4. Given an admissible pro�le ν, Lν is a vetor spae.

Proof. It is evident that

~0 ∈ Lν . Let ~c,~c ′ ∈ Lν and θ ∈ C \{0}. To have the onlusion, let us

show that ~c+ ~c ′ ∈ Lν and θ~c ∈ Lν . Let us �x α ∈ R, ε > 0 and C > 0.

On the one hand, by hypothesis and by Proposition 7.3.3, there exists J ∈ N0 suh that

#

{
k ∈ {0, . . . , 2j − 1} : dj,k ≤

C

|θ| 2
−αj

}
≤ 2(ν(α)+ε)j

and then

#

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|θcλ′ | ≤ C 2−αj

}
≤ 2(ν(α)+ε)j

for all j ≥ J . Thus θ~c ∈ Lν .
On the other hand, by hypothesis and by Proposition 7.3.3 again, there exists J ∈ N0 suh

that εj/2 ≥ 1,

#

{
k ∈ {0, . . . , 2j − 1} : dj,k ≤

C

2
2−αj

}
≤ 2(ν(α)+

ε
2
)j

and

#

{
k ∈ {0, . . . , 2j − 1} : d′j,k ≤

C

2
2−αj

}
≤ 2(ν(α)+

ε
2
)j

for all j ≥ J . Sine

sup
λ′⊂λ

|cλ′ + c′λ′ | ≥ C2−αj ⇒
[
sup
λ′⊂λ

|cλ′ | ≥
C

2
2−αj or sup

λ′⊂λ
|c′λ′ | ≥

C

2
2−αj

]
,

we have

#

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|cλ′ + c′λ′ | ≥ C 2−αj

}

≤ #Ẽj

(
C

2
, α

)
(~c ) + #Ẽj

(
C

2
, α

)
(~c ′)

≤ 2 . 2(ν(α)+
ε
2
)j

≤ 2(ν(α)+ε)j

for all j ≥ J . Thus, ~c+ ~c ′ ∈ Lν . �

Contrary to the spae Sν , a sequene of Lν is automatially bounded. This is the objet of

the following result. Consequently, if a sequene belongs to Lν , its wavelet leaders are �nite.

Proposition 7.3.5. Given an admissible pro�le ν, we have Lν ⊂ c0.

Proof. Let ~c ∈ Lν and let α < αmin. By de�nition of αmin and by Proposition 7.3.3, there

exists J ∈ N0 suh that dj,k < 2−αj for all j ≥ J and k ∈ {0, . . . , 2j − 1}. Moreover, there
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exists C ′ > 0 suh that 2αjdj,k ≤ C ′
for all j ∈ {0, . . . , J − 1} and k ∈ {0, . . . , 2j − 1}. Setting

C := max{C ′, 1}, we obtain dj,k ≤ C2−αj for all (j, k) ∈ Λ. In partiular,

d0,0 = sup
(j,k)∈Λ

|cj,k| ≤ C

and thus, ~c ∈ c0. �

Remark 7.3.6. In fat, we an assume that αmin ≥ 0 in the de�nition of admissible pro�le

(see De�nition 7.2.2) to onsider Lν spaes. Let us assume that αmin < 0 and let us de�ne the

admissible pro�le ν† as follows:

ν†(α) :=

{
ν(α) if α ≥ 0

−∞ if α < 0
.

We diretly have Lν† ⊂ Lν beause ν† ≤ ν on R. For the other inlusion, let ~c ∈ Lν . By

onstrution, we have ν† = ν on (−∞, αmin) ∪ [0,+∞). Let α ∈ [αmin, 0), ε > 0 and C > 0. By

Proposition 7.3.3, there exists J ∈ N0 suh that

#Ẽj(C,α)(~c ) ≤ 2(ν(α)+ε)j

for all j ≥ J . Sine ~c ∈ c0 by Proposition 7.3.5, there exists C ′ > 0 suh that dj,k ≤ C ′
for all

(j, k) ∈ Λ. Moreover, beause α < 0, there exists J ′ ≥ J suh that 2−αjC > C ′
for all j ≥ J ′

.

Consequently, #Ẽj(C,α)(~c ) = 0 for all j ≥ J ′
and ~c ∈ Lν†. Hene Lν† = Lν .

Therefore, from now on, we will always assume that ν is an admissible pro�le with αmin ≥ 0.

7.3.3 Examples and Comparison of Spaes Lν and Sν

Let us now ompare the spaes Lν and Sν and let us give some examples for partiular

admissible pro�le ν. From the de�nition of the wavelet leaders, it is diret to see that ν~c ≤ ν̃~c
for any sequene ~c ∈ Ω sine |cj,k| ≤ dj,k for every (j, k) ∈ Λ. Therefore, given an admissible

pro�le ν, we have

Lν ⊂ Sν . (7.2)

Here is an easy example where the inlusion is strit. Let us onsider the admissible pro�le ν

de�ned by

ν(α) :=

{
1 if α ≥ 0

−∞ if α < 0
(7.3)

and let us show that Lν = c0. We know that Lν ⊂ c0 (see Proposition 7.3.5). For the other

inlusion, let ~c ∈ c0 and let α ∈ R, ε > 0 and C > 0. If α ≥ 0, we diretly have

#Ẽj(C,α)(~c ) ≤ 2j ≤ 2j(ν(α)+ε)

for all j ∈ N0. Let us now assume that α < 0. By hypothesis, there exists C ′ > 0 suh that

dj,k ≤ C ′
for all (j, k) ∈ Λ. Moreover, there exists J ∈ N0 suh that C2−αj > C ′

and then

#{k ∈ {0, . . . , 2j − 1} : dj,k ≥ C2−αj} = 0 for all j ≥ J . By Proposition 7.3.3, ~c ∈ Lν .
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We know that Sν =
⋂
ε>0 c

−ε
(see [42℄). In this ase, Sν is not inluded in Lν . Indeed, on

the one hand, the sequene ~c ∈ Ω de�ned by

cj,k :=

{
j if k = 0

0 if k ∈ {1, . . . , 2j − 1} (7.4)

for all sale j ∈ N0, is not bounded and does not belong to Lν . On the other hand, it belongs

to c−ε for all ε > 0 beause j2−εj tends to 0 for j → +∞.

In the previous example, the admissible pro�le is suh that αmin = 0. In fat, in this ase,

the inlusion Lν ⊂ Sν is always strit, as shown in the next proposition.

Proposition 7.3.7. If ν is an admissible pro�le suh that αmin = 0, then Lν is stritly inluded

in Sν .

Proof. Sine Lν is inluded in c0, it su�es to �nd an element of Sν whih does not belong

to c0. Suh an example is given by the sequene ~c ∈ Ω de�ned in Expression (7.4). We know

that ~c /∈ c0 and let us show that ~c ∈ Sν . Let α ∈ R, ε > 0 and C > 0. If α < 0, there exists

J ∈ N0 suh that j < C2−αj and then #Ej(C,α)(~c ) = 0 for all j ≥ J . If α ≥ 0, we have

#Ej(C,α)(~c ) ≤ 1 ≤ 2(ν(α)+ε)j for all j ∈ N0. Hene the onlusion. �

Let us study what happens in the ase αmin > 0. Let us begin with an example. Let us

onsider the admissible pro�le ν de�ned by

ν(α) :=

{
1 if α ≥ a

−∞ if α < a

where a > 0. We know that Sν =
⋂
ε>0 c

a−ε
(see [42℄) and let us show that Lν = Sν . Using

Inlusion (7.2), it su�es to prove that

⋂
ε>0 c

a−ε ⊂ Lν . Let ~c ∈ ca−ε for all ε > 0 and let α ∈ R,

ε > 0 and C > 0. If α ≥ a, we diretly have

#Ẽj(C,α)(~c ) ≤ 2j ≤ 2j(ν(α)+ε)

for all j ∈ N0. Let us now assume that α < a. There exists δ > 0 suh that a− δ > 0 and that

α− a+ δ < 0. Sine ~c ∈ ca−δ, there exists C ′ > 0 suh that 2(a−δ)j |cj,k| ≤ C ′
for all (j, k) ∈ Λ.

Then, for j′ ≥ j and k′ ∈ {0, . . . , 2j′ − 1}, we have

|cj′,k′ | ≤ C ′ 2−(a−δ)j′ ≤ C ′ 2(α−a+δ)j 2−αj .

Sine there exists J ∈ N0 suh that C ′2(α−a+δ)j ≤ C/2 for all j ≥ J , we so obtain

dj,k < C 2−αj

for all j ≥ J and k ∈ {0, . . . , 2j − 1}. Thus, #Ẽj(C,α)(~c ) = 0 for j ≥ J . Consequently, ~c ∈ Lν .
The next result gives a neessary and su�ient ondition on the admissible pro�le ν to have

the equality of the spaes Lν and Sν (see [14℄).

Theorem 7.3.8. Let ν be an admissible pro�le suh that αmin > 0. Then, Lν = Sν if and only

if

ν(α) = α sup
α′∈(0,α]

ν(α′)

α′
(7.5)

for all α ∈ [αmin, infα′≥αmin
α′

ν(α′) ].
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In fat, Condition (7.5) means that the admissible pro�le ν is with inreasing-visibility on

the given interval (see [89℄). It is indeed the ase in the previous example.

Without going into the details, let us give a last example. If ν is an admissible pro�le whih

is onave, Lν an be desribed as a ountable intersetion of osillation spaes (see [14℄).

In the next hapter, we will endow Lν spaes with a natural topology, in a similar way as

Sν spaes (see [8℄). We will also study some lassial topologial properties like separability or

ompat subsets.

To �nish this hapter, let us mention that, if we onsider Lν as a funtion spae (see the

beginning of this hapter), the topology that we will de�ne on Lν is a �good� topology, in the

sense that it is also independent of the hosen orthonormal basis of wavelets (see [14℄). This will

allow to onsider the spae Lν as either a topologial funtion spae or a topologial sequene

spae.





Chapter 8

Topology on Lν
Spaes

In [8℄, Sν spaes are endowed with a natural topology. Some topologial properties have

been also studied (see also [5�7℄ for more information). The main elements have been realled

in Setion 7.2.

In this hapter, we adapt most of results of [8℄ in the ase of Lν spaes. More preisely, we

�rst de�ne a topology on Lν spaes. To do so, we introdue auxiliary spaes. We then study

the ompat subsets and the separability of Lν . We �nish by the omparison of the topologies

of the spaes Sν and Lν . The results presented in this hapter are from [14℄.

8.1 Auxiliary Spaes

As for the ase of Sν spaes, a useful desription an also be obtained by the introdution

of auxiliary spaes. These new spaes will be used to de�ne a topology on Lν .

De�nition 8.1.1. Let α ∈ R and β ∈ {−∞} ∪ [0,+∞). A sequene ~c ∈ Ω belongs to the

auxiliary spae Ã(α, β) if there exist C,C ′ ≥ 0 suh that

#Ẽj(C,α)(~c ) ≤ C ′2βj

for all j ∈ N0.

Let us �rst note that the auxiliary spaes are vetor spaes. To prove it, it su�es to adapt

the proof of Proposition 7.3.4. For some partiular β, we an identify the spae Ã(α, β). This

is the objet of the following remark.

Remark 8.1.2. (a) If β = −∞, then Ã(α, β) is the set of the sequenes ~c ∈ Ω suh that

(2αjdj,k)(j,k)∈Λ is bounded. In fat, we even have

Ã(α,−∞) =

{
cα if α > 0

c0 if α ≤ 0
.

Indeed, on the one hand, if α > 0, it is lear that Ã(α,−∞) ⊂ cα beause |cj,k| ≤ dj,k for

all (j, k) ∈ Λ and all ~c ∈ Ω. Moreover, if there exists C > 0 suh that 2αj |cj,k| ≤ C for all

(j, k) ∈ Λ, we have

|cj′,k′ | ≤ C2−αj
′ ≤ C2−αj

for all j′ ≥ j and k′ ∈ {0, . . . , 2j′ − 1} and then 2αjdj,k ≤ C for all (j, k) ∈ Λ. So,

cα ⊂ Ã(α,−∞). On the other hand, if α ≤ 0, we have Ã(α,−∞) ⊂ c0 beause |cj,k| ≤ 20d0,0
for all (j, k) ∈ Λ and ~c ∈ Ω. Moreover, we have the other inlusion beause 2αjdj,k ≤ d0,0
for all (j, k) ∈ Λ and ~c ∈ Ω.

99
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(b) If β ≥ 1, then Ã(α, β) = Ω sine, for all ~c ∈ Ω and all j ∈ N0, α ∈ R and C > 0, we have

#Ẽj(C,α)(~c ) ≤ 2j ≤ 2βj .

As for Sν spaes, we have the following result whih allows to desribe Lν spaes as a

ountable intersetion (of auxiliary spaes). This proof is a simple adaptation of the proof of

Theorem 5.4 in [8℄.

Proposition 8.1.3. For any dense sequene (αn)n∈N in R and any sequene (εm)m∈N of stritly

positive numbers whih onverges to 0, we have

Lν =
⋂

ε>0

⋂

α∈R

Ã(α, ν(α) + ε) =
⋂

m∈N

⋂

n∈N

Ã(αn, ν(αn) + εm).

Proof. Let us show the following inlusions:

Lν ⊂
⋂

ε>0

⋂

α∈R

Ã(α, ν(α) + ε) ⊂
⋂

m∈N

⋂

n∈N

Ã(αn, ν(αn) + εm) ⊂ Lν .

1. For the �rst inlusion, let ~c ∈ Lν , α ∈ R and ε > 0. By Proposition 7.3.3, there exists

J ∈ N0 suh that

#Ẽj(1, α)(~c ) ≤ 2(ν(α)+ε)j

for all j ≥ J . Moreover, there exists C ′ > 0 suh that 2αjdj,k < C ′
for all j ∈ {0, . . . , J − 1} and

k ∈ {0, . . . , 2j − 1}. Then,
#Ẽj(C

′, α)(~c ) = 0 ≤ 2(ν(α)+ε)j

for all j ∈ {0, . . . , J − 1}. Consequently, setting C := max{C ′, 1}, we have

#Ẽj(C,α)(~c ) ≤ 2(ν(α)+ε)j

for all j ∈ N0 and thus, ~c ∈ Ã(α, ν(α) + ε). We so have the �rst inlusion.

2. The seond inlusion is evident.

3. For the third inlusion, let ~c ∈ Ã(αn, ν(αn)+εm) for all m,n ∈ N. Let us �x α ∈ R, ε > 0

and C > 0. Let us onsider the two following ases.

(a) If ν(α) = −∞, then there exists n ∈ N suh that ν(αn) = −∞ and that αn > α by

hypothesis. Then, ~c ∈ Ã(αn,−∞) and there exists C ′ > 0 suh that dj,k ≤ C ′2−αnj
for all

(j, k) ∈ Λ. Moreover, there exists J ∈ N0 suh that C ′2(α−αn)j < C for all j ≥ J , and so

dj,k < C2−αj for all j ≥ J and k ∈ {0, . . . , 2j − 1}. Thus, for j ≥ J , we have

#Ẽj(C,α)(~c ) = 0 ≤ 2(ν(α)+ε)j .

(b) If ν(α) ∈ [0, 1], there exist m,n ∈ N suh that

αn > α, 3εm ≤ ε and ν(α) ≤ ν(αn) ≤ ν(α) + εm

by hypothesis. Sine ~c ∈ Ã(αn, ν(αn) + εm), there exist C0, C
′
0 ≥ 0 suh that

#Ẽj(C0, αn) ≤ C ′
02

(ν(αn)+εm)j

for all j ∈ N0. Moreover, there exists J ∈ N0 suh that C02
−αnj ≤ C2−αj and that C ′

0 ≤ 2jε/3

for all j ≥ J . Consequently, for j ≥ J , we have

#Ẽj(C,α)(~c ) ≤ #Ẽj(C0, αn)(~c ) ≤ C ′
02

(ν(αn)+εm)j ≤ 2j
ε
3 2j(ν(α)+

2ε
3
) ≤ 2j(ν(α)+ε).

Thus, ~c ∈ Lν by Proposition 7.3.3. Hene the onlusion.

�
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Let us now de�ne a distane on these auxiliary spaes. The proof is adapted from the proof

of Lemma 3.3 in [8℄ to the ase of wavelet leaders.

De�nition 8.1.4. Let α ∈ R and β ∈ {−∞} ∪ [0,+∞). For ~c,~c ′ ∈ Ã(α, β), we write

δ̃α,β(~c,~c
′) := inf

{
C + C ′ : C,C ′ ≥ 0 and #Ẽj(C,α)(~c − ~c ′) ≤ C ′2βj ∀j ∈ N0

}
.

Lemma 8.1.5. For α ∈ R and β ∈ {−∞} ∪ [0,+∞), δ̃α,β is a distane on Ã(α, β) whih is

invariant by translation and whih satis�es

δ̃α,β(θ~c,~0) ≤ max{1, |θ|} δ̃α,β(~c,~0) (8.1)

for all ~c ∈ Ã(α, β) and θ ∈ C.

Proof. 1. By de�nition, it is lear that δ̃α,β is positive, symmetri and invariant by translation.

2. Let us show that if δ̃α,β(~c,~c
′) = 0 for ~c,~c ′ ∈ Ã(α, β), then ~c = ~c ′. Thanks to the

translation invariane, it su�es to prove it for ~c ′ = ~0. Let ~c ∈ Ã(α, β) be suh that δ̃α,β(~c,~0) =

0. By hypothesis, for all η > 0, there exist C,C ′ ≥ 0 suh that C + C ′ ≤ η and that

#{k ∈ {0, . . . , 2j − 1} : dj,k ≥ C2−αj} ≤ C ′2βj

for all j ∈ N0. Let us take j0 ∈ N0, ε ∈ (0, 1) and η := min{ε2−βj0 , ε2αj0}. Then, we have

#{k ∈ {0, . . . , 2j − 1} : dj0,k ≥ C2−αj0} ≤ C ′2βj0 ≤ ε < 1

and then dj0,k < C2−αj0 ≤ ε for all k ∈ {0, . . . , 2j0 − 1}. As ε and j0 are hosen arbitrarily, we

obtain dj0,k = 0 for all (j0, k) ∈ Λ. Hene ~c = ~0.

3. Let us prove the triangle inequality. With the translation invariane, it su�es to show

that

δ̃α,β(~c− ~c ′,~0) ≤ δ̃α,β(~c,~0) + δ̃α,β(~c
′,~0)

for all ~c,~c ′ ∈ Ã(α, β). By de�nition of δ̃α,β , for all η > 0, there exist C1, C
′
1, C2, C

′
2 ≥ 0 suh

that C1 + C ′
1 ≤ η/2 + δ̃α,β(~c,~0), C2 + C ′

2 ≤ η/2 + δ̃α,β(~c
′,~0),

#Ẽj(C1, α)(~c ) ≤ C ′
12
βj

and #Ẽj(C2, α)(~c
′) ≤ C ′

22
βj

for all j ∈ N0.

Let us �x j ∈ N0. If k /∈ Ẽj(C1, α)(~c ) ∪ Ẽj(C2, α)(~c
′), we have

sup
λ′⊂λ(j,k)

|cλ′ − c′λ′ | ≤ dj,k + d′j,k < (C1 + C2)2
−αj ,

that means that k /∈ Ẽj(C1 + C2, α)(~c − ~c ′). We so obtain

Ẽj(C1 + C2, α)(~c − ~c ′) ⊂
(
Ẽj(C1, α)(~c ) ∪ Ẽj(C2, α)(~c

′)
)
.

Then, we have

#Ẽj(C1 + C2, α)(~c − ~c ′) ≤ #Ẽj(C1, α)(~c ) + #Ẽj(C2, α)(~c
′) ≤ (C ′

1 + C ′
2)2

βj .
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Consequently, we suessively have

δ̃α,β(~c− ~c ′,~0) ≤ (C1 + C2) + (C ′
1 +C ′

2) ≤ η + δ̃α,β(~c,~0) + δ̃α,β(~c
′,~0)

and the onlusion follows sine η is hosen arbitrarily.

With these three points, we an onlude that δ̃α,β is a distane on Ã(α, β).

4. To �nish, let us show Inequality (8.1). Let ~c ∈ Ã(α, β) and θ ∈ C. If |θ| ≤ 1, we diretly

have δ̃α,β(θ~c,~0) ≤ δ̃α,β(~c,~0) beause

#

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|θcλ′ | ≥ C2−αj

}
≤ #

{
k ∈ {0, . . . , 2j − 1} : dj,k ≥ C2−αj

}

for all j ∈ N0 and all C > 0. If |θ| > 1, we have δ̃α,β(θ~c,~0) ≤ |θ|δ̃α,β(~c,~0) beause

{
k ∈ {0, . . . , 2j − 1} : dj,k ≥ C2−αj

}
=

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|θcλ′ | ≥ C|θ|2−αj

}

for all j ∈ N0 and C > 0. �

If β = −∞, then (Ã(α, β), δ̃α,β) is the topologial normed spae (cα, ‖ · ‖cα) if α > 0 and

(c0, ‖ · ‖c0) if α ≤ 0. Moreover, if β ≥ 1, we have δ̃α,β ≤ 1. In the following proposition, we

also get more information about the topology in the ase β > 1. The proofs of some points are

similar to the ones of Proposition 3.5 in [8℄.

For auxiliary spaes of Sν , it is known that the topology de�ned by δα,β is stronger than the

pointwise topology; these topologies are equivalent when β > 1. In the Lν ase, the topology

de�ned by δ̃α,β is also stronger than the pointwise topology. In fat, it is even stronger than the

uniform topology, i.e. the topology de�ned by the norm of c0. The equivalene with uniform

topology happens if β > 1.

Proposition 8.1.6. Let α ∈ R and β ∈ {−∞} ∪ [0,+∞[.

(a) The addition is ontinuous on (Ã(α, β), δ̃α,β).

(b) The spae (Ã(α, β), δ̃α,β) has a stronger topology than the uniform topology. Moreover,

every Cauhy sequene in (Ã(α, β), δ̃α,β) is also a uniform Cauhy sequene.

() If β > 1, the topology de�ned by the distane δ̃α,β is equivalent to the uniform topology.

(d) (i) If B is a bounded set of (Ã(α, β), δ̃α,β), then there exists r > 0 suh that

B ⊂
{
~c ∈ Ω : #{k ∈ {0, . . . , 2j − 1} : dj,k ≥ r 2−αj} ≤ r 2βj ∀j ∈ N0

}

⊂
{
~c ∈ Ω : #{k ∈ {0, . . . , 2j − 1} : dj,k > r 2−αj} ≤ r 2βj ∀j ∈ N0

}
.

(ii) Let r, r′ ≥ 0, α′ ≥ α and β′ ≤ β. The set

B :=
{
~c ∈ Ω : #{k ∈ {0, . . . , 2j − 1} : dj,k > r 2−α

′j} ≤ r′ 2β
′j ∀j ∈ N0

}

is a bounded set of (Ã(α, β), δ̃α,β). Moreover, B is losed for the uniform onvergene.

(e) The spae (Ã(α, β), δ̃α,β) is a omplete metri spae.
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Proof. (a) The �rst point is obvious using the triangle inequality with the distane δ̃α,β.

(b) Let (~c (m))m∈N be a sequene of elements of Ã(α, β) whih onverges to ~c in (Ã(α, β), δ̃α,β).

If β = −∞, it su�es to observe that we have

sup
(j,k)∈Λ

|c(m)
j,k − cj,k| = 2α0 sup

λ′⊂λ(0,0)
|c(m)
λ′ − cλ′ | ≤ sup

(j,k)∈Λ
2αj sup

λ′⊂λ(j,k)
|c(m)
λ′ − cλ′ | = δ̃α,−∞(~c (m),~c )

for every m ∈ N. Let us onsider now the ase β ≥ 0. Let ε > 0 and η := min{1
2 , ε}. By

hypothesis, there exists M ∈ N suh that

#

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(m)
λ′ − cλ′ | ≥ η2−αj

}
≤ η2βj

for all j ∈ N0 and m ≥M . Consequently, taking j = 0, we obtain for all m ≥M ,

sup
(j0,k0)∈Λ

|c(m)
j0,k0

− cj0,k0 | = sup
λ′⊂λ(0,0)

|c(m)
λ′ − cλ′ | < η ≤ ε.

The proof is similar for Cauhy sequenes.

() With the previous point, it only remains to show that the uniform topology is stronger

than the topology de�ned by the distane δ̃α,β (in the ase β > 1). Let (~c (m))m∈N be a sequene

of Ã(α, β) = Ω whih onverges uniformly to ~c and let ε > 0. There exists J ∈ N0 suh that

2j ≤ ε2βj for every j ≥ J beause β > 1 and then we have

#

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(m)
λ′ − cλ′ | ≥ ε2−αj

}
≤ 2j ≤ ε2βj

for every j ≥ J and m ∈ N. Let us now �x j ∈ {0, . . . , J − 1}. Using the uniform onvergene,

there exists M ∈ N (whih only depends on ε) suh that

sup
λ′⊂λ(j,k)

|c(m)
λ′ − cλ′ | < ε2−αj

for every k ∈ {0, . . . , 2j − 1} and m ≥M . So, for every m ≥M , we have

#

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(m)
λ′ − cλ′ | ≥ ε2−αj

}
= 0 ≤ ε2βj .

Consequently, we have δ̃α,β(~c
(m),~c ) ≤ 2ε for all m ≥ M and thus (~c (m))m∈N onverges to ~c in

(Ã(α, β), δ̃α,β).

(d)(i) The seond inlusion is lear. Let us prove the �rst inlusion. Sine B is a bounded set

in the metri spae (Ã(α, β), δ̃α,β), there exists C > 0 suh that δ̃α,β(~x, ~y) < C for all ~x, ~y ∈ B.

Let ~x ∈ B be suh that δ̃α,β(~x,~0) ≤ C. By the triangle inequality, we then have

δ̃α,β(~c,~0) ≤ δ̃α,β(~c, ~x) + δ̃α,β(~x,~0) < 2C

for all ~c ∈ B. Consequently, we obtain

B ⊂
{
~c ∈ Ω : #{k ∈ {0, . . . , 2j − 1} : dj,k ≥ C 2−αj} ≤ C 2βj ∀j ∈ N0

}
.
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(d)(ii) By de�nition and by hypothesis, it is lear that B ⊂ Ã(α, β). By the triangle inequal-

ity again, we have

δ̃α,β(~x, ~y) ≤ δ̃α,β(~x,~0) + δ̃α,β(~y,~0) ≤ 2(r + r′)

for all ~x, ~y ∈ B and then, B is bounded in (Ã(α, β), δ̃α,β). Let us now show that B is losed for

the uniform onvergene. Let (~c (m))m∈N be a sequene of B whih onverges uniformly to ~c and

let ε > 0. Then, there exists M ∈ N suh that

sup
λ′⊂λ(0,0)

|c(m)
λ′ − cλ′ | < ε

for all m ≥M . For (j, k) ∈ Λ, we have

dj,k > r2−α
′j ⇒ d

(M)
j,k > r2−α

′j .

Otherwise, d
(M)
j,k ≤ r2−α

′j
and then, taking ε smaller if needed, we have

r2−α
′j < dj,k − ε ≤ sup

λ′⊂λ(j,k)
|c(M)
λ′ − cλ′ |+ d

(M)
j,k − ε ≤ r2−α

′j,

whih is absurd. So ~c ∈ B beause

#{k ∈ {0, . . . , 2j − 1} : dj,k > r2−α
′j} ≤ #{k ∈ {0, . . . , 2j − 1} : d

(M)
j,k > r2−α

′j} ≤ r′2β
′j

for all j ∈ N0.

(e) Sine (Ã(α, β), δ̃α,β) is a metri spae, it only remains to show that if (~c (m))m∈N is

a Cauhy sequene in (Ã(α, β), δ̃α,β), it onverges in (Ã(α, β), δ̃α,β). From Item (b) of this

proposition, (~c (m))m∈N is also a uniform Cauhy sequene and then it onverges uniformly to ~c.

By hypothesis, if η > 0, there exists M ∈ N suh that

#

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(p)λ′ − c

(q)
λ′ | > η2−αj

}
≤ η2βj

for all j ∈ N0 and for all p, q ≥M . Then, ~c (q) belongs to the set

{
~a ∈ Ω : #

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(p)λ′ − aλ′ | > η2−αj

}
≤ η2βj ∀j ∈ N0

}

for all p, q ≥ M . As the previous set is losed for the uniform onvergene (it is similar to the

last part of the proof of Item (d) of this proposition), ~c also belongs to

{
~a ∈ Ω : #

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(p)λ′ − aλ′ | > η2−αj

}
≤ η2βj ∀j ∈ N0

}

for all p ≥M . Thus, ~c ∈ Ã(α, β) and δ̃α,β(~c
(p),~c ) ≤ 2η for all p ≥M . Hene the onlusion. �

Remark 8.1.7. If β ∈ [0, 1] and α > 0, the salar multipliation

(θ,~c ) ∈ C×Ã(α, β) 7→ θ~c ∈ Ã(α, β)

is not ontinuous and onsequently, the spae (Ã(α, β), δ̃α,β) is not a topologial vetor spae.
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Indeed, let ~c be the sequene de�ned by

cj,k :=

{
j2−αj if k ∈ {0, . . . , ⌊2βj⌋ − 1}
0 if k ∈ {⌊2βj⌋, . . . , 2j − 1}

for j ∈ N0. From some sale, this sequene is stritly dereasing. Moreover, for large sale j, we

have ⌊2β(j+1)⌋/2 ≤ ⌊2βj⌋, whih implies that we do not have non-zero oe�ients in a dyadi

interval λ(j, k) with k ∈ {0, . . . , 2j − 1} where cj,k = 0. In other words, there exists J ∈ N0 suh

that dj,k = cj,k for all j ≥ J and k ∈ {0, . . . , 2j − 1} and so,

#Ẽj(C,α)(~c ) ≤ ⌊2βj⌋ ≤ 2βj

for all j ≥ J . For j ∈ {0, . . . , J − 1}, we have

#Ẽj(C,α)(~c ) ≤ 2j ≤ 2βj 2(1−β)J .

Thus, setting C ′ := 2(1−β)J ≥ 1, we have

#Ẽj(C,α)(~c ) ≤ C ′ 2βj

for all j ∈ N0 and ~c ∈ Ã(α, β).

Let us now prove that the sequene (~c/m)m∈N does not onverge to

~0 in (Ã(α, β), δ̃α,β),

following the idea of Proposition 3.5 in [8℄. By ontradition, let us assume that we have the

onvergene. Then, there exists M ≥ J suh that

#

{
k ∈ {0, . . . , 2j − 1} :

1

m
dj,k ≥

1

2
2−αj

}
≤ 1

2
2βj

for all m ≥M and j ∈ N0. Taking j = m, we have

#

{
k ∈ {0, . . . , 2m − 1} :

1

m
cm,k ≥

1

2
2−αm

}
≤ 1

2
2βm

and then

⌊2βm⌋ ≤ 1

2
2βm

for all m ≥ M . Hene a ontradition. If β = 0, it is lear. If β ∈ (0, 1], we atually have

m ≤ 1/β and we have the ontradition if we assume that M is also stritly greater than 1/β.

This ounterexample also shows that the topology de�ned by δ̃α,β and the uniform topology

are not equivalent for suh β and α.

Let us end this setion with some relations between auxiliary spaes. The seond part is

useful to obtain the ontinuity of the salar multipliation in Lν .

Lemma 8.1.8. (a) If α ≥ α′
and β ≤ β′, then

Ã(α, β) ⊂ Ã(α′, β′) and δ̃α′,β′ ≤ δ̃α,β .

(b) Let α′ > α and β′ < β. If the sequene (θm)m∈N onverges to θ in C and if the sequene

(~c (m))m∈N of c0 onverges to ~c in (Ã(α, β), δ̃α,β) with ~c ∈ Ã(α′, β′), then the sequene

(θm~c
(m))m∈N onverges to θ~c in (Ã(α, β), δ̃α,β).
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Proof. The �rst item is obvious. The seond one is similar to the one given for the Sν ase (see
Lemma 4.2 in [8℄). Sine the sequene (θm)m∈N onverges to θ in C, there exists D > 0 suh

that |θm − θ| ≤ D for all m ∈ N. We have

θm~c
(m) − θ~c = (θm − θ)(~c (m) − ~c )− θ(~c (m) − ~c ) + (θm − θ)~c

and then

δ̃α,β(θm~c
(m), θ~c ) ≤ max{1,D} δ̃α,β(~c (m),~c ) + max{1, |θ|} δ̃α,β(~c (m),~c ) + δ̃α,β((θm − θ)~c,~0)

thanks to Lemma 8.1.5. The two �rst terms onverge to 0, using hypotheses and the �rst point

of this lemma. Let us now onsider the onvergene of the third term. Sine ~c ∈ Ã(α′, β′), there

exist C,C ′ ≥ 0 suh that

#Ẽj(C,α
′)(~c ) ≤ C ′2β

′j

for all j ∈ N0. Let η > 0. Then, there exists J ∈ N0 suh that DC2−j(α
′−α) ≤ η and

C ′2−j(β−β
′) ≤ η for all j ≥ J . Consequently, we have, for all j ≥ J and m ∈ N,

#
{
k ∈ {0, . . . , 2j − 1} : |θm − θ| dj,k ≥ η2−αj

}
≤ η2βj

beause |θm− θ| ≤ D for all m ∈ N. Sine the sequene (θm)m∈N onverges to θ and that ~c ∈ c0,

there exists M ∈ N suh that

|θm − θ|dj,k < η2−αj

for all m ≥M , j ∈ {0, . . . , J − 1} and k ∈ {0, . . . , 2j − 1}. Hene δ̃α,β((θm − θ)~c,~0) ≤ 2η for all

m ≥M and we get the onlusion. �

Remark 8.1.9. (a) The assumption that the sequenes belong to c0 will not be restritive

beause we know that Lν ⊂ c0 (see Proposition 7.3.5).

(b) If β = β′ = −∞, this lemma remains true.

8.2 Topology on Lν

By Proposition 8.1.3, we know that Lν is a ountable intersetion of auxiliary spaes. As

in the ase of Sν spaes, this desription allows to obtain a struture of omplete metri spae

on Lν . Indeed, the idea is to use the following lassial result of funtional analysis (see for

example [72℄) to de�ne a topology on Lν .

Proposition 8.2.1. For m ∈ N, let Em be a spae endowed with the topology de�ned by the

distane dm. Let us set E :=
⋂
m∈NEm. On E, let us onsider the topology τ de�ned as follows:

for every e ∈ E, a basis of neighbourhoods of e is given by the family of sets

⋂

(m)

{f ∈ E : dm(e, f) ≤ rm}

where rm > 0 for every m ∈ N and (m) means that it is an intersetion on a �nite number of

values of m. Then, this topology satis�es the following properties.

(a) For every m ∈ N, the identity i : (E, τ) → (Em, dm) is ontinuous and τ is the weakest

topology on E whih veri�es this property.
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(b) The topology τ is equivalent to the topology de�ned on E by the distane d given by

d(e, f) :=

+∞∑

m=1

2−m
dm(e, f)

1 + dm(e, f)
, e, f ∈ E.

() A sequene is a Cauhy sequene in (E, τ) if and only if it is a Cauhy sequene in (Em, dm)

for every m ∈ N.

(d) A sequene onverges to e in (E, τ) if and only if it onverges to e in (Em, dm) for every

m ∈ N.

Using some properties of the auxiliary spaes (Ã(α, β), δ̃α,β) and Proposition 8.2.1, we an

de�ne a distane on the spaes Lν and obtain some additional information on these spaes. The

reasoning is an adaptation of Setion 5 in [8℄.

De�nition 8.2.2. Let α := (αn)n∈N be a dense sequene in R and ε := (εm)m∈N be a sequene

of (0,+∞) whih onverges to 0. We denote

δ̃α,ε :=
+∞∑

m=1

+∞∑

n=1

2−(m+n) δ̃αn,ν(αn)+εm

1 + δ̃αn,ν(αn)+εm

.

Proposition 8.2.3. Let α and ε be sequenes hosen as above.

(a) The appliation δ̃α,ε is a distane on Lν .
(b) The topology de�ned by δ̃α,ε on Lν is the weakest topology suh that, for every m,n ∈ N,

the identity i : Lν → Ã(αn, ν(αn) + εm) is ontinuous.

() A sequene in Lν is a Cauhy sequene in (Lν , δ̃α,ε) if and only if, for every m,n ∈ N, it is

a Cauhy sequene in (Ã(αn, ν(αn) + εm), δ̃αn,ν(αn)+εm).

(d) A sequene in Lν onverges in (Lν , δ̃α,ε) if and only if, for every m,n ∈ N, it onverges in

(Ã(αn, ν(αn) + εm), δ̃αn,ν(αn)+εm).

(e) The spae (Lν , δ̃α,ε) is a omplete topologial metri spae.

Proof. The four �rst items are simply onsequenes of Proposition 8.2.1 and of some results

onerning auxiliary spaes (see Setion 8.1). Let us prove the last item.

It is lear that the addition is ontinuous in (Lν , δ̃) thanks to Item (a) of Proposition 8.1.6

and the seond item of this proposition. Let us show that the salar multipliation (θ,~c) ∈
C×Lν 7→ θ~c ∈ Lν is also ontinuous in (Lν , δ̃). Let (θl)l∈N be a sequene of C whih onverges

to θ and let (~c (l))l∈N be a sequene of Lν whih onverges to ~c in (Lν , δ̃). If (θl~c (l))l∈N onverges

to θ~c in (Ã(α, ν(α) + ε), δ̃α,ν(α)+ε) for all α ∈ R and all ε > 0, we have the onlusion thanks to

Item (d) of this proposition. Let us �x α ∈ R and ε > 0. Then, there exist m,n ∈ N suh that

εm < ε, αn > α and ν(αn) + εm < ν(α) + ε.

Using Item (d) of this proposition, the sequene (~c (l))l∈N onverges to ~c in (Ã(αn, ν(αn) +

εm), δ̃αn,ν(αn)+εm). By Proposition 8.1.3, ~c ∈ Ã(α, ν(α)+ε). Consequently, (θl~c
(l))l∈N onverges

to θ~c in (Ã(α, ν(α) + ε), δ̃α,ν(α)+ε) by Lemma 8.1.8. Thus, (Lν , δ̃α,ε) is a topologial metri

spae.

Moreover, (Lν , δ̃α,ε) is omplete thanks to Items (d) and () of this proposition and Item (e)

of Proposition 8.1.6. �
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In fat, all the distanes δ̃α,ε where α and ε are sequenes as in De�nition 8.2.2 de�ne the

same topology on Lν . We even have the following more general result.

Proposition 8.2.4. If δ̃1 and δ̃2 de�ne omplete topologies on Lν whih are stronger than the

pointwise topology, then these topologies are equivalent.

Proof. It is a diret onsequene of the losed graph theorem. �

With the two previous propositions, the hoie of sequenes α and ε of De�nition 8.2.2 has

thus no importane for the topology de�ned on Lν from the distane δ̃α,ε. Therefore, in the

following, we write δ̃ this distane on Lν , independently of these α and ε.

Remark 8.2.5. Combining Proposition 8.2.3 (Item (d)) and Proposition 8.1.6 (Item (b)), the

spae (Lν , δ̃) has a stronger topology than the uniform topology. Moreover, the inlusion Lν ⊂ c0

is ontinuous.

8.3 Compat Subsets of Lν

Let us ontinue with the haraterization of ompat subsets of (Lν , δ̃). This haraterization
will only holds if αmin > 0. It is partiularly useful to prove the onvergene of sequenes in Lν .
For m,n ∈ N, let Cm,n and C ′

m,n be positive or null onstants and let us de�ne

K̃m,n :=
{
~c ∈ Ω : #{k ∈ {0, . . . , 2j − 1} : dj,k > Cm,n 2

−αnj} ≤ C ′
m,n 2

(ν(αn)+εm)j ∀j ∈ N0

}

(by taking the usual sequenes of Proposition 8.1.3 and De�nition 8.2.2). We write

K̃ :=
⋂

m∈N

⋂

n∈N

K̃m,n. (8.2)

Let us note that K̃m,n is a bounded set of (Ã(αn, ν(αn)+εm), δ̃αn,ν(αn)+εm) by Proposition 8.1.6

(Item (d)) and that K̃ ⊂ Lν by Proposition 8.1.3.

Here are some useful observations to obtain the haraterization of ompat subsets of (Lν , δ̃).

Lemma 8.3.1. (a) From any sequene of K̃, we an extrat a subsequene whih onverges

pointwise.

(b) Let α > 0 and let B be a bounded set of (cα, ‖ · ‖cα). If (~c (l))l∈N is a sequene of B whih

onverges pointwise to ~c, then it onverges uniformly to ~c.

() Let α0 ∈ R and β0 ≥ 0 and let B be a bounded set of (Ã(α0, β0), δ̃α0 ,β0). If (~c (l))l∈N is a

sequene of B whih onverges uniformly to ~c, then it onverges to ~c in (Ã(α, β), δ̃α,β) for

all α and β suh that α < α0 and β > β0.

(d) Let α0 ≥ 0 and let B be a bounded set of (cα0 , ‖ · ‖cα0 ). If (~c (l))l∈N is a sequene of B whih

onverges uniformly to ~c, then it onverges to ~c in (cα, ‖ · ‖cα) for all α < α0.

Proof. (a) Let (~c (l))l∈N be a sequene of K̃. There exists n ∈ N suh that αn < αmin and then

we have

|c(l)j,k| ≤ 2−αnCm,n
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for all l ∈ N and (j, k) ∈ Λ. This means that the sequene (~c (l))l∈N is pointwise bounded in C

and we an thus extrat a pointwise onvergent subsequene.

(b) Sine B is a bounded set of (cα, ‖ · ‖cα), there exists r > 0 suh that

B ⊂ B′ :=

{
~a ∈ Ω : 2αj sup

λ′⊂λ(j,k)
|aλ′ | ≤ r ∀(j, k) ∈ Λ

}

and B′
is losed for the uniform and then the pointwise onvergene by Proposition 8.1.6

(Item (d)). Moreover, B′
is a bounded set of (cα, ‖ · ‖cα). So, ~c ∈ B′ ⊂ cα and (~c (l) − ~c )l∈N

is bounded in (cα, ‖ · ‖cα). Consequently, using again Proposition 8.1.6 (Item (d)), there exists

R > 0 suh that |c(l)j,k − cj,k| ≤ R2−αj for all (j, k) ∈ Λ and all l ∈ N. Let η > 0. On the one

hand, sine α > 0, there exists J ∈ N0 suh that R2−αj < η for every j ≥ J and then

|c(l)j,k − cj,k| < η

for all l ∈ N, j ≥ J and k ∈ {0, . . . , 2j − 1}. On the other hand, thanks to the pointwise

onvergene, there exists L ∈ N (whih only depends on η) suh that

|c(l)j,k − cj,k| < η

for all l ≥ L, j ∈ {0, . . . , J − 1} and k ∈ {0, . . . , 2j − 1}. Thus, for all l ≥ L, we obtain

sup
(j,k)∈Λ

|c(l)j,k − cj,k| < η.

() Sine the sequene (~c (l) −~c )l∈N is bounded in (Ã(α0, β0), δ̃α0,β0) (by the same argument

as in the previous item of this proposition), there exist R,R′ ≥ 0 suh that

#

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(l)λ′ − cλ′ | > R2−α0j

}
≤ R′2β0j

for all j ∈ N0 and l ∈ N, using Proposition 8.1.6 (Item (d)). Let η > 0. Sine α < α0 and

β > β0, there exists J ∈ N0 suh that R2−α0j < η2−αj and R′2β0j < η2βj for every j ≥ J and

then

#

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(l)λ′ − cλ′ | ≥ η2−αj

}
≤ η2βj

for all l ∈ N and j ≥ J . Moreover, thanks to the uniform onvergene, there exists L ∈ N (whih

only depends on η) suh that

sup
λ′⊂λ(j,k)

|c(l)λ′ − cλ′ | < η2−αj

for all l ≥ L, j ∈ {0, . . . , J − 1} and k ∈ {0, . . . , 2j − 1}, and then

#

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(l)λ′ − cλ′ | ≥ η2−αj

}
= 0 ≤ η2βj

for all l ≥ L and j ∈ {0, . . . , J − 1}. Thus, we have δ̃α,β(~c (l),~c ) ≤ 2η for every l ≥ L.

(d) The proof of this item is similar to the two previous ones. �
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Proposition 8.3.2. Let us assume that αmin > 0. A set is a ompat subset of (Lν , δ̃) if and
only if it is losed in (Lν , δ̃) and inluded in some K̃.

Proof. Sine any ompat set of a metri spae is losed and bounded, the ondition is obviously

neessary.

To prove that the ondition is also su�ient, it su�es to show that K̃ is ompat. Let

(~c (l))l∈N be a sequene of K̃. By Lemma 8.3.1 (Item (a)), we an extrat a subsequene whih

onverges pointwise. Let us note (~c (p(l)))l∈N this subsequene and ~c its pointwise limit. Let us

show that (~c (p(l)))l∈N onverges to ~c in (Lν , δ̃).
As αmin > 0, there exists n0 ∈ N suh that 0 < αn0 < αmin. By onstrution, ~c (p(l)) ∈ K̃m,n0

for all l ∈ N andm ∈ N and we know that K̃m,n0 is bounded in (cαn0 , ‖·‖cαn0 ) by Proposition 8.1.6

(Item (d)). Using Lemma 8.3.1 (Item (b)), we get that (~c (p(l)))l∈N onverges uniformly to ~c.

Let α ∈ R and ε > 0. If ν(α) ∈ R, there exist n,m ∈ N suh that

εm < ε, αn > α and ν(αn) + εm < ν(α) + ε.

Lemma 8.3.1 (Item ()) implies that (~c (p(l)))l∈N onverges to ~c in (Ã(α, ν(α) + ε), δ̃α,ν(α)+ε).

If ν(α) = −∞, there exists n ∈ N suh that αn > α and ν(αn) = −∞. By Lemma 8.3.1

(Item (d)), (~c (p(l)))l∈N onverges to ~c in (Ã(α, ν(α) + ε), δ̃α,ν(α)+ε). Proposition 8.2.3 gives the

onlusion. �

In fat, we also have obtained within this last proof the following result.

Corollary 8.3.3. Every sequene of K̃ whih onverges pointwise onverges also in (Lν , δ̃) to
an element of K̃.

Remark 8.3.4. The haraterization is not longer valid in the ase αmin = 0. Indeed, let ν be

the admissible pro�le de�ned by

ν(α) :=

{
−∞ if α < 0

1 if α ≥ 0

as in Expression (7.3). In this ase, we know that Lν = c0 (see Subsetion 7.3.3 in the previous

hapter). If we assume that we have this haraterization of subset ompats of Lν , then the

(losed) unit ball of c0 would be ompat (it is easy to show that it is inluded in some K̃) and

therefore the spae would be �nite dimensional. This leads to a ontradition.

8.4 Separability

As for the haraterization of the ompat subsets of Lν , we have to onsider separately the

two following ases: αmin > 0 and αmin = 0. Let us start with a �rst di�erene desribed in the

following lemma.

Lemma 8.4.1. If ~c ∈ Ω, let (~cN )N∈N0 be the sequene of Ω de�ned by

cNj,k :=

{
cj,k if j ≤ N and k ∈ {0, . . . , 2j − 1}
0 if j > N and k ∈ {0, . . . , 2j − 1} (8.3)

for every N ∈ N0.
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(a) If αmin > 0, (~cN )N∈N0 onverges to ~c in (Lν , δ̃) for all ~c ∈ Lν .
(b) If αmin = 0, there exists ~c ∈ Lν suh that (~cN )N∈N0 does not onverge to ~c in (Lν , δ̃).
Proof. (a) Sine the haraterization of ompats of Lν (when αmin > 0) is similar to the one

in Sν ase, the proof of this �rst item only needs some adaptations of Lemma 6.3 in [8℄ with

wavelet leaders.

Sine ~c ∈ Lν , ~c ∈ Ã(αn, ν(αn) + εm) for all m,n ∈ N by Proposition 8.1.3. Then, for all

m,n ∈ N, there exist Cm,n, C
′
m,n ≥ 0 suh that

#
{
k ∈ {0, . . . , 2j − 1} : dj,k > Cm,n2

−αnj
}
≤ C ′

m,n2
(ν(αn)+εm)j

for all j ∈ N0 and so, ~c ∈ K̃ where K̃ is de�ned as in Expression (8.2). For all N ∈ N0, we also

have ~cN ∈ K̃ beause dNj,k ≤ dj,k for all (j, k) ∈ Λ by de�nition of ~cN . Moreover, (~cN )N∈N0

onverges pointwise to ~c. Corollary 8.3.3 gives the onlusion.

(b) Let us now suppose that αmin = 0 and let us onsider the sequene ~c de�ned by

cj,k :=

{
1 if k = 0

0 if k ∈ {1, . . . , 2j − 1} .

for eah sale j ∈ N0. We have dj,k = cj,k for all (j, k) ∈ Λ. Using the assumption αmin = 0, it is

easy to hek that ~c belongs to Lν . By ontradition, let us assume that (~cN )N∈N0 onverges to

~c in (Lν , δ̃). We know that the spae (Lν , δ̃) has a stronger topology than the uniform topology

(see Remark 8.2.5). However, for N ∈ N0, we have

sup
(j,k)∈Λ

|cj,k − cNj,k| = 1,

hene a ontradition. �

Let us begin by studying the separability of Lν with αmin > 0.

Lemma 8.4.2. Let B be a pointwise bounded set of sequenes and let us assume that there

exists N ∈ N0 suh that

∀~c ∈ B, ∀j > N, ∀k ∈ {0, . . . , 2j − 1}, cj,k = 0.

If αmin > 0, then B is inluded in a ompat subset of Lν .
Proof. Sine B is a pointwise bounded set, there exists a onstant C > 0 suh that

sup
j∈{0,...,N}

sup
k∈{0,...,2j−1}

|cj,k| ≤ C

for all ~c ∈ B. Let ~c ∈ B. Then, cj,k = 0 and therefore dj,k = 0 for all j > N and k ∈
{0, . . . , 2j − 1}. Moreover, for all j ∈ {0, . . . , N}, k ∈ {0, . . . , 2j − 1} and n ∈ N, we have

2αnjdj,k ≤ 2αnj sup
j′∈{0,...,N}

sup
k′∈{0,...,2j′−1}

|cj′,k′| ≤ C2αnj ≤ C sup
j′∈{0,...,N}

sup
k′∈{0,...,2j′−1}

2αnj′

Setting Cm,n := C sup
j′∈{0,...,N}

sup
k′∈{0,...,2j′−1}

2αnj′
for m,n ∈ N, we so obtain

#
{
k ∈ {0, . . . , 2j − 1} : dj,k > 2−αnjCm,n

}
= 0 ≤ C ′

m,n2
(ν(αn)+εm)j

for all j ∈ N0 and all onstant C ′
m,n ≥ 0. Consequently, ~c ∈ K̃ where K̃ is de�ned as in

Expression (8.2). �
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Proposition 8.4.3. If αmin > 0, the metri spae (Lν , δ̃) is separable.

Proof. Let us prove that the set

U :=
{
~c ∈ Ω : cj,k ∈ Q+iQ and ∃N ∈ N0 suh that cj,k = 0 ∀j > N, k ∈ {0, . . . , 2j − 1}

}

is dense in (Lν , δ̃). Let ~c ∈ Lν ; by Lemma 8.4.1, the sequene (~cN )N∈N0 de�ned in Expres-

sion (8.3) onverges to ~c in (Lν , δ̃). Using the density of Q+iQ in C, we an �nd for all N ∈ N0,

a sequene (~q
(l)
N )l∈N of U whih onverges pointwise to ~cN . By Lemma 8.4.2 and Corollary 8.3.3,

the onvergene also holds in (Lν , δ̃), hene the onlusion. �

Let us onsider now the ase where the admissible pro�le ν is suh that αmin = 0. The

previous result is no longer valid. Indeed, with the admissible pro�le onsidered in Remark 8.3.4,

the spae Lν is c0 whih is not separable. More generally, we have the following property.

Proposition 8.4.4. If αmin = 0, the metri spae (Lν , δ̃) is not separable.

Proof. Let us onsider the unountable set A of sequenes ~c of Ω suh that for eah sale j ∈ N0,

cj,0 ∈ {0, 1} and the other oe�ients are equal to 0. Using the hypothesis αmin = 0, we easily

prove that A is a subset of Lν . Indeed, let ~c ∈ A and let α ∈ R, ε > 0 and C > 0. If α < 0,

there exists J ∈ N0 suh that C2−αj > 1 for all j ≥ J and we then have

dj,k ≤ 1 < C2−αj

for all j ≥ J and k ∈ {0, . . . , 2j − 1}. If α ≥ 0, we have

#Ẽj(C,α)(~c ) ≤ 1 ≤ 2(ν(α)+ε)j

for all j ∈ N0. Thus, ~c ∈ Lν . Moreover, we learly have ‖~c−~c ′‖c0 = 1 for all distint elements ~c

and ~c ′ of A.

Let D be a dense subset of (Lν , δ̃). For every ~c ∈ A, there exists a sequene (~c (m))m∈N of

elements of D whih onverges in (Lν , δ̃) to ~c ∈ Lν . Moreover, the onvergene also holds in c0

by Remark 8.2.5. Consequently, there exists M ∈ N suh that

‖~c− ~c (m)‖c0 <
1

2

for all m ≥M . In partiular, there exists ~a ∈ D suh that

‖~c− ~a‖c0 <
1

2
.

Sine ‖~c − ~c ′‖c0 = 1 for two distint elements ~c and ~c ′ of A , D must ontain at least as many

elements as A and annot be ountable. �

8.5 Comparison with the Topology of Sν

In the end of the previous hapter, we have studied the inlusions between Lν and Sν . Let
us reall that Lν ⊂ Sν for all admissible pro�le ν. Let us now ompare the topologies of Lν
and Sν . We have the following proposition; its proof is straightforward.
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Proposition 8.5.1. (a) If α ∈ R and β ∈ {−∞} ∪ [0,+∞[, then we have

Ã(α, β) ⊂ A(α, β) and δα,β ≤ δ̃α,β.

(b) If a sequene onverges in (Ã(α, β), δ̃α,β), it onverges in (A(α, β), δα,β ) to the same limit. If

a sequene is a Cauhy sequene in (Ã(α, β), δ̃α,β), it is a Cauhy sequene in (A(α, β), δα,β).

() The spae (Ã(α, β), δ̃α,β) has a stronger topology than the topology indued by the dis-

tane δα,β .

(d) The spae (Lν , δ̃) has a stronger topology than the topology indued by the distane δ.

Proof. Let us prove the �rst item. Let ~c ∈ Ã(α, β). By de�nition, there exist C,C ′ ≥ 0 suh

that

#{k ∈ {0, . . . , 2j − 1} : dj,k ≥ C2−αj} ≤ C ′2βj

for all j ∈ N0. Sine |cj,k| ≤ dj,k for all (j, k) ∈ Λ, we diretly have ~c ∈ A(α, β). The same

argument shows that δα,β(~c,~0) ≤ δ̃α,β(~c,~0).

The other items result from the �rst item of this proposition. �

The topology indued by δ on Lν is not equivalent to the one indued by δ̃. It is the objet

of this last result.

Proposition 8.5.2. If Lν is stritly inluded in Sν , then Lν is not losed in Sν .

Proof. Let ~c ∈ Sν \Lν and let (~cN )N∈N0 be the sequene de�ned from ~c as in Expression (8.3).

For all N ∈ N0, ~c
N

belongs to Lν and then to Sν beause it has only a �nite number of non

zero oe�ients. The sequene (~cN )N∈N0 onverges to ~c for the topology of Sν (see Lemma 6.3

in [8℄). Sine ~c /∈ Lν , we have the onlusion. �
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8.1. Ã(α, β), δ̃α,β

8.2. α, ε, δ̃α,ε, δ̃

8.3. K̃m,n, K̃

8.4. ~cN

8.5.

125





Index

Admissibility ondition

Admissibility ondition, 39

Nonstationary admissibility ondition, 81

Auxiliary spae

Auxiliary spae for Lν , 99
Auxiliary spae for Sν , 92

Cantor's bijetion, 25, 31

Continued fration

Finite ontinued fration, 21

In�nite ontinued fration, 22

Ultimately periodi ontinued fration, 23

Continuous wavelet transform, see Wavelet

Nonstationary ontinuous wavelet transform, see Wavelet

Convergent, 21

Darboux funtion, see Funtion

Dimension funtion, 63

Exponential-Spline, 64

Filter, 63

Funtion

Cantor funtion, see Cantor's bijetion

Darboux funtion, 17

Exponential-Spline funtion, see Exponential-Spline

Generalized Riemann funtion, 45, 54

Riemann funtion, 15, 45

Takagi funtion, 7

Weierstrass funtion, 7

Generalized Riemann funtion, see Funtion

Hardy spae, 40

Hölder ontinuity

Pointwise Hölder ontinuity, 7, 12

Uniform Hölder ontinuity, 10

Hölder exponent

Pointwise Holder exponent, 14

Restrited pointwise Hölder exponent, 16

Restrited uniform Hölder exponent, 16

127



128 Index

Hölder spae

Pointwise Hölder spae, 7, 12

Uniform Hölder spae, 10

Khinthine's onstant, 31

Lebesgue point, 72

Lévy's ontant, 32

Mean of a funtion, 54

Monofratal funtion, 15

Multifratal funtion, 15

Multiresolution analysis

Nonstationary multiresolution analysis, 61

Nonharmoni Fourier series, 51

Nonstationary

Nonstationary admissibility ondition, see Admissibility ondition

Nonstationary ontinuous wavelet transform, see Wavelet

Nonstationary family of wavelets, see Wavelet

Nonstationary multiresolution analysis, see Multiresolution analysis

Nonstationary orthonormal basis of wavelets, see Wavelet

Orthonormal basis of wavelets, see Wavelet

Nonstationary orthonormal basis of wavelets, see Wavelet

Pro�le

Admissible pro�le, 91, 95

Leader pro�le, 93

Wavelet pro�le, 91

Reonstrution formula, 41, 84

Riemann funtion, see Funtion

Riesz basis, 61

Saling

Saling equation, 63

Saling funtion, 61

Spae

Hardy spae, see Hardy spae

Pointwise Hölder spae, see Hölder spae

Spae Lν , 93
Spae Sν , 91
Uniform Hölder spae, see Hölder spae

Takagi funtion, see Funtion

Uniform topology, 102



Index 129

Wavelet

Continuous wavelet transform, 39

Lusin wavelet, 43

Nonstationary ontinuous wavelet transform, 82

Nonstationary family of wavelets, 81

Nonstationary orthonormal basis of wavelets, 60

Orthonormal basis of wavelets, 59

Poisson wavelet, 83

Wavelet, 39

Wavelet oe�ients, 90

Wavelet leaders, 90

Wavelet pro�le, see Pro�le

Weak osillation around the origin, 41

Weierstrass funtion, see Funtion




	Abstract
	Résumé
	Remerciements
	Contents
	Introduction
	I Hölder Continuity of Particular Functions
	Continuous Nowhere Differentiable Functions and Hölder Continuity
	Hölder Continuity and Hölder Spaces
	Pointwise Hölder Continuity
	Uniform Hölder Continuity
	Extension

	Hölder Exponent
	A First Detailed Example: the Darboux Function

	Cantor's Bijection(s)
	Some Preliminaries
	The Space of Sequences of Natural Numbers
	Continued Fractions

	Cantor's Bijection
	Continuity of Cantor's Bijection
	Hölder Continuity of Cantor's Bijection
	Appendix: Another Cantor's Bijection
	A ``Practical'' Proof of Schröder-Bernstein Theorem
	A Bijection between the Unit Square and the Unit Segment Based on the Decimal Expansion


	Continuous Wavelet Transform and Hölder Continuity
	Continuous Wavelet Transform
	General Setting
	The Particular Setting of Continuous and Bounded Functions

	Characterization of Hölder Spaces

	Generalized Riemann Function
	Hölder Continuity of Generalized Riemann Function
	Extension to Nonharmonic Fourier Series
	Behaviour of R, as  Increases


	II Nonstationary Wavelets
	Nonstationary Orthonormal Basis of Wavelets
	Nonstationary Orthonormal Basis of Wavelets
	Nonstationary Multiresolution Analysis
	The Example of Exponential-Splines
	Smooth Nonstationary Orthonormal Basis of Wavelets in the Hardy Space H2(`39`42`"613A``45`47`"603AR)
	Proof of Theorem 5.1.3
	Auxiliary Results and Notations
	Proof of the Sufficient Condition of Theorem 5.1.3
	Proof of the Necessary Condition of Theorem 5.1.3

	Proofs of Theorem 5.2.5 and Proposition 5.2.6
	Proof of the Necessary Condition of Theorem 5.2.5
	Proof of the Sufficient Condition of Theorem 5.2.5
	Proof of Proposition 5.2.6

	Proof of Theorem 5.4.1

	Nonstationary Continuous Wavelet Transform
	Nonstationary Continuous Wavelet Transform
	Reconstruction Formula


	III `39`42`"613A``45`47`"603AS Spaces Revisited with Wavelet Leaders
	From `39`42`"613A``45`47`"603AS Spaces to `39`42`"613A``45`47`"603AL Spaces
	Wavelet Coefficients and Wavelet Leaders
	Wavelet Profile and Space `39`42`"613A``45`47`"603AS
	Definitions
	Basic Results

	Leader Profile and Space `39`42`"613A``45`47`"603AL
	Definitions
	First Properties
	Examples and Comparison of Spaces `39`42`"613A``45`47`"603AL and `39`42`"613A``45`47`"603AS


	Topology on `39`42`"613A``45`47`"603AL Spaces
	Auxiliary Spaces
	Topology on `39`42`"613A``45`47`"603AL
	Compact Subsets of `39`42`"613A``45`47`"603AL
	Separability
	Comparison with the Topology of `39`42`"613A``45`47`"603AS

	Bibliography
	List of Figures
	List of Symbols (by Section)
	Index


