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Abstra
t

There exist a lot of 
ontinuous nowhere di�erentiable fun
tions, but these fun
tions do

not have the same irregularity. Hölder 
ontinuity, and more pre
isely Hölder exponent, allow

to quantify this irregularity. If the Hölder exponent of a fun
tion takes several values, the

fun
tion is said multifra
tal. In the �rst part of this thesis, we study in details the regularity

and the multifra
tality of some fun
tions: the Darboux fun
tion, the Cantor bije
tion and a

generalization of the Riemann fun
tion.

The theory of wavelets notably provides a tool to investigate the Hölder 
ontinuity of a

fun
tion. Wavelets also take part in other 
ontexts. In the se
ond part of this thesis, we


onsider a nonstationary version of the 
lassi
al theory of wavelets. More pre
isely, we study

the nonstationary orthonormal bases of wavelets and their 
onstru
tion from a nonstationary

multiresolution analysis. We also present the nonstationary 
ontinuous wavelet transform.

For some irregular fun
tions, it is di�
ult to determine its Hölder exponent at ea
h point.

In order to get some information about this one, new fun
tion spa
es based on wavelet leaders

have been introdu
ed. In the third and last part of this thesis, we present these new spa
es and

their �rst properties. We also de�ne a natural topology on them and we study some properties.
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Résumé

Il existe beau
oup de fon
tions 
ontinues et nulle part dérivables, mais 
es fon
tions n'ont pas

toutes la même irrégularité. La 
ontinuité höldérienne et plus pré
isément l'exposant de Hölder

permettent de quanti�er 
ette irrégularité. Lorsque l'exposant de Hölder d'une fon
tion prend

plusieurs valeurs, 
ette fon
tion est dite multifra
tale. Dans la première partie de 
ette thèse,

nous étudions en détail la régularité et la multifra
talité de quelques fon
tions : la fon
tion de

Darboux, la bije
tion de Cantor et une généralisation de la fon
tion de Riemann.

La théorie des ondelettes fournit notamment un outil pour examiner la 
ontinuité höldéri-

enne d'une fon
tion. Les ondelettes interviennent également dans d'autres 
ontextes. Dans

la deuxième partie de 
ette thèse, nous 
onsidérons une version non-stationnaire de la théorie


lassique des ondelettes. Plus pré
isément, nous étudions les bases orthonormées d'ondelettes

non-stationnaires et leur 
onstru
tion à partir d'une analyse multirésolution non-stationnaire.

Nous présentons aussi la transformée 
ontinue en ondelette non-stationnaire.

Pour 
ertaines fon
tions irrégulières, il est di�
ile de déterminer son exposant de Hölder en


haque point. A�n d'obtenir tout de même des informations sur 
elui-
i, de nouveaux espa
es de

fon
tions basés sur les 
oe�
ients d'ondelettes dominants ont été introduits. Dans la troisième et

dernière partie de 
ette thèse, nous présentons 
es nouveaux espa
es et leurs premières propriétés.

Nous dé�nissons une topologie naturelle sur 
eux-
i et nous en étudions quelques propriétés.
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Introdu
tion

Continuous but nowhere di�erentiable fun
tions? Mathemati
ians of the early 19

th


entury

thought they did not exist. Moreover, Ampère [2℄ tried to prove that any 
ontinuous fun
tion

is di�erentiable, ex
ept possibly at a �nite number of points. In 1872, Weierstrass [121℄

showed that

x 7→
+∞∑

n=0

an cos(bnπx)

where a ∈ (0, 1) and b is an odd integer su
h that ab > 1 + 3π/2 is a 
ontinuous nowhere di�er-

entiable fun
tion. A lot of su
h fun
tions were then 
onstru
ted (see [114℄ for some examples).

The mathemati
al 
ommunity was extremely astonished about this dis
overy (see Se
tions 5.7

and 6.8 in [77℄). Some mathemati
ians, as Hermite and Poin
aré, even reje
ted the relevan
e

of su
h fun
tions, whi
h they 
alled �monsters� (see page 132 in [102℄).

Su
h fun
tions are irregular, but they 
an behave in many di�erent ways. Hölder 
ontinuity,

and more pre
isely Hölder exponent, allows to quantify the irregularity (see [116℄). This notion

provides a tool to analyse whether some regularity o

urs in the irregularity of a fun
tion. On

the one hand, the Hölder exponent of a fun
tion 
an be the same everywhere, whi
h means that

this fun
tion has the same irregularity at every point. On the other hand, the Hölder exponent

of a fun
tion 
an also be irregular. In this 
ase, the fun
tion is said to be multifra
tal and its

behaviour is 
ompletely errati
.

Many mathemati
ians have been interested in the Hölder 
ontinuity and in the multifra
tality

of irregular fun
tions. From the Weierstrass fun
tion (see [49, 65, 121℄) to Eisenstein series

(see [100℄) re
ently, through the Takagi fun
tion (see [110, 113℄) and the Riemann fun
tion

(see [49,55,61℄), many other fun
tions have been investigated (see also [62℄ for other examples

and [70℄ for some spa
e-�lling maps).

A tool to study the Hölder 
ontinuity of a fun
tion is given by the theory of wavelets (see [33,

55, 59�61, 68, 92, 115℄). The behaviour of its wavelet 
oe�
ients (that are its 
oe�
ients in

an orthonormal basis of wavelets) or the behaviour of its 
ontinuous wavelet transform allows

to obtain its Hölder 
ontinuity. A
tually, Hölder 
ontinuity 
an be 
ompletely 
hara
terized by

wavelet 
oe�
ients or by 
ontinuous wavelet transform. This te
hnique established by Jaffard

and Meyer has already proven its worth in the study of the regularity of some fun
tions

(see [55,61,100℄ for some examples).

The theory of wavelets takes also part in other 
ontexts. In the nineties, the notion of �non-

stationarity� appeared in the 
lassi
al theory of orthonormal basis of wavelets (see [16,35,40,41,

98,119℄). In the nonstationary setting, orthonormal bases of wavelets using Exponential-Splines

have been obtained in [35℄. The problem of the 
onstru
tion of regular 
ompa
tly supported or-

thonormal bases of wavelets in the general 
ontext of Sobolev spa
es have been studied in [15,16℄.

Moreover, in�nitely di�erentiable orthonormal bases of wavelets with 
ompa
t support have been


onsidered in [41℄.

1



2 Introdu
tion

Typi
ally, an orthonormal basis of wavelets of L2(R) is an orthonormal basis of L2(R) of

type

2j/2ψ(2j · −k), j, k ∈ Z,

where ψ ∈ L2(R). The nonstationary version of this de�nition 
onsists in introdu
ing a depen-

den
e on the parameter j for the fun
tion ψ. More pre
isely, a nonstationary orthonormal basis

of wavelets of L2(R) is an orthonormal basis of L2(R) of type

2j/2ψ(j)(2j · −k), j, k ∈ Z,

where ψ(j) ∈ L2(R) for j ∈ Z.

As in the 
lassi
al 
ase, it is possible to 
onstru
t su
h a basis from a pro
edure 
alled

multiresolution analysis, with some adaptations to the nonstationary 
ase. A family of s
aling

fun
tions 
an lead to a nonstationary multiresolution analysis (see [16,35,98℄).

The present thesis is 
on
erned with the Hölder 
ontinuity of fun
tions and the theory of

wavelets. This is the explanation of the title. It is mainly based on the papers [14,17,18,96,97℄.

It is divided into three parts.

Part I studies the Hölder 
ontinuity of several fun
tions. After some re
alls about pointwise

and uniform Hölder 
ontinuity in Chapter 1, we �rst determine the Hölder exponent of the

Darboux fun
tion. Chapter 2 fo
uses on a well-known spa
e-�lling fun
tion, 
alled Cantor's

bije
tion. We explore the multifra
tal nature of this one-to-one 
orresponden
e between the

unit segment [0, 1] and the unit square [0, 1]2. Moreover, in the appendix, we 
onstru
t another

bije
tion between [0, 1] and [0, 1]2 inspired by an idea of Cantor. Finally, in Chapter 4, we study

the uniform Hölder 
ontinuity of a generalization of the Riemann fun
tion. To do so, we use

the known 
hara
terization of Hölder 
ontinuity with 
ontinuous wavelet transform formulated

in Chapter 3. We also analyse the behaviour of this generalized Riemann fun
tion a

ording to

its parameters.

Part II mainly fo
uses on the theory of wavelets. We investigate the 
lassi
al notions of

orthonormal basis of wavelets and of 
ontinuous wavelet transform in a nonstationary setting.

Firstly, in Chapter 5, we 
onsider the 
onstru
tion of a nonstationary orthonormal basis of

wavelets in L2(R) from a nonstationary multiresolution analysis. Under some additional asymp-

toti
 assumption, we present a ne
essary and su�
ient 
ondition about su
h a pro
edure. We

notably illustrate the results on the example of Exponential-Splines. Se
ondly, we propose

a nonstationary version of the 
ontinuous wavelet transform of a square integrable fun
tion in

Chapter 6. After having given some examples, we study the re
onstru
tion of a square integrable

fun
tion from its nonstationary 
ontinuous wavelet transform.

Part III studies new spa
es �rst introdu
ed in the 
ontext of multifra
tal analysis. These

spa
es provide a tool to investigate the regularity (and more pre
isely some information about

the Hölder exponent) of a fun
tion from its wavelet leaders, that is to say from quantities using

the 
oe�
ients of the fun
tion in an orthonormal basis of wavelets. Sin
e these new spa
es do

not depend on the 
hosen orthonormal basis of wavelets, they 
an be 
onsidered as sequen
e

spa
es. We present these new sequen
e spa
es and their �rst properties in Chapter 7. Then,

in Chapter 8, we study them from the fun
tional analysis point of view. We de�ne a natural

topology on these spa
es and study some of its properties.
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tion 3

Let us end this introdu
tion with some explanations about this thesis. Ex
ept for the begin-

ning of Chapter 1, we have in
luded the proofs of new results and the proofs of known results

for whi
h we have not found a proof in the literature. If a result is given without a proof, at

least one referen
e is mentioned to �nd the result and a proof of the latter.

The notations of this thesis are 
lassi
al. The symbol N denotes the set of stri
tly positive

natural numbers and N0 := N∪{0}. Both f̂ and F−f designate the (negative) Fourier transform

of the fun
tion f . For f ∈ L1(R), we have

f̂(ξ) = F−
ξ f =

∫

R

e−ixξf(x) dx, ξ ∈ R .

A list of symbols 
lassi�ed by se
tion is given at the end of this thesis.





Part I

Hölder Continuity of

Parti
ular Fun
tions
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Chapter 1

Continuous Nowhere Di�erentiable

Fun
tions and Hölder Continuity

There exist a lot of fun
tions whi
h are 
ontinuous, but nowhere di�erentiable (see [4,56,91℄).

The most famous example of su
h fun
tions is 
ertainly the Weierstrass fun
tion W de�ned by

W (x) :=

+∞∑

n=0

an cos(bnπx), x ∈ R (1.1)

where a ∈ (0, 1) and b > 0 with ab > 1 (see [49,121℄). Another well-known 
ontinuous nowhere

di�erentiable fun
tion is the Takagi fun
tion T de�ned by

T (x) :=
+∞∑

n=0

1

2n
dist(2nx,Z), x ∈ R

(see [113℄). The graphi
s of W and T are represented in Figure 1.1. Amazingly, W and T are

not the �rst 
onstru
tions of 
ontinuous nowhere di�erentiable fun
tions. In fa
t, Bolzano and

also Cellérier earlier built su
h a fun
tion, without publishing their dis
overy (see [57℄ for

some histori
al information).

The Hölder spa
es allow to de�ne a notion of smoothness or regularity for a fun
tion and, in

parti
ular, they roughly provide an �intermediate level� between 
ontinuity and di�erentiability.

In this 
hapter, we �rst give the de�nition of Hölder spa
es and Hölder 
ontinuity in this 
ontext.

The general de�nition is also 
onsidered in the pointwise 
ase. We then introdu
e the notion of

Hölder exponent. We �nish with the Hölder 
ontinuity of a detailed �rst example: the Darboux

fun
tion.

1.1 Hölder Continuity and Hölder Spa
es

1.1.1 Pointwise Hölder Continuity

Let us begin with the de�nition of pointwise Hölder 
ontinuity (see [33,65,88,95,115℄).

De�nition 1.1.1. Let α ∈ (0, 1] and x0 ∈ R. The fun
tion f is Hölder 
ontinuous of order α

at x0 if there exist C, δ > 0 su
h that

|f(x)− f(x0)| ≤ C|x− x0|α (1.2)

for all x ∈ (x0 − δ, x0 + δ). We denote by Λα(x0) the spa
e of Hölder 
ontinuous fun
tions of

order α at x0 and it is 
alled Hölder spa
e of order α at x0.

7



8 Chapter 1. Continuous Nowhere Di�erentiable Fun
tions and Hölder Continuity
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Figure 1.1. Graphi
al representations of W (with a = 1/2 and b = 4) and of T .



1.1. Hölder Continuity and Hölder Spa
es 9

The de�nition implies that f is bounded in a neighbourhood of x0 if f ∈ Λα(x0) for some

α ∈ (0, 1]. In
identally, if we 
onsider the 
ase α = 0, Λ0(x0) would simply be the spa
e of

bounded fun
tions in a neighbourhood of x0. The 
ase α = 1 
orresponds to the spa
e of

Lips
hitz fun
tions at x0.

Hölder spa
es are 
learly embedded: if α, β ∈ (0, 1] su
h that α > β, we have Λα(x0) ⊂
Λβ(x0) for all x0 ∈ R. This property will be proved in a more general 
ase (see Proposi-

tion 1.1.12).

The following proposition investigates the links between di�erentiability, Hölder 
ontinuity

and 
ontinuity at a point.

Proposition 1.1.2. Let x0 ∈ R.

(a) If f ∈ Λα(x0) for some α ∈ (0, 1], then f is 
ontinuous at x0.

(b) If f is di�erentiable at x0, then f ∈ Λα(x0) for all α ∈ (0, 1].

Proof. The �rst item is evident and let us prove the se
ond item. By hypothesis, there exists

δ ∈ (0, 1) su
h that ∣∣∣∣(Df)(x0)−
f(x)− f(x0)

x− x0

∣∣∣∣ ≤ 1

and then

|f(x)− f(x0)| ≤ (1 + |(Df)(x0)|) |x− x0|

for all x ∈ (x0 − δ, x0 + δ). So f ∈ Λ1(x0), whi
h su�
es using the embedding of pointwise

Hölder spa
es. �

The 
onverse of ea
h item of the previous proposition is false. On the one hand, the fun
tion

x 7→ −χ(0,1)(x)/ log(x) is 
ontinuous at 0, but there exists no α ∈ (0, 1] su
h that it belongs

to Λα(0). On the other hand, the fun
tion x 7→ |x| belongs to Λα(0) for all α ∈ (0, 1], but is not

di�erentiable at 0.

1.1.2 Uniform Hölder Continuity

Let us go on with the uniform Hölder 
ontinuity (see [33,80,92,95,115℄). Before that, let

us make the following remark about De�nition 1.1.1.

Remark 1.1.3. If f is moreover bounded on R in De�nition 1.1.1, Condition (1.2) holds every-

where. Indeed, for x ∈ R su
h that |x− x0| ≥ δ, we have

|f(x)− f(x0)| ≤ 2 sup
y∈R

|f(y)| ≤ 2

δα
sup
y∈R

|f(y)||x− x0|α.

Then, the bounded fun
tion f belongs to Λα(x0) if and only if there exists C > 0 su
h that

|f(x)− f(x0)| ≤ C|x− x0|α

for all x ∈ R.
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De�nition 1.1.4. Let α ∈ (0, 1] and f be a bounded fun
tion on R. The fun
tion f is uniformly

Hölder 
ontinuous of order α (on R) if there exists C > 0 su
h that

|f(x)− f(x0)| ≤ C|x− x0|α

for all x, x0 ∈ R. We denote by Λα(R) the spa
e of uniformly Hölder 
ontinuous fun
tions of

order α (on R) and it is 
alled uniform Hölder spa
e of order α (on R).

In 
omparison with De�nition 1.1.1, the 
onstant C does not depend here on x0. If we


onsider the 
ase α = 0, Λ0(R) would be the spa
e of bounded fun
tions. The 
ase α = 1


orresponds to the spa
e of uniformly Lips
hitz fun
tions.

Remark 1.1.5. If f is uniformly Hölder 
ontinuous (of order α ∈ (0, 1]) on R, then f is 
learly

Hölder 
ontinuous (of order α) at ea
h point in R. The reverse is false. For example, the

fun
tion f de�ned by

f(x) :=





x sin

(
1

x

)
if x 6= 0

0 if x = 0

is Hölder 
ontinuous of order 1 at ea
h point in R, but is not uniformly Hölder 
ontinuous of

order 1. Indeed, it is easy to 
he
k that f ∈ Λ1(0). If x0 > 0, there exists δ > 0 su
h that

x0 − δ > 0 and

|f(x)− f(x0)| ≤ |x− x0|
∣∣∣∣sin

(
1

x0

)∣∣∣∣+ |x|
∣∣∣∣sin

(
1

x

)
− sin

(
1

x0

)∣∣∣∣

≤ |x− x0|+ |x|
∣∣∣∣
∫ x

x0

−1

t2
cos

(
1

t

)
dt

∣∣∣∣

≤ |x− x0|+ |x|
∣∣∣∣
1

x0
− 1

x

∣∣∣∣

≤
(
1 +

1

|x0|

)
|x− x0|

for all x ∈ (x0 − δ, x0 + δ). The 
ase x0 < 0 is similar. Then, f ∈ Λ1(x0) for all x0 ∈ R. Let us

now show that f /∈ Λ1(R). Let C > 0 and let us set

xn :=
1

π(n + 1
2 )
, n ∈ N .

There exists N ∈ N su
h that 2(2n + 1) > C for all n ≥ N . For su
h n, we have

|f(x2n)− f(x2n+1)| =
2

π

2n+ 1

(2n + 1
2)(2n + 3

2)
> C|x2n − x2n+1|,

hen
e the 
on
lusion.

Uniform Hölder spa
es are also embedded, and this 
omes from the hypothesis of bounded-

ness in the de�nition of uniform Hölder 
ontinuity. This is the obje
t of the following proposition.

Proposition 1.1.6. If α, β ∈ (0, 1] su
h that α > β, we have Λα(R) ⊂ Λβ(R).
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Proof. Let f ∈ Λα(R). By hypothesis, there exists C > 0 su
h that

|f(x)− f(x0)| ≤ C|x− x0|α

for all x, x0 ∈ R. If |x− x0| ≤ 1, we have

|f(x)− f(x0)| ≤ C|x− x0|β

and if |x− x0| > 1, we have

|f(x)− f(x0)| ≤ 2 sup
y∈R

|f(y)| |x− x0|β

be
ause f is bounded. With C ′ := max{C, 2 supy∈R |f(y)|}, we thus have

|f(x)− f(x0)| ≤ C ′|x− x0|β

for all x, x0 ∈ R and f ∈ Λβ(R). �

Let us investigate the links between di�erentiability, uniform Hölder 
ontinuity and (uniform)


ontinuity.

Proposition 1.1.7. Let f be a bounded fun
tion.

(a) If f ∈ Λα(R) for some α ∈ (0, 1], then f is uniformly 
ontinuous (and so 
ontinuous) on R.

(b) If f is di�erentiable on R and if Df is bounded, then f ∈ Λα(R) for all α ∈ (0, 1].

Proof. (a) By hypothesis, there exists C > 0 su
h that

|f(x)− f(x0)| ≤ C|x− x0|α

for all x, x0 ∈ R. Let ε > 0 and let η := (ε/C)1/α. We have |f(x)− f(x0)| ≤ ε for all x, x0 ∈ R

su
h that |x− x0| ≤ η and so, f is uniformly 
ontinuous on R.

(b) By Proposition 1.1.6, it su�
es to show that f ∈ Λ1(R). For all x, x0 ∈ R, we have

|f(x)− f(x0)| =
∣∣∣∣
∫ x

x0

Df(t) dt

∣∣∣∣ ≤ sup
t∈R

|Df(t)| |x− x0|

be
ause Df is bounded. Hen
e the 
on
lusion. �

Remark 1.1.8. The 
ondition �Df is bounded� is also ne
essary. More pre
isely, if f is di�er-

entiable and uniformly Hölder of order 1, then Df is bounded. Indeed, there exists C > 0 su
h

that ∣∣∣∣
f(x)− f(x0)

x− x0

∣∣∣∣ ≤ C

for all x, x0 ∈ R with x 6= x0 and taking the limit for x → x0, we have |Df(x0)| ≤ C for all

x0 ∈ R.
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1.1.3 Extension

Let us now 
onsider Hölder 
ontinuity of order stri
tly bigger than 1. Before that, let us

make the following remark.

Remark 1.1.9. Let α > 1 and f be a fun
tion de�ned on R. If there exists C > 0 su
h that

|f(x)− f(x0)| ≤ C|x− x0|α

for all x, x0 ∈ R, then f is 
onstant on R. Indeed, for x, x0 ∈ R with x 6= x0, we have

|f(x)− f(x0)|
|x− x0|

≤ C|x− x0|α−1.

Consequently, f is di�erentiable and Df = 0 on R, hen
e the 
on
lusion.

Let us give the general de�nition of Hölder 
ontinuity (see [65,95,115℄).

De�nition 1.1.10. Let α > 0 and x0 ∈ R. The fun
tion f is Hölder 
ontinuous of order α

at x0 if there exist C, δ > 0 and a polynomial P of degree stri
tly smaller than α su
h that

|f(x)− P (x− x0)| ≤ C|x− x0|α (1.3)

for all x ∈ (x0 − δ, x0 + δ). We still denote by Λα(x0) the set of Hölder 
ontinuous fun
tions of

order α at x0 and this set is 
alled Hölder spa
e of order α at x0.

De�nition 1.1.10 is 
learly a generalization of De�nition 1.1.1. Indeed, taking x = x0 in

Inequality (1.3), we dire
tly have P (0) = f(x0) and so, the independent term of P is f(x0).

Remark 1.1.11. In the following, we write the polynomial P of De�nition 1.1.10 as

P (x) :=

α∑

k=0

pkx
k, x ∈ R

where α is the greatest natural number stri
tly smaller than α and pk ∈ C for k ∈ {0, . . . , α}
(whi
h eventually depend on x0). We already know that p0 = f(x0). Moreover, P is unique.

To show that, let us assume that there exists a polynomial Q of degree stri
tly smaller than α

su
h that

|f(x)−Q(x− x0)| ≤ C|x− x0|α

for all x ∈ (x0 − δ, x0 + δ). Let us write

Q(x) :=

α∑

k=0

qkx
k, x ∈ R

with qk ∈ C for k ∈ {0, . . . , α}. For x ∈ (x0 − δ, x0 + δ), we have

|P (x− x0)−Q(x− x0)| ≤ 2C|x− x0|α.

Taking x = x0, we dire
tly have q0 = Q(0) = P (0) = p0. For x 6= x0, we �rst have
∣∣∣∣∣

α∑

k=1

(pk − qk)(x− x0)
k−1

∣∣∣∣∣ =
∣∣∣∣
P (x− x0)−Q(x− x0)

x− x0

∣∣∣∣ ≤ 2C|x− x0|α−1

and then q1 = p1 taking the limit for x → x0. Step by step, we get qk = pk for k ∈ {2, . . . , α}
sin
e α < α.
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These pointwise Hölder spa
es remain embedded.

Proposition 1.1.12. If α > β > 0, we have Λα(x0) ⊂ Λβ(x0) for all x0 ∈ R.

Proof. Let f ∈ Λα(x0). There then exist C, δ > 0 and a polynomial P of degree stri
tly smaller

than α su
h that

|f(x)− P (x− x0)| ≤ C|x− x0|α

for all x ∈ (x0 − δ, x0 + δ). Let us set

P ′(x) :=

β∑

k=0

pkx
k, x ∈ R .

If β = α, it is evident sin
e P ′ = P on R and |x− x0|α ≤ |x− x0|β for all x ∈ (x0 − 1, x0 + 1).

If β > α, we have

|f(x)− P ′(x− x0)| ≤ |f(x)− P (x− x0)|+
α∑

k=β+1

|pk||x− x0|k ≤


C +

α∑

k=β+1

|pk|


 |x− x0|β

for x ∈ (x0 − δ′, x0 + δ′) with δ′ := min{δ, 1}. Hen
e f ∈ Λβ(x0). �

We know that if a fun
tion is di�erentiable at x0 ∈ R, then it belongs to Λα(x0) for α ∈ (0, 1].

The following result shows that a Hölder 
ontinuous fun
tion of order stri
tly bigger than 1 at x0
is di�erentiable at x0.

Proposition 1.1.13. Let x0 ∈ R. If f ∈ Λα(x0) for some α > 1, then f is di�erentiable at x0.

Proof. By hypothesis, there exist C, δ > 0 and a polynomial P of degree stri
tly smaller than α

su
h that

|f(x)− P (x− x0)| ≤ C|x− x0|α

and then ∣∣∣∣
f(x)− f(x0)

x− x0
− p1

∣∣∣∣ ≤ C|x− x0|α−1 +
m∑

k=2

|pk||x− x0|k−1

for all x ∈ (x0 − δ, x0 + δ) \ {x0}, with the notations of Remark 1.1.11. Consequently, f is

di�erentiable at x0 and (Df)(x0) = p1. �

We know that p0 = f(x0). With the previous proof, we see that p1 = (Df)(x0). In fa
t, if

f ∈ Λα(x0) is α times 
ontinuously di�erentiable on a neighbourhood of x0, we 
an show that

the polynomial P in De�nition 1.1.10 is the Taylor's polynomial of degree α at x0. This is the

obje
t of the following proposition.

Proposition 1.1.14. Let x0 ∈ R, ε > 0, p ∈ N and α > 0.

(a) If f is p times 
ontinuously di�erentiable on (x0− ε, x0+ ε), then f ∈ Λp(x0). In parti
ular,

the polynomial in De�nition 1.1.10 is the Taylor's polynomial of degree p− 1 at x0.

(b) If f ∈ Λα(x0) is α times 
ontinuously di�erentiable on (x0 − ε, x0 + ε), then the polynomial

in De�nition 1.1.10 is the Taylor's polynomial of degree α at x0.
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Proof. (a) By Taylor's formula, for all x ∈ (x0− ε/2, x0+ ε/2), there exists θ between x and x0
su
h that

f(x) =

p−1∑

k=0

(Dkf)(x0)

k!
(x− x0)

k +
(Dpf)(θ)

p!
(x− x0)

p

and then

∣∣∣∣∣f(x)−
p−1∑

k=0

(Dkf)(x0)

k!
(x− x0)

k

∣∣∣∣∣ ≤
1

p!
sup

y∈[x0−ε/2,x0+ε/2]
|(Dpf)(y)| |x− x0|p.

Consequently, f ∈ Λp(x0) and, by the uniqueness of polynomial in De�nition 1.1.10 (see Re-

mark 1.1.11), we have the 
on
lusion.

(b) By hypothesis, there exist C, δ > 0 and a polynomial P of degree stri
tly smaller than α

su
h that

|f(x)− P (x− x0)| ≤ C|x− x0|α

for all x ∈ (x0 − δ, x0 + δ). Let us use the same notations of Remark 1.1.11. By the previous

item and the uniqueness of polynomial in De�nition 1.1.10, we have

P (x− x0) = pα(x− x0)
α +

α−1∑

k=0

(Dkf)(x0)

k!
(x− x0)

k

for x ∈ R and it only remains to show that pα = (Dαf)(x0)/α!. Let us set η := min{ε, δ}. By

Taylor's formula, for all x ∈ (x0 − η, x0 + η) \ {x0}, there exists θ between x and x0 su
h that

f(x)− P (x− x0) =

(
(Dαf)(θ)

α!
− pα

)
(x− x0)

α

and then ∣∣∣∣
(Dαf)(θ)

α!
− pα

∣∣∣∣ ≤ C|x− x0|α−α.

Sin
e α− α > 0, we have the 
on
lusion. �

Uniform Hölder 
ontinuity 
an also be de�ned for order stri
tly greater than 1 (see [80,92,

95℄). We will not need it in this thesis and therefore, we will not 
onsider the general de�nition.

1.2 Hölder Exponent

The embedding of Hölder spa
es allows to de�ne a notion of regularity, known as Hölder

exponent.

De�nition 1.2.1. The Hölder exponent of the fun
tion f at x0 ∈ R is

hf (x0) := sup{α > 0 : f ∈ Λα(x0)}.

Following this de�nition and the previous se
tion, if f is di�erentiable at x0, then hf (x0) ≥ 1.

Moreover, hf (x0) < 1 implies that f is not di�erentiable at x0 and hf (x0) > 1 implies that f is

di�erentiable at x0. However, there exist fun
tions whi
h are not di�erentiable at x0 and with

an Hölder exponent at x0 equal to 1; the fun
tion x 7→ |x| with the point 0 is a trivial example.
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Figure 1.2. Graphi
al representation of R.

Let us note that the Hölder exponent of a fun
tion at a point 
an be in�nite. This is the 
ase

for in�nitely 
ontinuously di�erentiable fun
tions. By 
onvention, we set hf (x0) := 0 if there

exists no α > 0 su
h that f ∈ Λα(x0).

Let us mention the 
ases of the Weierstrass fun
tion and the Takagi fun
tion. On the one

hand, W belongs to Λw(x) and hW (x) = w for all x ∈ R where w := − log(a)/ log(b) (see [65℄).

Let us remark that it shows dire
tly that W is a 
ontinuous and nowhere di�erentiable fun
tion

sin
e w < 1 (in fa
t, b > 1/a > 1 with the hypotheses on a and b, see Expression (1.1)). On the

other hand, T belongs to Λ1(x) and hT (x) = 1 for all x ∈ R (see [110℄). In 
omparison with W ,

it does not imply that T is nowhere di�erentiable. We 
an note that the Hölder exponent of W

or T remains the same at ea
h point. The Weierstrass fun
tion and the Takagi fun
tion are then

monofra
tal fun
tions.

De�nition 1.2.2. The fun
tion f is monofra
tal if there exists h > 0 su
h that hf (x) = h for

all x ∈ R. Otherwise, f is multifra
tal.

Let us now 
onsider the Riemann fun
tion R de�ned by

R(x) :=

+∞∑

n=1

sin(πn2x)

n2
, x ∈ R .

The graphi
 of R is represented in Figure 1.2. We know that hR(0) = 1/2 and hR(1) = 3/2

(see [61, 68℄ for the 
omplete result) and so, R is a multifra
tal fun
tion. More information

about R is given in Chapter 4, where we study the uniform Hölder 
ontinuity of generalized

Riemann fun
tion.

The Hölder exponent of a 
ontinuous nowhere di�erentiable fun
tion is everywhere smaller

(or equal) than 1. Therefore, in this 
ontext, we 
onsider rather the restri
ted pointwise and

uniform Hölder exponent.
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De�nition 1.2.3. (a) The restri
ted Hölder exponent of the fun
tion f at x0 ∈ R is

Hf (x0) := sup{α ∈ (0, 1] : f ∈ Λα(x0)}.

(b) The restri
ted uniform Hölder exponent of the bounded fun
tion f (on R) is

Hf (R) := sup{α ∈ (0, 1] : f ∈ Λα(R)}.

We 
learly have hf (x0) ≥ Hf (x0) ≥ Hf (R) for all x0 ∈ R. Moreover, hf (x0) = Hf(x0) if

x0 ∈ R with hf (x0) ∈ (0, 1]. For example, HW (R) = − log(a)/ log(b) (see [65℄), HT (R) = 1

(see [110℄) and HR(R) = 1/2 (see [55℄).

A way to 
al
ulate restri
ted pointwise Hölder exponent is given by the following formula

(see [69℄ for example). Other methods to determine Hölder exponent will be exposed later.

Proposition 1.2.4. Let x0 ∈ R and let f ∈ Λα(x0) for some α ∈ (0, 1]. We have

Hf (x0) = lim inf
x→x0

log |f(x)− f(x0)|
log |x− x0|

. (1.4)

Proof. By hypothesis, there exist C > 0 and δ ∈ (0, 1) su
h that

|f(x)− f(x0)| ≤ C|x− x0|α

and then

log |f(x)− f(x0)|
log |x− x0|

≥ log(C)

log |x− x0|
+ α

for all x ∈ (x0 − δ, x0 + δ) \ {x0}. Consequently, we have

inf
x∈(x0−δ,x0+δ)\{x0}

log |f(x)− f(x0)|
log |x− x0|

≥ log(C)

log(δ)
+ α

and

lim inf
x→x0

log |f(x)− f(x0)|
log |x− x0|

≥ Hf (x0).

Let us show that this inequality is an equality. By 
ontradi
tion, let us assume that there exists

α ∈ (0, 1] su
h that

lim inf
x→x0

log |f(x)− f(x0)|
log |x− x0|

> α > Hf (x0).

Then, there exists δ ∈ (0, 1) su
h that

|f(x)− f(x0)| ≤ |x− x0|α

for all x ∈ (x0 − δ, x0 + δ) and so f ∈ Λα(x0). Hen
e a 
ontradi
tion sin
e α > Hf (x0). �

Remark 1.2.5. Sin
e the fun
tion f de�ned by

f(x) :=





1

x
if x 6= 0

0 if x = 0

is not 
ontinuous at 0, there exists no α ∈ (0, 1] su
h that f ∈ Λα(0) and then Hf (0) = 0 by


onvention. However, we have

lim inf
x→0

log |f(x)− f(0)|
log |x− 0| = −1

and thus, Equality (1.4) is not veri�ed.
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Figure 1.3. Graphi
al representation of D.

Let us end this 
hapter by the investigation of the Hölder 
ontinuity of the Darboux fun
tion.

In next 
hapters, we will study other fun
tions: the Cantor's bije
tion is 
onsidered in Chapter 2

and the generalized Riemann fun
tion in Chapter 4. Other examples 
an be found in [62,71℄.

1.3 A First Detailed Example: the Darboux Fun
tion

Darboux [31,32℄ showed that the fun
tion D de�ned by

D(x) :=

+∞∑

n=0

sin((n+ 1)!x)

n!
, x ∈ R,

is 
ontinuous, but nowhere di�erentiable on R. The graphi
 of D is represented in Figure 1.3.

Let us prove that D and T have the same Hölder exponent, whi
h is everywhere equal to 1.

Proposition 1.3.1. We have D ∈ Λ1−2θ(R) for all θ ∈ (0, 1/2) and then HD(R) = 1. Moreover,

hD(x) = 1 for all x ∈ R and D is a monofra
tal fun
tion.

Proof. Let us �x x, x0 ∈ R. We have

|D(x)−D(x0)| ≤
N∑

n=0

(n+ 1)

∣∣∣∣
∫ x

x0

cos((n+ 1)!t) dt

∣∣∣∣ + 2

+∞∑

n=N+1

1

n!

≤ |x− x0|
N∑

n=0

(n+ 1) + 2

+∞∑

n=N+1

2−n+1

≤ 3N2|x− x0|+ 22−N
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for all N ∈ N. Let us also �x θ ∈ (0, 1/2). There exists δ ∈ (0, 1) su
h that

2
− 1

|x−x0|
θ ≤ |x− x0|

for x, x0 ∈ R with 0 < |x − x0| ≤ δ be
ause t1/θ2−t → 0 if t → +∞. For su
h x and x0, there

exists a unique N ∈ N su
h that

N ≤ 1

|x− x0|θ
< N + 1

and then

22−N ≤ 8 2
− 1

|x−x0|
θ ≤ 8|x− x0|.

So, we obtain

|D(x)−D(x0)| ≤ 3|x− x0|1−2θ + 8|x− x0| ≤ |x− x0|1−2θ
(
3 + 8δ2θ

)

if |x− x0| ≤ δ. Moreover, sin
e D is bounded on R, we dire
tly have

|D(x)−D(x0)| ≤
(

2

δ1−2θ
sup
t∈R

|D(t)|
)
|x− x0|1−2θ

if |x− x0| > δ. Finally, we have shown that for all θ ∈ (0, 1/2), there exists C > 0 su
h that

|D(x)−D(x0)| ≤ C|x− x0|1−2θ

for all x, x0 ∈ R. Consequently, D ∈ Λ1−2θ(R) for all θ ∈ (0, 1/2) and hen
e HD(R) = 1.

Sin
e D is nowhere di�erentiable on R, hD(x) ≤ 1 for all x ∈ R. We know that hD(x) ≥
HD(R) = 1 for all x ∈ R. Thus, we obtain hD(x) = 1 for all x ∈ R. �



Chapter 2

Cantor's Bije
tion(s)

At the end of the 19

th


entury, Cantor spent a lot of his time on proving the existen
e of

one-to-one mappings between sets. In parti
ular, as borne out by the epistolary relation with

Dedekind (see [34,38℄), he was 
on
erned about �nding su
h a 
orresponden
e between the set

of natural numbers and the set of positive real numbers. Even if, following Dedekind, this

work was only of theoreti
al interest, Cantor [24℄ showed in 1874 that there does not exist

any bije
tion between the set of all natural numbers and the unit interval. Su
h a result was

the pre
ursor of the notion of 
ardinality and paved the way for the set theory.

On
e this problem solved, Cantor addressed to Dedekind a question that 
an be resumed

as follows: �Can a surfa
e (e.g. the unit square) be put into relation with a 
urve (e.g. the unit

segment)?� (see [34,38℄). At the time, su
h a question was surprising and even 
onsidered as

an absurdity, be
ause mathemati
ians were 
onvin
ed that two (independent) variables 
annot

be redu
ed to one.

In 1877, Cantor [25℄ proved that there exists a one-to-one 
orresponden
e between the

points of the unit line segment [0, 1] and the points of the unit square [0, 1]2. About this

dis
overy, he wrote to Dedekind (see [34,38,46,120℄): �Je le vois, mais je ne le 
rois pas !� (�I

see it, but I don't believe it!�). With su
h a result, the notion of dimension had to be re
onsidered

and this helped to 
larify the 
onfusion between dimension and 
ardinality.

The bije
tion between [0, 1] and [0, 1]2 
onstru
ted by Cantor is de�ned via 
ontinued

fra
tions. It is therefore 
hallenging to have any intuition about its regularity. When looking at

its de�nition or at the graphi
al representation of ea
h 
omponent, it is not hard to 
onvin
e

oneself that the behaviour of su
h a fun
tion is ne
essarily �errati
�. It is well known that most

of the �histori
al� spa
e-�lling fun
tions are monofra
tal with Hölder exponent equal to 1/2

(see [70,71℄). Is it still the 
ase of Cantor's bije
tion?

In this 
hapter, after some preliminaries about the spa
e of sequen
es of natural numbers

and the theory of 
ontinued fra
tions, we �rst re
all the 
onstru
tion of Cantor's bije
tion based

on 
ontinued fra
tions and give a graphi
al representation of the two 
omponents of this map.

We then investigate the regularity (
ontinuity and Hölder 
ontinuity) of this appli
ation. In

parti
ular, we explore its multifra
tal nature showing that its Hölder exponent lies in an interval

whi
h 
ontains 1/2. We �nish by an appendix with another 
onstru
tion of a bije
tion between

[0, 1] and [0, 1]2, also based on a idea of Cantor. The results presented in this 
hapter are

mainly from [96,97℄.

19
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2.1 Some Preliminaries

In this 
hapter, we set E := [0, 1], D := E ∩Q and I := E \D.

2.1.1 The Spa
e of Sequen
es of Natural Numbers

The spa
e of the (in�nite) sequen
es of natural numbers is denoted by N := NN
. Sin
e this

spa
e is a 
ountable produ
t of metri
 spa
es, we de�ne the usual distan
e d by

d(a, b) :=

∞∑

j=1

2−j
|aj − bj|

|aj − bj|+ 1

for two elements a := (aj)j∈N and b := (bj)j∈N of N . We will impli
itly 
onsider that N is

equipped with this distan
e and that E, D and I are endowed with the Eu
lidean distan
e.

Remark 2.1.1. Considering a and b as two in�nite words on the alphabet N (see [85℄), we


an also use the following ultrametri
 distan
e on N : for a, b ∈ N , let a ∧ b denote the longest


ommon pre�x of a and b, so that the length |a∧ b| of this pre�x is equal to the lowest natural

number j su
h that aj 6= bj minus 1. A distan
e between a and b is given by

d′(a, b) :=

{
0 if a = b

2−|a∧b|
if a 6= b

.

The distan
es d et d′ are equivalent. More pre
isely, we have the following inequalities.

Proposition 2.1.2. We have

1

4
d′ ≤ d ≤ d′.

Proof. Let a, b ∈ N . If a = b, we 
learly have d(a, b) = d′(a, b). Let us assume that a 6= b

and let us set J := |a ∧ b|. We then have aj = bj for all j ∈ {1, . . . , J} and aJ+1 6= bJ+1. On

the one hand, we have

d(a, b) ≤
+∞∑

j=J+1

2−j = d′(a, b)

and on the other hand, we have

d(a, b) ≥ 2−(J+1) |aJ+1 − bJ+1|
1 + |aJ+1 − bJ+1|

≥ 1

4
d′(a, b).

�

For the sake of 
ompleteness, let us re
all the following result (see [75℄).

Proposition 2.1.3. The spa
e (N , d) is a separable 
omplete metri
 spa
e.
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2.1.2 Continued Fra
tions

Let us re
all the basi
 fa
ts about the 
ontinued fra
tions (see [23,76,112℄). Here, we state

the results for E, but they 
an be easily extended to the whole real line.

If n ∈ N, let a := (aj)j∈{1,...,n} be a �nite sequen
e of stri
tly positive real numbers. Let us

set

[a1] :=
1

a1
and [a1, . . . , am] :=

1

a1 + [a2, . . . , am]
,

for any m ∈ {2, . . . , n}. In the following and unless stated otherwise (as in Proposition 2.1.14

for example), we will only 
onsider the 
ase where the elements of a are natural numbers.

De�nition 2.1.4. A 
ontinued fra
tion is an expression of the form

[a1, a2, . . . , an] =
1

a1 +
1

a2 +
1

.

.

. +
1

an

where a1, a2, . . . , an ∈ N and n ∈ N.

Proposition 2.1.5. For any a ∈ Nn with n ∈ N, [a1, . . . , an] belongs to D \ {0}. Conversely,

for any x ∈ D \ {0}, there exist n ∈ N and a ∈ Nn su
h that x = [a1, . . . , an].

The representation of a rational number as a 
ontinued fra
tion is not unique, as shown by

the following remark. This will be used in the proof of Proposition 2.3.6.

Remark 2.1.6. If a ∈ Nn with n ∈ N is su
h that an > 1, we have

[a1, . . . , an] = [a1, . . . , an − 1, 1].

Let us now de�ne the notion of 
onvergent. For all a ∈ Nn with n ∈ N and for ea
h integer

j ∈ {−1, . . . , n}, let us de�ne re
ursively the quantities pj(a) and qj(a) as follows: we set

p−1(a) := 1, q−1(a) := 0, p0(a) := 0, q0(a) := 1 and

{
pj(a) := ajpj−1(a) + pj−2(a)

qj(a) := ajqj−1(a) + qj−2(a)
(2.1)

for j ∈ N.

De�nition 2.1.7. For a ∈ Nn with n ∈ N and j ∈ {1, . . . , n}, the quotient pj(a)/qj(a) is 
alled
the 
onvergent of order j of a.

Convergents are 
losely related to the 
ontinued fra
tions.

Proposition 2.1.8. Let a ∈ Nn with n ∈ N. For j ∈ {1, . . . , n}, we have

pj(a)

qj(a)
= [a1, . . . , aj ].
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Furthermore, we have

{
qj(a)pj−1(a)− pj(a)qj−1(a) = (−1)j for j ∈ {1, . . . , n}
qj(a)pj−2(a)− pj(a)qj−2(a) = (−1)j−1aj for j ∈ {2, . . . , n} .

As a 
onsequen
e, we also have





pj−1(a)

qj−1(a)
− pj(a)

qj(a)
=

(−1)j

qj(a)qj−1(a)
for j ∈ {2, . . . , n}

pj−2(a)

qj−2(a)
− pj(a)

qj(a)
=

(−1)j−1aj
qj(a)qj−2(a)

for j ∈ {3, . . . , n}
.

Of 
ourse, we 
an de�ne the numbers pj(a) and qj(a) for an element a of N . The 
onvergents

allow to introdu
e the notion of in�nite 
ontinued fra
tion, thanks to the following result, whi
h

is simply a 
onsequen
e of the previous proposition and of the property:

lim
j→+∞

qj(a) = +∞. (2.2)

Corollary 2.1.9. For any a ∈ N , we have

p2(a)

q2(a)
<
p4(a)

q4(a)
< . . . <

p2j(a)

q2j(a)
<
p2j−1(a)

q2j−1(a)
< . . . <

p3(a)

q3(a)
<
p1(a)

q1(a)

for all j ∈ N. As a 
onsequen
e, the sequen
e

(
pj(a)

qj(a)

)

j∈N


onverges.

De�nition 2.1.10. If a ∈ N , we say that

[a1, . . .] := lim
n→+∞

[a1, . . . , an]

is an in�nite 
ontinued fra
tion.

If a is an element of N or Nn with n ∈ N, we will sometimes simply write [a] instead of

[a1, . . .] or [a1, . . . , an] respe
tively.

We know that the rational numbers (of E \ {0}) 
an be represented by a �nite 
ontinued

fra
tion. The following result 
onsiders the 
ase of irrational numbers (of E \ {0}).

Theorem 2.1.11. We have x ∈ I if and only if x is represented by an in�nite 
ontinued fra
tion,

i.e. there exists a ∈ N su
h that x = [a]. Moreover, this in�nite 
ontinued fra
tion is unique.

If the real number x ∈ E \ {0} is equal to the 
ontinued fra
tion [a], we say that [a] is a


ontinued fra
tion 
orresponding to x. We know that if x ∈ I, then a ∈ N and [a] is the unique


ontinued fra
tion 
orresponding to x. If x ∈ D \ {0}, then a ∈ Nn with n ∈ N and [a] is not

the single 
ontinued fra
tion 
orresponding to x (see Remark 2.1.6).

Let us mention the quite parti
ular 
ase of ultimately periodi
 
ontinued fra
tion (see [23,

76℄).



2.1. Some Preliminaries 23

De�nition 2.1.12. A sequen
e a ∈ N is ultimately periodi
 of period k ∈ N if there exists

J ∈ N su
h that aj+k = aj for any j ≥ J . In this 
ase, the 
orresponding 
ontinued fra
tion [a]

is also 
alled ultimately periodi
 of period k.

The quadrati
 numbers (of E), i.e. the numbers (of E) whi
h are zeros of a polynomial with

integer 
oe�
ients, are 
hara
terized by their parti
ular 
orresponding 
ontinued fra
tions. This

is the obje
t of the following result.

Theorem 2.1.13. An element of I is a quadrati
 number if and only if the 
orresponding


ontinued fra
tion is ultimately periodi
.

Let us now give a brief introdu
tion of the notion of the metri
 theory of 
ontinued fra
tions

(see [76,112℄). Let us �rst re
all the following result.

Proposition 2.1.14. If x ∈ E \ {0} 
an be written as x = [a1, . . . , an, rn+1] with n ∈ N,

a1, . . . , an ∈ N and rn+1 ∈ [1,+∞), the following relation holds:

x =
pn(a)rn+1 + pn−1(a)

qn(a)rn+1 + qn−1(a)

where a := (aj)j∈{1,...,n}.

For any a ∈ N , we know that [a] 
orresponds to an irrational number x ∈ I. For ea
h j ∈ N,

the term aj 
an be so 
onsidered as a fun
tion of x: aj := aj(x). Let us �x j ∈ N and write

x = [a1, . . . , aj−1, rj ] with rj ∈ [1,+∞). It is easy to 
he
k that, for any k ∈ N, we have

aj = k if and only if

1

k + 1
< rj ≤

1

k

if j is odd and

aj = k if and only if k ≤ rj < k + 1

if j is even. Thus, aj is a pie
ewise 
onstant fun
tion. Moreover, aj is non-in
reasing if j is odd

and non-de
reasing if j is even. The fun
tions a1 and a2 are represented in Figure 2.1.

Let x = [a] be an irrational number. For n ∈ N, we set

In(x) := {y ∈ I : ∃b ∈ N su
h that y = [b] and bj = aj ∀j ∈ {1, . . . , n}} .

We will say that In(x) is an interval of rank n. For any n ∈ N, In+1(x) ⊂ In(x) ⊂ I and

⋂

n∈N

In(x) = {x}.

Indeed, using Proposition 2.1.14 with rn+1 = 1 and rn+1 → +∞, we get

In(x) =

(
pn(a)

qn(a)
,
pn(a) + pn−1(a)

qn(a) + qn−1(a)

)
∩ I,

if n is even (if n is odd, the endpoints of the interval are reversed). Every interval of rank n is

partitioned into a 
ountable in�nite number of intervals of rank n+1. We will denote by |In(x)|
the Lebesgue measure of In(x). Using Proposition 2.1.8, we have

|In(x)| =
1

qn(a)(qn(a) + qn−1(a))
. (2.3)

Thanks to Property (2.2), we dire
tly obtain

lim
n→+∞

|In(x)| = 0. (2.4)
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Figure 2.1. The graphi
s of fun
tions x 7→ a1(x) and x 7→ a2(x) if a1(x) = 1. This illustrates

the fa
t that I1(x) is partitioned into a 
ountable in�nite number of intervals of rank 2; in this


ase, I2(x) ⊂ [1/2, 1] ∩ I, sin
e a1(x) = 1 if and only if x ∈ [1/2, 1] ∩ I.
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2.2 Cantor's Bije
tion

Cantor's bije
tion on I (see [25℄) is a one-to-one mapping from I onto I2. It is 
onstru
ted

as follows. If x ∈ I, let [a] be the 
orresponding 
ontinued fra
tion and let C1 and C2 be the

appli
ations de�ned by

C1(x) := [a1, a3, . . . , a2j+1, . . .] and C2(x) := [a2, a4, . . . , a2j , . . .].

These appli
ations are represented in Figure 2.2. Theorem 2.1.11 implies that the appli
ation

C : I → I2; x 7→ (C1(x), C2(x))

is a one-to-one mapping. It is 
alled Cantor's bije
tion. If Q denotes the quadrati
 numbers

of I, C is a one-to-one mapping from Q onto Q2
by Theorem 2.1.13. Sin
e the 
ardinals of E

and I are equal, C 
an be extended to a one-to-one mapping from E onto E2
.

2.3 Continuity of Cantor's Bije
tion

Let us study the 
ontinuity of Cantor's bije
tion on I.

Proposition 2.3.1. Cantor's bije
tion C is 
ontinuous on I.

Proof. For any n ∈ N and any x ∈ I, C1 maps the interval In(x) onto Im(C1(x)) where

m = n/2 if n is even and m = (n + 1)/2 if n is odd. This shows that C1 is a 
ontinuous

fun
tion on I. Indeed, let x0 ∈ I and ε > 0. With Property (2.4), there exists M ∈ N su
h that

|IM (C1(x0))| ≤ ε. If x ∈ I2M (x0), we have |x− x0| ≤ |I2M (x0)| and

| C1(x)− C1(x0)| ≤ |IM (C1(x0))| ≤ ε.

Obviously, the same argument 
an be applied to C2 and we have the 
on
lusion. �

In fa
t, Cantor's bije
tion is even an homeomorphism between I and I2. To show that, we

�rst de�ne a map from I onto N . For x ∈ I, we write σ(x) := a if a ∈ N satis�es x = [a]. The

appli
ation σ is 
learly a bije
tion from I onto N by Theorem 2.1.11.

Proposition 2.3.2. The appli
ation σ is an homeomorphism from I onto N .

Proof. Let x0 ∈ I and ε > 0. There exists N ∈ N su
h that 2−N ≤ ε. For x ∈ IN (x0), we have

|x− x0| ≤ |IN (x0)| and

d(σ(x), σ(x0)) ≤ d′(σ(x), σ(x0)) ≤ 2−N ≤ ε.

So, σ is 
ontinuous on I.

Conversely, let a0 ∈ N and ε > 0. With Property (2.4), there exists N ∈ N su
h that

|IN (σ−1(a0))| ≤ ε. For a ∈ N su
h that d′(a,a0) ≤ 2−N , we have σ−1(a) ∈ IN (σ
−1(a0)) and

|σ−1(a)− σ−1(a0)| ≤ |IN (σ−1(a0))| ≤ ε.

So, σ−1
is 
ontinuous on N . �
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Figure 2.2. Graphi
al representations of C1 and C2.
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Remark 2.3.3. We obviously have [·] = σ−1
on N .

Sin
e (N , d) is a separable 
omplete metri
 spa
e (see Proposition 2.1.3), we have reobtained

the following well-known result (see [75℄).

Corollary 2.3.4. The spa
e I is a Polish spa
e.

Proposition 2.3.5. Cantor's bije
tion C is an homeomorphism between I and I2.

Proof. Sin
e the appli
ation

(a, b) ∈ N ×N 7→ c := (cj)j∈N ∈ N

where

cj :=

{
a(j+1)/2 if j is odd

bj/2 if j is even

is an homeomorphism, we have the 
on
lusion, using Proposition 2.3.2. �

Netto's theorem (see [108℄) guarantees that su
h a fun
tion C 
an not be extended to a


ontinuous fun
tion from E to E2
. The following result gives additional information.

Proposition 2.3.6. Any extension of Cantor's bije
tion to E is dis
ontinuous at any rational

number.

Proof. Let x ∈ D \ {0}. There exists k ∈ N and a ∈ Nk with ak > 1 su
h that

x = [a1, . . . , ak] = [a1, . . . , ak − 1, 1].

Let b ∈ N . For n ∈ N, let us set xn := [a1, . . . , ak, rn], yn := [a1, . . . , ak − 1, 1, rn] with

rn := n+ [b]. By 
onstru
tion, xn and yn are irrational numbers for all n ∈ N and

lim
n→+∞

rn = +∞.

By Proposition 2.1.14 and Proposition 2.1.8, we have

lim
n→+∞

xn = lim
n→+∞

rnpk(σ(xn)) + pk−1(σ(xn))

rnqk(σ(xn)) + qk−1(σ(xn))
=
pk(σ([a1, . . . , ak]))

qk(σ([a1, . . . , ak]))
= x (2.5)

sin
e pk(σ(xn)) = pk(σ([a1, . . . , ak])) and qk(σ(xn)) = qk(σ([a1, . . . , ak])) for all n ∈ N. Similarly,

we have

lim
n→+∞

yn = lim
n→+∞

rnpk+1(σ(yn)) + pk(σ(yn))

rnqk+1(σ(yn)) + qk(σ(yn))
=
pk+1(σ([a1, . . . , ak − 1, 1]))

qk+1(σ([a1, . . . , ak − 1, 1]))
= x.

Let us assume that k is odd, the other 
ase is similar. We have

lim
n→+∞

C(xn) = lim
n→+∞

([a1, a3, . . . , ak, b1, b3, . . .], [a2, a4, . . . , ak−1, n, b2, b4, . . .])

= ([a1, . . . , ak, b1, b3, . . .], [a2, . . . , ak−1])

and

lim
n→+∞

C(yn) = lim
n→+∞

([a1, a3, . . . , ak − 1, n, b2, b4, . . .], [a2, a4, . . . , ak−1, 1, b1, b3, . . .])

= ([a1, a3, . . . , ak − 1], [a2, a4, . . . , ak−1, 1, b1, b3, . . .]) ,

using a similar development as Expression (2.5). Thus, these two limits are not equal, while

both sequen
es (xn)n∈N and (yn)n∈N 
onverge to x. Hen
e the 
on
lusion. �
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2.4 Hölder Continuity of Cantor's Bije
tion

In this se
tion, we give some preliminary results about the Hölder 
ontinuity of Cantor's

bije
tion.

Theorem 2.4.1. Let x = [a] be an element of I and y ∈ In(x) \ In+1(x) with n ∈ N. We have

1

n

⌈n/2⌉∑

j=1

log(a2j−1)

1

n

n+3∑

j=1

log(aj + 1) +
1

n
C1(n)

≤ log | C1(x)− C1(y)|
log |x− y| ≤

1

n

⌈n/2⌉+3∑

j=1

log(a2j−1 + 1) +
1

2n
C2(n)

1

n

n∑

j=1

log(aj)

where

C1(n) :=
log(2)

2
+ log

(
max

{
an+2 + 2

an+2 + 1
,
an+3 + 2

an+3 + 1

})

and

C2(n) :=
log(2)

2
+ log

(
max

{
a2⌈n/2⌉+3 + 2

a2⌈n/2⌉+3 + 1
,
a2⌈n/2⌉+5 + 2

a2⌈n/2⌉+5 + 1

})
.

Proof. By hypothesis, we have

y = [a1, . . . , an, bn+1, bn+2, . . .]

with bn+1 6= an+1. Let us suppose that n is even, the other 
ase is similar. We will bound |x−y|
and | C1(x)− C1(y)| with terms depending on a and n only.

Sin
e y ∈ In(x), we have |x− y| ≤ |In(x)| and

|x− y| ≤ |In(x)| =
1

q2n(a)

1

1 + qn−1(a)
qn(a)

≤ 1

q2n(a)
(2.6)

using Equality (2.3). Moreover, sin
e

qn(a) = anqn−1(a) + qn−2(a) ≥ anqn−1(a)

≥ an(an−1qn−2(a) + qn−3(a)) ≥ an · · · a3(a2q1(a) + q0(a))

≥ an · · · a1

thanks to Equality (2.1), we get

|x− y| ≤ 1

a21 · · · a2n
. (2.7)

The same reasoning 
an be applied to

C1(x) = [a1, a3, . . . , an−1, an+1, . . .]

and

C1(y) = [a1, a3, . . . , an−1, bn+1, bn+3, . . .]

to obtain

| C1(x)− C1(y)| ≤ |In/2(C1(x))| ≤
1

a21a
2
3 · · · a2n−1

. (2.8)
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Figure 2.3. Illustration of the 
hoi
e of z with In+1(z) = In+1(x) 6= In+1(y) in the 
ase y < x.

For the lower bound of |x − y|, let us remark that In+1(x) ∩ In+1(y) = ∅, but the distan
e

between In+1(x) and In+1(y) 
an be zero. However, for any �xed j ∈ N, there exists a 
ountable

in�nite number of intervals of rank n + 1 + j in between In+1+j(x) and In+1+j(y), i.e. there

exists a 
ountable in�nite number of z ∈ I su
h that z′ ∈ In+1+j(z) implies x < z′ < y or

y < z′ < x. If z = [c] is su
h an element, we have

|x− y| ≥ |In+3(z)| ≥
1

qn+3(c)(qn+3(c) + qn+2(c))
≥ 1

2q2n+3(c)
. (2.9)

The relations

qn+3(c) = cn+3qn+2(c) + qn+1(c) ≤ (cn+3 + 1)qn+2(c)

≤ (cn+3 + 1)(cn+2qn+1(c) + qn(c)) ≤ (cn+3 + 1) · · · (c1 + 1)

lead to

|In+3(z)| ≥
1

2(c1 + 1)2 · · · (cn+3 + 1)2
.

Now let

j0 :=

{
n+ 2 if x < y

n+ 3 if y < x

and we 
an 
hoose z su
h that cj := aj for any j ∈ N ex
ept for the index j0 for whi
h

cj0 := aj0 + 1, so that z > x in 
ase x < y and z < x in 
ase y < x. Moreover, In+1(z) =

In+1(x) 6= In+1(y), so that x < z < y in 
ase x < y and y < z < x in 
ase y < x. Figure 2.3

gives a sket
h of this last situation. We therefore have

|x− y| ≥ |In+3(z)| ≥
1

2(a1 + 1)2 · · · (an+2 + 1)2(an+3 + 2)2
(2.10)

or

|x− y| ≥ |In+3(z)| ≥
1

2(a1 + 1)2 · · · (an+2 + 2)2(an+3 + 1)2
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depending on the value of j0. Without loss of generality, let us assume that j0 
orresponds to

the largest integer in su
h inequalities, i.e. n+ 3 here.

There also exists w = [d] su
h that In/2+3(w) lies between In/2+3(C1(x)) and In/2+3(C1(y)).

Moreover, we 
an 
hoose w su
h that dj := a2j−1 for any j ex
ept for one index j′0 ∈ {n/2 +

2, n/2 + 3}, for whi
h dj′0 := a2j′0−1 +1. Without loss of generality again, let us suppose that j′0
is equal to n/2 + 3. We thus have

| C1(x)− C1(y)| ≥ |In/2+3(w)| ≥
1

2(a1 + 1)2(a3 + 1)2 · · · (an+3 + 1)2(an+5 + 2)2
. (2.11)

Putting Inequalities (2.7), (2.8), (2.10) and (2.11) together and taking the logarithm, we get

−2

n/2∑

j=1

log(a2j−1)

− log(2)− 2

n+3∑

j=1

log(aj + 1)− 2 log

(
an+3 + 2

an+3 + 1

) ≤ log | C1(x)− C1(y)|
log |x− y|

and

log | C1(x)− C1(y)|
log |x− y| ≤

− log(2) − 2

n/2+3∑

j=1

log(a2j−1 + 1)− 2 log

(
an+5 + 2

an+5 + 1

)

−2
n∑

j=1

log(aj)

,

whi
h are the desired results. �

Of 
ourse, the same reasoning 
an be applied to C2, leading to the same result.

Theorem 2.4.2. Let x = [a] be an element of I and y ∈ In(x) \ In+1(x) with n ∈ N. We have

1

n

⌊n/2⌋∑

j=1

log(a2j)

1

n

n+3∑

j=1

log(aj + 1) +
1

n
C1(n)

≤ log | C2(x)− C2(y)|
log |x− y| ≤

1

n

⌊n/2⌋+3∑

j=1

log(a2j + 1) +
1

n
C2(n)

1

n

n∑

j=1

log(aj)

where C1(n) is de�ned as in Theorem 2.4.1 and

C2(n) :=
log(2)

2
+ log

(
max

{
a2⌊n/2⌋+4 + 2

a2⌊n/2⌋+4 + 1
,
a2⌊n/2⌋+6 + 2

a2⌊n/2⌋+6 + 1

})
.

To obtain a generi
 result about the regularity of Cantor's bije
tion, we need a dire
t 
on-

sequen
e of the ergodi
 theorem on 
ontinued fra
tions (see [107℄). We say that a property P


on
erning sequen
es of N holds almost everywhere if for almost every x ∈ I (with respe
t to

the Lebesgue measure), the sequen
e a ∈ N su
h that x = [a] satis�es P . The following result


an be obtained from the main theorem of [94℄.

Theorem 2.4.3. Let k ∈ N0. For almost every sequen
e a ∈ N , we have

lim
n→+∞

1

n

n∑

j=1

log(aj + k) = lim
n→+∞

1

n

n∑

j=1

log(a2j + k) = lim
n→+∞

1

n

n∑

j=1

log(a2j−1 + k) = log(κk)
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where κk is de�ned by

κk :=
∞∏

j=1

(
1 +

1

j(j + 2)

) log(j+k)
log(2)

.

The result

1
n

∑n
j=1 log(aj) → log(κ0) if n → +∞ was proved in [76℄ and the 
onstant κ0 is


alled the Khint
hine's 
onstant. Here, we will be interested in the values

log(κ0) ≈ 0.987849056 · · · and log(κ1) ≈ 1.409785988 · · ·

Using Theorem 2.4.1 and Theorem 2.4.2 as n goes to in�nity (or equivalently as y tends

to x), Theorem 2.4.3 and Proposition 1.2.4, we get the following result.

Corollary 2.4.4. For almost every x ∈ I, we have

hC1(x), hC2(x) ∈
[
log(κ0)

2 log(κ1)
,
log(κ1)

2 log(κ0)

]
.

Thus, the Hölder exponent of C1 and C2 lies between 0.35 and 0.72 almost everywhere.

In fa
t, thanks to Theorem 2.4.1 (and Theorem 2.4.2), we 
an exa
tly determine the Hölder

exponent of C1 (and of C2) at some points of I. For example, let a
(1),a(2),a(3) ∈ N be the

sequen
es de�ned by

a
(1)
j :=

{
2j if j is even

1 if j is odd
, a

(2)
j := 2j and a

(3)
j :=

{
1 if j is even

2j if j is odd

for any j ∈ N. Using Theorem 2.4.1, it is easy to 
he
k that

hC1([a
(1)]) = 0, hC1([a

(2)]) =
1

2
and hC1([a

(3)]) = 1.

We then obtain the following 
orollary.

Corollary 2.4.5. The fun
tions C1 and C2 are multifra
tal. Consequently, C is multifra
tal.

Let us �nish this se
tion with some improvements of Corollary 2.4.4 under some 
onditions.

A
tually, we 
an re�ne the bounds of Theorem 2.4.1 and Theorem 2.4.2. Indeed, taking the

notations and 
onventions of the proof of Theorem 2.4.1, we have

1

2q2n+3(c)
≤ |x− y| ≤ 1

q2n(a)

and

1

2q2n/2+3(d)
≤ | C1(x)− C1(y)| ≤

1

q2n/2(a
′)

with Inequalities (2.6) and (2.9), where a
′ := (a2j−1)j∈N. We then have

2 log(qn/2(a
′))

log(2) + 2 log(qn+3(c))
≤ log | C1(x)− C1(y)|

log |x− y| ≤ log(2) + 2 log(qn/2+3(d))

2 log(qn(a))
. (2.12)

Of 
ourse, we have similar inequalities for C2. What happens when taking the limit as n→ +∞?

Is it possible to obtain the Hölder exponent of C1 (and of C2) at x? On the one hand, we have

the following result (see [76,84,101℄).
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Theorem 2.4.6. For almost every sequen
e b ∈ N , we have

lim
n→+∞

1

n
log(qn(b)) =

π2

12 log(2)
.

The real number π2/(12 log(2)) is 
alled the Lévy's 
onstant. On the other hand, sin
e

qn+3(a) ≤ qn+3(c) ≤ 2qn+3(a) (using the de�nition of c and Equality (2.1)), we have

lim
n→+∞

1

n+ 3
log(qn+3(c)) = lim

n→+∞

1

n
log(qn(a)) (2.13)

and similarly, we also have

lim
n→+∞

1
n
2 + 3

log(qn/2+3(d)) = lim
n→+∞

2

n
log(qn/2(a

′)) (2.14)

(if all these limits exist). It only remains to 
ompare Expressions (2.13) and (2.14), whi
h is

not evident. In any 
ase, from Inequality (2.12) and from the above, we have the following

proposition.

Proposition 2.4.7. Let x = [a] be an element of I and let a
′ := (a2j−1)j∈N. If we assume that

lim
n→+∞

1

n
log(qn(a)) = lim

n→+∞

1

n
log(qn(a

′)) =
π2

12 log(2)
, (2.15)

then we have

hC1(x) =
1

2
.

There is of 
ourse a similar result for C2. With Theorem 2.4.6, we 
an hope that Equal-

ity (2.15) is satis�ed for almost every sequen
e a ∈ N and thus we 
an make the following


onje
ture.

Conje
ture 2.4.8. For almost every x ∈ [0, 1], we have

hC1(x) = hC2(x) =
1

2
.

Let us give an idea to attempt to prove Equality (2.15) and then Conje
ture 2.4.8.

Let τ be the left shift operator on N , i.e. the appli
ation de�ned by

τ((bj)j∈N) := (bj+1)j∈N

We denote by τm the mth

iterate of τ for m ∈ N and by τ0 the identity. The next lemma based

on the properties of the 
onvergents of a sequen
e 
an be useful (see the proof of Theorem 8.3

in [112℄ for example).

Lemma 2.4.9. For all b ∈ N and n ∈ N, we have

log(qn(b)) = −
n−1∑

j=0

log

(
pn−j(τ

j(b))

qn−j(τ j(b))

)
.
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Using this formula, we then have

1

n
log(qn(b)) = − 1

n

n−1∑

j=0

log([τ j(b)]) +Rn(b) (2.16)

for all b ∈ N and n ∈ N, where

Rn(b) :=
1

n

n−1∑

j=0

(
log([τ j(b)])− log

(
pn−j(τ

j(b))

qn−j(τ j(b))

))
.

The limit of Rn(b) as n → +∞ is given by the following lemma (see again the proof of Theo-

rem 8.3 in [112℄ for example).

Lemma 2.4.10. For all b ∈ N , we have

lim
n→+∞

Rn(b) = 0.

Let x = [a] ∈ I. By de�nition, we have C1(x) = [a′] where a
′ := (a2j−1)j∈N. Using

Equality (2.16) with a
′
, we obtain

1

n
log(qn(a

′)) = − 1

n

n−1∑

j=0

log([τ j(a′)]) +Rn(a
′)

= − 1

n

n−1∑

j=0

log([τ2j(a)]) + Sn(a) +Rn(a
′) (2.17)

where

Sn(a) :=
1

n

n−1∑

j=0

(
log([τ2j(a)])− log([τ j(a′)])

)
=

1

n

n−1∑

j=0

log

(
[τ2j(a)]

C1([τ2j(a)])

)
.

Thanks to Lemma 2.4.10, we know that

lim
n→+∞

Rn(a
′) = 0.

We also have the following theorem, whi
h is a 
onsequen
e of the main result of [94℄.

Theorem 2.4.11. For almost all b ∈ N , we have

lim
n→+∞

1

n

n−1∑

j=0

log([τ2j(b)]) =
1

log(2)

∫ 1

0

log(t)

t+ 1
dt = − π2

12 log(2)

From Equality (2.17), we then have

lim
n→+∞

1

n
log(qn(a

′)) =
π2

12 log(2)
+ lim
n→+∞

Sn(a)

and it only remains to show that

lim
n→+∞

Sn(a) = 0, (2.18)

whi
h is not evident. In fa
t, it is di�
ult to reasonably 
ompare [τ2j(a)] and C1([τ
2j(a)]). The

sequen
es whi
h de�ne these two 
ontinued fra
tions only have the �rst element in 
ommon. Un-

fortunately, this observation is not su�
ient to obtain Equality (2.18) and then Conje
ture 2.4.8.
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2.5 Appendix: Another Cantor's Bije
tion

A
tually, the appli
ation C (with the use of 
ontinued fra
tions) was not the �rst idea of

Cantor to 
onstru
t a one-to-one mapping between [0, 1] and [0, 1]2. In 1877 (the same year

as the 
onstru
tion of C), Cantor �rst proposed the following example, based on the (unique)

proper de
imal expansion of the real numbers. If x and y both belong to the unit segment [0, 1),

let us write

x :=
+∞∑

k=1

xk
10k

= 0.x1x2 · · · and y :=
+∞∑

k=1

yk
10k

= 0.y1y2 · · ·

(where xk, yk ∈ {0, . . . , 9} for k ∈ N) with proper expansions (i.e. there does not exist k0 ∈ N

su
h that xk = 9 for all k > k0). Let C be the map de�ned as

C : [0, 1)2 → [0, 1); (x, y) 7→
+∞∑

k=1

xk
102k−1

+
+∞∑

k=1

yk
102k

= 0.x1y1x2y2x3y3 · · · .

Dedeking obje
ted that su
h a fun
tion is not surje
tive, sin
e a number of the form

z :=
l∑

k=1

zk
10k

+
+∞∑

k=1

9

10l+2k−1
+

+∞∑

k=1

zl+2k

10l+2k
= 0.z1z2 · · · zl9zl+29zl+49 · · ·

(where zk ∈ {0, . . . , 9} for k ∈ N) with l ∈ N has no preimage under C : if l is even, there is

no x su
h that C (x, y) = z and if l is odd, there is no y su
h that C (x, y) = z. Cantor then

over
ame this problem by repla
ing the de
imal expansion in C with the expansion in terms

of 
ontinued fra
tions. His work was published in [25℄, with a praragraph explaining why his

�rst idea 
ould not work and omitting any referen
e to Dedekind (see [38℄ for some histori
al

referen
es).

In this last se
tion, we go ba
k on Cantor's �rst idea. We start from the map C relying on

the de
imal expansion and use the S
hröder-Bernstein theorem to de�ne the desired bije
tion

between [0, 1]2 and [0, 1]. This theorem was �rst 
onje
tured by Cantor and independently

proved by Bernstein and S
hröder in 1896 (see [19,27,109℄, let us also noti
e that other

names, su
h as Dedekind, should be added to this list). In other words, Cantor's �rst idea


ould have led to the 
raved mapping, but he did not have su
h a result at the time he was

working on the topi
. It would be 
onje
tured by himself a few years later in [26℄. Before

building the bije
tive map, we re
all the S
hröder-Bernstein theorem and give a 
lassi
al proof

that will be used in the sequel.

2.5.1 A �Pra
ti
al� Proof of S
hröder-Bernstein Theorem

There exist several proofs of S
hröder-Bernstein theorem (see [53℄): the most 
lassi
al ones

use Tarski's �xed point theorem, or follow the idea of Dedekind [36℄ or König [78℄. The

advantage of the one we present below (whi
h is largely inspired by ideas of [20,104℄) is that it

expli
itly shows how to build a bije
tion between two non-empty sets, starting from inje
tions

between these sets.

Theorem 2.5.1 (S
hröder-Bernstein). Let A and B be non-empty sets. If there exist an

inje
tion from A to B and an inje
tion from B to A, then there exists a bije
tion from A

onto B.
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Proof. Let f be an inje
tion from A to B and g be an inje
tion from B to A. We de�ne the

sequen
es (An)n∈N0 of subsets of A and (Bn)n∈N0 of subsets of B as follows:





A0 := A \ g(B)

Bn := f(An), for n ∈ N0

An := g(Bn−1), for n ∈ N

. (2.19)

If A0 = ∅, then g(B) = A and thus g is surje
tive. The appli
ation g−1
is then a bije
tion

from A onto B. Therefore, we 
an assume that A0 is not empty.

None of the elements of the sequen
es (An)n∈N0 and (Bn)n∈N0 are empty and thus

⋃

n∈N0

An 6= ∅,
⋃

n∈N0

Bn 6= ∅ and f


 ⋃

n∈N0

An


 6= ∅.

Moreover, we have

f


 ⋃

n∈N0

An


 ⊂

⋃

n∈N0

Bn

and the restri
tion f̃ of f to

⋃
n∈N0

An is 
learly a bije
tion from

⋃
n∈N0

An onto

⋃
n∈N0

Bn.

If B =
⋃
n∈N0

Bn, then A =
⋃
n∈N0

An be
ause f is inje
tive and thus f̃ is a bije
tion from A

to B.

Let us now assume that B \⋃n∈N0
Bn 6= ∅. Sin
e g is inje
tive, we have

g


B \

⋃

n∈N0

Bn


 ⊂ A \

⋃

n∈N0

An

and A \⋃n∈N0
An 6= ∅. Let us denote by g̃ the restri
tion of g to B \⋃n∈N0

Bn and show that g̃

is a bije
tion from B \⋃n∈N0
Bn onto A \⋃n∈N0

An. It is 
lear that g̃ is inje
tive. Sin
e

A \
⋃

n∈N0

An = (A \ A0) ∩
(
⋂

n∈N

(A \ An)
)

= g(B) ∩
(
⋂

n∈N

(A \ g(Bn−1))

)

= g(B) ∩


A \ g


 ⋃

n∈N0

Bn




 ,

g̃ is also surje
tive.

It only remains to put the pie
es together in order to 
onstru
t a bije
tion from A onto B.

Sin
e f̃ is a bije
tion from

⋃
n∈N0

An onto

⋃
n∈N0

Bn and g̃−1
is a bije
tion from A \⋃n∈N0

An
onto B \⋃n∈N0

Bn, the appli
ation h de�ned by

h(a) :=





f̃(a) if a ∈
⋃

n∈N0

An

g̃−1(a) if a ∈ A \
⋃

n∈N0

An

is a bije
tion from A onto B, hen
e the 
on
lusion. �
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Remark 2.5.2. Let us note that the de�nition of the map h given above is non-
onstru
tive

(see [117℄): there is no general method to de
ide whether or not an element of A belongs to⋃
n∈N0

An in a �nite number of steps. However, in the spe
i�
 
ase we will 
onsider, the problem

be
omes simpler.

2.5.2 A Bije
tion between the Unit Square and the Unit Segment Based on

the De
imal Expansion

Let us build a bije
tion between the unit square [0, 1]2 and the unit segment [0, 1] starting

from the fun
tion C (see [97℄). Sin
e the 
onstru
tion is entirely based on the proof of the

previous theorem, we will use the notations of this proof.

Let us set A := [0, 1]2, B := [0, 1] and let f be the fun
tion de�ned by

f(x, y) :=





+∞∑

k=1

xk
102k−1

+
+∞∑

k=1

yk
102k

= 0.x1y1x2y2x3y3 · · · if (x, y) ∈ [0, 1)2

+∞∑

k=1

9

102k−1
+

+∞∑

k=1

yk
102k

= 0.9y19y29y3 · · · if (x, y) ∈ {1} × [0, 1)

+∞∑

k=1

xk
102k−1

+

+∞∑

k=1

9

102k
= 0.x19x29x3 · · · if (x, y) ∈ [0, 1) × {1}

1 if (x, y) = (1, 1)

where (xk)k∈N and (yk)k∈N are the proper de
imal expansions of the real numbers x and y

of [0, 1). In fa
t, we have f(x, y) = C (x, y) for (x, y) ∈ [0, 1)2, so that f is simply an extension

of C to [0, 1]2. Let g be the fun
tion de�ned by g(t) := (t, 0) for t ∈ B. It easy to 
he
k that

both f and g are inje
tive.

Let us 
onstru
t the sequen
es (An)n∈N0 and (Bn)n∈N0 step by step as in Expression (2.19).

For n = 0, we have

A0 = A \ g(B) = [0, 1] × (0, 1]

and

B0 = f(A0) = {1} ∪ {t ∈ [0, 1) : t2k 6= 0 for some k ∈ N}

where (tk)k∈N is the proper de
imal expansion of the real number t belonging to [0, 1).

For n = 1, we dire
tly have A1 = g(B0) = B0 × {0}. In order to 
onstru
t B1 = f(A1), let

us take (x, 0) ∈ A1. We have x2k 6= 0 for some k ∈ N by de�nition of B0 and thus

f(x, 0) =





+∞∑

k=1

9

102k−1
= 0.909090 · · · if x = 1

+∞∑

k=1

xk
102k−1

= 0.x10x20x30 · · · if x 6= 1

.

We 
an then write

f(x, 0) =

+∞∑

k=1

sk
102k−1

= 0.s10s20s30 · · ·

where (sk)k∈N is a sequen
e satisfying only one of the two following 
onditions:
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(a) sk = 9 for all k ∈ N,

(b) (sk)k∈N is the proper de
imal expansion of a real number of [0, 1) and s2k 6= 0 for some

k ∈ N.

We will denote by Σ the set of sequen
es whi
h satisfy one of the two previous 
onditions. We

therefore have

B1 =

{
t ∈ [0, 1) : t =

+∞∑

k=1

sk
102k−1

with (sk)k∈N ∈ Σ

}
.

For n = 2, the argument is similar. We have A2 = g(B1) = B1 × {0}. If (x, 0) ∈ A2, then

x2k = 0 for all k ∈ N and x4k−1 6= 0 for some k ∈ N. Consequently, we have

f(x, 0) =

+∞∑

k=1

x2k−1

104k−3
= 0.x1000x3000x5000 · · ·

and so

B2 =

{
t ∈ [0, 1) : t =

+∞∑

k=1

sk
104k−3

with (sk)k∈N ∈ Σ

}
.

Going on in this way, we obtain An = Bn−1 × {0} and

Bn =

{
t ∈ [0, 1) : t =

+∞∑

k=1

sk
102

nk−(2n−1)
with (sk)k∈N ∈ Σ

}
,

for all n ∈ N.

Sin
e A0 6= ∅, B \ ⋃n∈N0
Bn 6= ∅ (we have 0 /∈ Bn for any n ∈ N0) and g

−1(x, y) = x for

(x, y) ∈ A \⋃n∈N0
An, we have proved the following proposition thanks to Theorem 2.5.1.

Proposition 2.5.3. The fun
tion f∗ de�ned by

f∗(x, y) :=





f(x, y) if (x, y) ∈
⋃

n∈N0

An

x otherwise

is a bije
tion from [0, 1]2 onto [0, 1].

Remark 2.5.4. As expe
ted, we have f∗ = f almost everywhere on [0, 1]2 (with respe
t to the

Lebesgue measure), sin
e the set [0, 1]2 \⋃n∈NAn is in
luded in the segment [0, 1]×{0}, whi
h
is a negligible set in R2

. Therefore, we have f∗ = C almost everywhere.





Chapter 3

Continuous Wavelet Transform

and Hölder Continuity

The 
ontinuous wavelet transform, initially introdu
ed by Grossmann andMorlet [48℄ in

the eighties, is a tool to study the Hölder 
ontinuity of a fun
tion. More pre
isely, the behaviour

of the 
ontinuous wavelet transform of a fun
tion gives the (pointwise and uniform) Hölder


ontinuity of this fun
tion. This des
ription, established twenty years ago, is espe
ially due to

Jaffard and Meyer [59�61,68,92℄ and also Hols
hneider and T
hami
hian [55℄.

In this brief 
hapter, we re
all the notions of wavelet and of 
ontinuous wavelet transform,

�rstly in the general setting and se
ondly in the 
ontext of bounded and 
ontinuous fun
tions

(with a parti
ular wavelet). We then present the tool given by the 
ontinuous wavelet transform

to 
hara
terize Hölder spa
es.

3.1 Continuous Wavelet Transform

Let us �rst re
all the notions of wavelet and 
ontinuous wavelet transform (see [30,33,54,

55,61,69,115℄).

3.1.1 General Setting

In the literature, the word �wavelet� is used for several types of fun
tions depending on the


ontext. We take here the following de�nition.

De�nition 3.1.1. The fun
tion ψ is a wavelet if ψ ∈ L1(R) ∩ L2(R) and if ψ satis�es the

admissibility 
ondition:

ξ 7→ |ψ̂(ξ)|2
|ξ| ∈ L1(R). (3.1)

Using the wavelet ψ, the 
ontinuous wavelet transform of a fun
tion f ∈ L2(R) is the fun
-

tion Wψf de�ned by

Wψf(a, b) :=

∫

R

f(x)ψa,b(x) dx = 〈f, ψa,b〉 , a ∈ R \{0}, b ∈ R

where

ψa,b(x) :=
1

a
ψ

(
x− b

a

)
, x ∈ R .

The admissibility 
ondition plays an important role in the re
onstru
tion of a fun
tion from

its 
ontinuous wavelet transform (see Theorem 3.1.3). Moreover, it implies that ψ̂(0) = 0 be
ause

39



40 Chapter 3. Continuous Wavelet Transform and Hölder Continuity

ψ ∈ L1(R). Indeed, by 
ontradi
tion, if we suppose that |ψ̂(0)| ≥ C with C > 0, there exists

ε > 0 su
h that

|ψ̂(ξ)|2
|ξ| >

C2

4|ξ|
for ξ ∈ (−ε, ε) \ {0} by 
ontinuity of ψ̂ and we then have a 
ontradi
tion with Condition (3.1).

Remark 3.1.2. The general setting of the 
ontinuous wavelet transform is the spa
e L2(R).

Sin
e a wavelet is an integrable fun
tion (in our de�nition), we 
an 
al
ulate the 
ontinuous

wavelet transform of a fun
tion whi
h belongs to L∞(R) (and whi
h is not ne
essarily in L2(R)).

This will just allow to investigate the Hölder 
ontinuity of bounded (and 
ontinuous) fun
tions

from the 
ontinuous wavelet transform of these fun
tions.

A square integrable fun
tion 
an be re
onstru
ted from its wavelet 
ontinuous transform.

This is the obje
t of the following result, whi
h will be proved later in the more general 
ontext

of nonstationary 
ontinuous wavelet transform (see Theorem 6.2.1).

Theorem 3.1.3. Let ψ be a wavelet su
h that

∫

R

|ψ̂(ξ)|2
|ξ| dξ = 1. (3.2)

For all f, g ∈ L2(R), we have
∫∫

R2
Wψ f(a, b)Wψ g(a, b)

dadb

|a| = 〈f, g〉 .

Moreover, for f ∈ L2(R), we have

lim
ε→0+
r→+∞

∥∥∥∥∥f(·)−
∫

{a′∈R:ε<|a′|<r}

(∫

R

Wψ f(a, b)ψa,b(·) db
)
da

|a|

∥∥∥∥∥
L2(R)

= 0.

There exist some variants of this re
onstru
tion formula. For example, we 
an re
over f from

Wψ f(a, b) with a > 0 only and b ∈ R. In this 
ase, Condition (3.2) is slightly more restri
tive.

Theorem 3.1.4. Let ψ be a wavelet su
h that

∫ +∞

0

|ψ̂(ξ)|2
ξ

dξ =

∫ +∞

0

|ψ̂(−ξ)|2
ξ

dξ = 1.

For all f, g ∈ L2(R), we have
∫∫

(0,+∞)×R

Wψ f(a, b)Wψ g(a, b)
dadb

a
= 〈f, g〉 .

Moreover, for f ∈ L2(R), we have

lim
ε→0+
r→+∞

∥∥∥∥∥f(·)−
∫ r

ε

(∫

R

Wψ f(a, b)ψa,b(·) db
)
da

a

∥∥∥∥∥
L2(R)

= 0.

Another possibility 
onsists in the introdu
tion of another wavelet with some spe
i�
 prop-

erties. In the next se
tion, we will 
ome ba
k on this idea in the parti
ular 
ase of a wavelet

whi
h belongs to the Hardy spa
e

H2(R) :=
{
f ∈ L2(R) : f̂ = 0 a.e. on (−∞, 0)

}
.
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3.1.2 The Parti
ular Setting of Continuous and Bounded Fun
tions

In the next 
hapter, in order to study the Hölder 
ontinuity of generalized Riemann fun
tion,

we will use a parti
ular wavelet whi
h belongs to H2(R). The generalized Riemann fun
tion is

not square integrable, but it is 
ontinuous and bounded on R. As announ
ed in the previous

subse
tion (see Remark 3.1.2), its 
ontinuous wavelet transform 
an be investigated. An exa
t

re
onstru
tion formula exists in su
h a situation: if the wavelet ψ belongs to H2(R) and if f

belongs to a 
ertain 
lass of 
ontinuous and bounded fun
tions on R, we 
an re
over f from Wψf

using a se
ond wavelet satisfying some additional properties. This result is given below. It is just

mentioned in a remark of [55℄ without a proof of this parti
ular setting. We propose here a proof

strongly inspired by Proposition 2.4.2 in [33℄ and Theorem 2.2 in [55℄ with some adaptations to

our 
ase.

Theorem 3.1.5. Let ψ be a wavelet whi
h belongs to H2(R). Let ϕ be a di�erentiable wavelet

su
h that x 7→ xϕ(x) is integrable on R, su
h that Dϕ is square integrable on R and su
h that

∫ +∞

0
ψ̂(ξ)ϕ̂(ξ)

dξ

ξ
= 1. (3.3)

If f is a 
ontinuous and bounded fun
tion on R and is weakly os
illating around the origin, i.e.

su
h that

lim
r→+∞

sup
x∈R

∣∣∣∣
1

2r

∫ x+r

x−r
f(t) dt

∣∣∣∣ = 0,

then we have

f(x) = lim
ε→0+
r→+∞

2

∫ r

ε

(∫ +∞

−∞
Wψf(a, b)ϕa,b(x) db

)
da

a

for all x ∈ R.

Proof. Let us �x x ∈ R and r > ε > 0. We write

fε,r(x) :=

∫ r

ε

(∫ +∞

−∞
Wψf(a, b)ϕa,b(x) db

)
1

a
da.

Then, we have

fε,r(x) = (Mε,r ⋆ f)(x)

by Fubini's theorem, where Mε,r is de�ned by

Mε,r(t) :=

∫ r

ε

(∫ +∞

−∞
ψ

(
− b
a

)
ϕ

(
t− b

a

)
db

)
1

a3
da, t ∈ R .

Sin
e Mε,r ∈ L1(R) and the support of ψ̂ is in
luded in [0,+∞), we have

M̂ε,r(ξ) =

∫ r

ε
ψ̂(aξ)ϕ̂(aξ)

1

a
da =





0 if ξ ≤ 0∫ rξ

εξ
ψ̂(a)ϕ̂(a)

1

a
da if ξ > 0

.

Moreover, we have

M̂ε,r(ξ) = m(εξ)−m(rξ) (3.4)
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for all ξ ∈ R, where m is de�ned by

m(ξ) :=





∫ +∞

ξ
ψ̂(a)ϕ̂(a)

1

a
da if ξ ≥ 0

∫ +∞

−ξ
ψ̂(−a)ϕ̂(−a)1

a
da if ξ < 0

.

It is easy to 
he
k that m(0) = 1, m = 0 on (−∞, 0) and that m is 
ontinuous only on R \{0}.
Sin
e we have the three following properties: ψ̂ is bounded, ϕ is di�erentiable and Dϕ ∈ L2(R),

we obtain

|m(ξ)| ≤
(∫ +∞

0
|aϕ̂(a)|2da

)1/2
(∫ +∞

ξ

|ψ̂(a)|2
a4

da

)1/2

≤ C ′

ξ3/2

for all ξ > 0, by Cau
hy-S
hwarz inequality, where C ′
is a positive 
onstant. Then, m is bounded

and there exists C > 0 su
h that

|m(ξ)| ≤ C

(1 + |ξ|)3/2

for all ξ ∈ R. So m ∈ L1(R) ∩ L2(R) and we 
an de�ne M by M(ξ) := m̂(−ξ)/π for all ξ ∈ R.

By de�nition, M is 
ontinuous and bounded on R.

Moreover, m is di�erentiable on R \{0} and

Dm(ξ) =





−ψ̂(ξ)ϕ̂(ξ)1
ξ

if ξ > 0

0 if ξ < 0
.

Sin
e ϕ̂(0) = 0 and x 7→ xϕ(x) is integrable on R, we have

|ϕ̂(ξ)| =
∣∣∣∣
∫

R

ϕ(x)
(
e−ixξ − 1

)
dx

∣∣∣∣ =
∣∣∣∣
∫

R

xϕ(x)

(∫ ξ

0
−ie−ixt dt

)
dx

∣∣∣∣ ≤ C ′′|ξ|

for all ξ ∈ R, where C ′′
is a positive 
onstant. Consequently, Dm ∈ L2(R) be
ause ψ ∈ L2(R).

So M ∈ L1(R) sin
e we 
an write M as the produ
t of two square integrable fun
tions: for all

x ∈ R, we have

M(x) =
1√

1 + x2

(√
1 + x2M(x)

)
,

where the se
ond fa
tor is square integrable, be
ause m and Dm are square integrable on R.

Moreover, by the Diri
hlet 
ondition for Fourier inversion theorem (sin
em andDm are pie
ewise


ontinuous), we have ∫

R

M(x) dx = M̂(0) = m(0+) +m(0−) = 1

using Equality (3.3) where m(0±) = limξ→0± m(ξ).

By de�nition of M and by Fourier inversion theorem in Equality (3.4), we have

Mε,r(t) =
1

2

(
1

ε
M

(
t

ε

)
− 1

r
M

(
t

r

))

for all t ∈ R and we then obtain

fε,r(x) =
1

2

(∫

R

1

ε
M

(
x− t

ε

)
f(t) dt−

∫

R

1

r
M

(
x− t

r

)
f(t) dt

)
.
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Using the 
ontinuity of f , the �rst integral 
onverges to f(x) as ε tends to 0+ by Lebesgue's

theorem. The se
ond integral 
onverges to 0 as r tends to +∞ be
ause f is bounded and weakly

os
illating around on the origin, and M ∈ L1(R) is of integral equal to 1 (see Lemma 6.3.3

page 142 in [54℄ for the proof of this property). The 
on
lusion follows. �

An example of wavelet whi
h belongs to H2(R) is the Lusin wavelet ψL de�ned by

ψL(x) :=
1

π(x+ i)2
, x ∈ R . (3.5)

It is 
lear that ψL ∈ H2(R) be
ause

ψ̂L(ξ) =

{
−2ξe−ξ if ξ ≥ 0

0 if ξ < 0
.

In the next 
hapter, we will use the Lusin wavelet in order to study Hölder 
ontinuity of gen-

eralized Riemann fun
tion. We will see that this 
hoi
e of wavelet will allow to obtain a simple

expli
it expression of the 
ontinuous wavelet transform of the studied fun
tion (in 
omparison

with other wavelets as the derivatives of a gaussian fun
tion for example).

3.2 Chara
terization of Hölder Spa
es

Thanks to the previous re
onstru
tion formula, the Hölder 
ontinuity of a fun
tion 
an be


hara
terized with its 
ontinuous wavelet transform (see [55,61,69℄). This is the obje
t of the

following theorem. We will use it in the next 
hapter (see also [55,61,100℄ for other examples).

Theorem 3.2.1. Let α ∈ (0, 1), let ψ be a wavelet su
h that x 7→ xαψ(x) is integrable on R

and let f be a fun
tion as in Theorem 3.1.5.

(a) We have f ∈ Λα(R) if and only if there exists C > 0 su
h that

|Wψf(a, b)| ≤ C aα

for all a > 0 and b ∈ R.

(b) Let x0 ∈ R. If f ∈ Λα(x0), then there exist C > 0 and η > 0 su
h that

|Wψf(a, b)| ≤ C aα
(
1 +

( |b− x0|
a

)α)

for all a ∈ (0, η) and b ∈ (x0 − η, x0 + η). Conversely, if there exist α′ ∈ (0, α), C > 0 and

η > 0 su
h that

|Wψf(a, b)| ≤ C aα

(
1 +

( |b− x0|
a

)α′
)

for all a ∈ (0, η) and b ∈ (x0 − η, x0 + η), then f ∈ Λα(x0).

The proof of this theorem (sometimes with some minor variants) 
an be found in [33,55,61,

69,115℄. Hölder spa
es with exponent greater than 1 
an be also 
hara
terized with 
ontinuous

wavelet transform.

Remark 3.2.2. Let us note that the ne
essary 
onditions in Theorem 3.2.1 do not need all the

hypotheses on the fun
tion f : the 
ontinuity and the weak os
illation around the origin of f are

not useful for these impli
ations.





Chapter 4

Generalized Riemann Fun
tion

In the 19

th


entury, Riemann introdu
ed the fun
tion R de�ned by

R(x) :=

+∞∑

n=1

sin(πn2x)

n2
, x ∈ R,

in order to 
onstru
t a 
ontinuous but nowhere di�erentiable fun
tion (see [37℄ for some histori
al

information). The regularity of this fun
tion has been extensively studied by many authors.

In 1916, Hardy [49℄ showed that R is not di�erentiable at irrational numbers and at some

rational numbers. De
ades later, Gerver [44℄ and other people [55,58,93,103,111℄ proved

that R is only di�erentiable at the rational numbers (2p+ 1)/(2q + 1) (with p ∈ Z and q ∈ N0)

with a derivative equal to −1/2.

Moreover, the Hölder 
ontinuity of R was also investigated. Based on a work with Little-

wood [50℄, Hardy [49℄ showed that R is not Hölder 
ontinuous with exponent 3/4 at irra-

tional numbers and at some rational numbers. Using the 
ontinuous wavelet transform (of R),

Hols
hneider and T
hamit
hian [55℄ established that R is uniformly Hölder 
ontinuous

with exponent 1/2 and gave some results about its Hölder 
ontinuity at some parti
ular points.

With some similar te
hniques, Jaffard and Meyer [61,68℄ determined the Hölder exponent

of R at ea
h point and proved that R is a multifra
tal fun
tion.

A generalization of R is given by the fun
tion Rα,β de�ned by

Rα,β(x) :=
+∞∑

n=1

sin(πnβx)

nα
, x ∈ R, (4.1)

with α > 1 and β > 0. Other generalizations of R are possible; for example, we 
an repla
e the

element nβ in the de�nition of Rα,β by a polynomial with integer 
oe�
ients (see [29,103℄).

The fun
tion Rα,β de�ned in Expression (4.1) is 
learly 
ontinuous and bounded on R. If

β ∈ (0, α−1), it is easy to 
he
k that Rα,β is 
ontinuously di�erentiable on R (be
ause the series

of derivatives 
onverges uniformly on R). If β ≥ α+1, Luther [86℄ proved that Rα,β is nowhere

di�erentiable. If β ∈ [α− 1, α+ 1), several partial results about the di�erentiability of Rα,β are

known (see [86,103℄). Moreover, some results are also known for the 
ases β = 2 (see [49,61℄),

β = 3 (see [45℄) and β ∈ N (see [28℄). Con
erning the Hölder 
ontinuity and also the Hölder

exponent of Rα,β, several parti
ular 
ases have been studied (see [21,28,61,68,73,118℄).

In this 
hapter, we study the uniform Hölder 
ontinuity of Rα,β with β ≥ α − 1. We apply

some obtained results to the more general 
ase of nonharmoni
 Fourier series. We then present

the graphi
al representation of R2,β for some parti
ular values of β. We analyse the parti
ular

and amazing behaviour ofRα,β as β in
reases. The results presented in this 
hapter are from [17℄.
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4.1 Hölder Continuity of Generalized Riemann Fun
tion

In 2010, Johnsen [73℄ showed that if β > α− 1, then Rα,β is uniformly Hölder 
ontinuous

with an exponent greater or equal to (α− 1)/β. In order to 
omplete and generalize this result,

we use some te
hniques di�erent from the ones of Johnsen. Our approa
h is based on the


ontinuous wavelet transform of Rα,β related to the Lusin wavelet presented in the previous


hapter, and follows the approa
hes used to obtain the Hölder 
ontinuity of R in [55,61,69℄.

This method has two advantages: we 
an 
onsider both 
ases β = α− 1 and β > α− 1 to study

the uniform Hölder 
ontinuity of Rα,β and then show the optimality of the obtained exponent.

In other words, we 
al
ulate the uniform Hölder exponent of Rα,β for β ≥ α− 1. These results

are summarized in the following theorem.

Theorem 4.1.1. For β ≥ α− 1, we have

HRα,β
(R) =

α− 1

β
.

The generalized Riemann fun
tion and the Lusin wavelet satisfy the 
onditions of Theo-

rem 3.2.1. Indeed, we know that Rα,β is 
ontinuous and bounded and that the Lusin wavelet ψL
belongs to H2(R). Moreover, Rα,β is weakly os
illating around the origin be
ause

∣∣∣∣
1

2r

∫ x+r

x−r
Rα,β(t) dt

∣∣∣∣ ≤
∣∣∣∣∣
1

2r

+∞∑

n=1

cos((x− r)πnβ)− cos((x+ r)πnβ)

πnα+β

∣∣∣∣∣ ≤
ζ(α+ β)

πr

for all x ∈ R and r > 0, where ζ is the well-known Riemann zeta fun
tion de�ned by

ζ(z) :=

+∞∑

n=1

1

nz
, ℜz > 1.

The fun
tion x 7→ xαψL(x) is 
learly integrable for α ∈ (0, 1). Besides, it is easy to �nd

a di�erentiable wavelet ϕ su
h that x 7→ xϕ(x) is integrable on R, su
h that Dϕ is square

integrable on R and su
h that ∫ +∞

0
ϕ̂(ξ)e−ξ dξ = −1

2
.

The fun
tion

x 7→ 2i

π(x+ i)3

is a suitable example (of ϕ).

To prove Theorem 4.1.1, we �rst need to determine the 
ontinuous wavelet transform of Rα,β
related to the Lusin wavelet ψL given in Expression (3.5), as in [55, 61, 69℄ where the 
ase

α = β = 2 is treated.

Proposition 4.1.2. We have

WψL
Rα,β(a, b) = iaπ

+∞∑

n=1

eiπn
β(b+ia)

nα−β
(4.2)

for all a > 0 and b ∈ R.
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Proof. We 
an write

Rα,β(x) =
1

2

(
Tα,β(x)− T̃α,β(x)

)

for x ∈ R with

Tα,β(x) := −i
+∞∑

n=1

eiπn
βx

nα
and T̃α,β(x) := Tα,β(−x).

In other words, Rα,β is the odd part of Tα,β .

Let us �x a > 0 and b ∈ R. We have

WψL
Tα,β(a, b) =

∫

R

Tα,β(x)
1

a
ψL

(
x− b

a

)
dx =

a

π

∫

R

Tα,β(x)

(x− (b+ ia))2
dx.

For η > 0 and r > 0, let us denote by γη,r the 
losed path formed by the juxtaposition of the

two following ones: the �rst path des
ribes the segment [−r+ iη, r+ iη] and the se
ond one the

half-
ir
le of 
enter iη and radius r in
luded in H := {z ∈ C : ℑz > 0}. The fun
tion Tα,β is

holomorphi
 on H be
ause the series 
onverges uniformly on every 
ompa
t set of H. As the

point b+ ia is situated inside the 
urve des
ribed by γη,r for η ∈ (0, a) and r > a, we obtain

WψL
Tα,β(a, b) =

a

π
lim

r→+∞
lim
η→0+

∫

γη,r

Tα,β(z)

(z − (b+ ia))2
dz

= 2ia (DTα,β)(b+ ia)

= 2iaπ

+∞∑

n=1

eiπn
β(b+ia)

nα−β
,

thanks to Cau
hy's integral formula. Similarly, the 
ontinuous wavelet transform of T̃α,β is given

by

WψL
T̃α,β(a, b) =

∫

R

Tα,β(−x)
1

a
ψL

(
x− b

a

)
dx =

a

π
lim

r→+∞
lim
η→0+

∫

γη,r

Tα,β(z)

(z − (−b− ia))2
dz = 0

by homotopy invarian
e, be
ause the point −b − ia does not belong to H. We thus have the


on
lusion. �

Let us now analyse WψL
Rα,β in order to study the uniform Hölder 
ontinuity of Rα,β with

Theorem 3.2.1. We have

|WψL
Rα,β(a, b)| ≤ aπ

+∞∑

n=1

e−aπn
β

nα−β
= |WψL

Rα,β(a, 0)| (4.3)

for a > 0 and b ∈ R. The fun
tion fα,β : x 7→ xβ−α e−aπx
β
is di�erentiable on (0,+∞) and

Dfα,β(x) = e−aπx
β

xβ−α−1
(
(β − α)− aπβxβ

)
, x > 0.

Then, fα,β is de
reasing on (0,+∞) if β ∈ [α − 1, α) and on (((β − α)/aπβ)1/β ,+∞) if β ≥ α.

The next developments are mainly based on the 
lassi
al 
omparison prin
iple between series

and integral (when the general term is de
reasing).

We note that fα,β is integrable on (0,+∞) only if β > α − 1. We therefore split the study

of the uniform Hölder 
ontinuity and the 
al
ulus of the uniform Hölder exponent of Rα,β into

two 
ases: β > α− 1 and β = α− 1.
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Proposition 4.1.3. If β > α− 1, then Rα,β ∈ Λ
α−1
β (R) and

HRα,β
(R) =

α− 1

β
.

Proof. 1. Let us �rst 
onsider the 
ase β ∈ (α − 1, α). The fun
tion fα,β is de
reasing on

[1,+∞) and we have

|WψL
Rα,β(a, b)| ≤ aπ

(
e−aπ +

+∞∑

n=2

e−aπn
β

nα−β

)
≤ aπ

(
e−aπ +

∫ +∞

1

e−aπx
β

xα−β
dx

)

for a > 0 and b ∈ R. For the se
ond term of the right hand side of the last inequality, we obtain

∫ +∞

1

e−aπx
β

xα−β
dx ≤

∫ +∞

0

e−aπx
β

xα−β
dx =

1

β
π

α−1
β

−1 Γ

(
1 + β − α

β

)
a

α−1
β

−1

for a > 0, where Γ is de�ned by

Γ(x) :=

∫ +∞

0
e−t tx−1 dt, x > 0,

as usual. For the �rst term, we note that the fun
tion a 7→ e−aπa
1−α−1

β
is bounded on (0,+∞)

be
ause α− 1 < β. Then, there exists Cα,β > 0 su
h that

|WψL
Rα,β(a, b)| ≤ Cα,β a

α−1
β

for all a > 0 and b ∈ R, whi
h implies Rα,β ∈ Λ
α−1
β (R) using Theorem 3.2.1.

Let us show the optimality of this exponent (α−1)/β related to the uniform Hölder 
ontinuity.

Let C > 0 and η > 0; we have

|WψL
Rα,β(a, 0)| = aπ

+∞∑

n=1

e−πn
βa

nα−β
≥ aπ

∫ +∞

1

e−aπx
β

xα−β
dx =

1

β
(aπ)

α−1
β Γ

(
β − α+ 1

β
, aπ

)

for a > 0, where Γ is the in
omplete Gamma fun
tion de�ned by

Γ(x, y) :=

∫ +∞

y
e−ttx−1 dt, (x, y) ∈ (0,+∞)× [0,+∞).

Sin
e Γ((β − α+ 1)/β, aπ) → Γ((β − α+ 1)/β) and aη → 0 as a→ 0+, there exists A > 0 su
h

that, for all a ∈ (0, A), we have

|WψL
Rα,β(a, 0)| > C a

α−1
β

+η
.

Hen
e the 
on
lusion, using Theorem 3.2.1.

2. Let us now 
onsider the 
ase β ≥ α and let us write Na := ⌊((β − α)/aπβ)1/β⌋ + 1. If

a > 1, then Na = 1 and we 
an pro
eed as in the previous 
ase. Let us therefore suppose that
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a ∈ (0, 1]. We have

|WψL
Rα,β(a, b)| ≤ aπ

(
Na∑

n=1

e−aπn
β

nα−β
+

+∞∑

n=Na+1

e−aπn
β

nα−β

)

≤ aπ

(
NaN

β−α
a +

∫ +∞

Na

e−aπx
β

xα−β
dx

)

≤ aπ



((

β − α

πβ

) 1
β

+ a
1
β

)β−α+1

a
α−1
β

−1 +

∫ +∞

0

e−aπx
β

xα−β
dx




≤ a
α−1
β π



((

β − α

πβ

) 1
β

+ 1

)β−α+1

+
1

β
π

α−1
β

−1
Γ

(
1 + β − α

β

)
 .

We then have Rα,β ∈ Λ
α−1
β (R), using Theorem 3.2.1.

Let us show the optimality of the exponent related to the uniform Hölder 
ontinuity. Let

C > 0 and η > 0; we have

|WψL
Rα,β(a, 0)| = aπ

+∞∑

n=1

e−πn
βa

nα−β

≥ aπ

+∞∑

n=Na

e−πn
βa

nα−β

≥ aπ

∫ +∞

Na

e−aπx
β

xα−β
dx

=
1

β
(aπ)

α−1
β

∫ +∞

aπNβ
a

e−u u
β−α+1

β
−1 du

≥ 1

β
(aπ)

α−1
β Γ


β − α+ 1

β
,

((
β − α

β

)1/β

+ (aπ)1/β

)β


for a > 0. As in the 
ase β ∈ (α− 1, α), there exists A > 0 su
h that, for all a ∈ (0, A), we have

|WψL
Rα,β(a, 0)| > C a

α−1
β

+η,

hen
e the 
on
lusion, using on
e again Theorem 3.2.1. �

Remark 4.1.4. In fa
t, taking b = 2k with k ∈ Z, we 
an show that Rα,β ∈ Λ
α−1
β (2k) and that

the exponent 
annot be improved be
ause WψL
Rα,β(a, 2k) = WψL

Rα,β(a, 0) for all a > 0. In

other words, we have

HRα,β
(2k) =

α− 1

β
.

Sin
e this quantity is stri
tly smaller than 1, Rα,β is 
onsequently not di�erentiable at 2k.

Proposition 4.1.5. We have Rα,α−1 ∈ Λ1−δ(R) for all δ ∈ (0, 1) and HRα,α−1(R) = 1.

Proof. We have

|WψL
Rα,α−1(a, b)| ≤ aπ

(
e−aπ +

∫ +∞

1

e−aπx
α−1

x
dx

)
= aπ

(
e−aπ +

1

α− 1
E1(aπ)

)
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for a > 0 and b ∈ R, where E1 is the exponential integral de�ned by

E1(x) :=

∫ +∞

1

e−xt

t
dt, x > 0.

Sin
e we have

1

2
e−x ln

(
1 +

2

x

)
< E1(x) < e−x ln

(
1 +

1

x

)
(4.4)

for all x > 0 (see [1℄ page 229), we obtain

|WψL
Rα,α−1(a, b)| ≤ aπ e−aπ

(
1 +

1

α− 1
ln

(
1 +

1

aπ

))

for a > 0 and b ∈ R. Let us �x δ ∈ (0, 1). There exists A > 0 su
h that, for all a ∈ (0, A), we

have

1

α− 1

ln
(
1 + 1

aπ

)
(
1 + 1

aπ

)δ < 1

and then

|WψL
Rα,α−1(a, b)| ≤ aπ e−aπ

(
1 +

(
1 +

1

aπ

)δ)
≤ aπ

(
1 + 2δ

(
1 +

(
1

aπ

)δ))
.

There also exists A′ ∈ (0, A) su
h that, for all a ∈ (0, A′), we have

|WψL
Rα,α−1(a, b)| ≤ C ′

δa
1−δ,

where C ′
δ is a positive 
onstant (depending only on δ). Sin
e the fun
tion

a 7→ aδe−aπ
(
1 +

1

α− 1
ln

(
1 +

1

aπ

))

is bounded on [A′,+∞), we also have

|WψL
Rα,α−1(a, b)| ≤ C ′′

δ a
1−δ

for a ∈ [A′,+∞), where C ′′
δ is another positive 
onstant. We thus obtain

|WψL
Rα,α−1(a, b)| ≤ Cδ a

1−δ

for all a > 0 and b ∈ R where Cδ := max{C ′
δ, C

′′
δ }, whi
h implies Rα,α−1 ∈ Λ1−δ(R) using

Theorem 3.2.1.

Let us now show that this exponent of uniform Hölder 
ontinuity is optimal. Let C > 0; we

have

|WψL
Rα,α−1(a, 0)| ≥ aπ

∫ +∞

1

e−aπx
α−1

x
dx =

aπ

α− 1
E1(aπ) ≥ a

π

2(α − 1)
e−aπ ln

(
1 +

2

aπ

)

for all a > 0 thanks to Inequality (4.4). There so exists A > 0 su
h that, for all a ∈ (0, A), we

have

|WψL
Rα,α−1(a, 0)| > Ca,

hen
e the 
on
lusion using one last time Theorem 3.2.1.

�
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4.2 Extension to Nonharmoni
 Fourier Series

A part of Theorem 4.1.1 
an be adapted for parti
ular nonharmoni
 Fourier series. Let us

�rst re
all the notion of nonharmoni
 Fourier series (see [66,86,122℄).

De�nition 4.2.1. Let a := (an)n∈N be a sequen
e of 
omplex numbers and let λ := (λn)n∈N be

an in
reasing sequen
e of positive numbers whi
h 
onverges to in�nity. A nonharmoni
 Fourier

series (related to the sequen
es a and λ) is a fun
tion Sa,λ de�ned by

Sa,λ(x) :=
+∞∑

n=1

an e
iλnx, x ∈ R,

if the series 
onverges.

If the series

∑+∞
n=1 an is absolutely 
onvergent, then the above series (related to Sa,λ) 
on-

verges uniformly on R. We will assume that this is the 
ase in what follows. Su
h a fun
tion

Sa,λ is then 
ontinuous and bounded on R. As for Rα,β, we 
an 
al
ulate the 
ontinuous wavelet

transform of Sa,λ (related to the Lusin wavelet).

Sin
e λn > 0 for all n ∈ N, Sa,λ is a holomorphi
 fun
tion on H and we have

WψL
Sa,λ(a, b) = −2a

+∞∑

n=1

anλn e
iλn(b+ia)

for a > 0 and b ∈ R, similarly to Equality (4.2). If we assume that there exist C1, C2, C3 > 0,

α > 1 and β > 0 su
h that

|an| ≤
C1

nα
and C2n

β ≤ λn ≤ C3n
β

for all n ∈ N, we then obtain

|WψL
Sa,λ(a, b)| ≤ 2aC1C3

+∞∑

n=1

e−C2anβ

nα−β

for a > 0 and b ∈ R, i.e. an expression similar to the one obtained for |WψL
Rα,β(a, b)| in

Expression (4.3). Using the same development as in the study of the uniform Hölder 
ontinuity

of Rα,β with α > 1 and β ≥ α− 1, we get the following 
orollary.

Corollary 4.2.2. With the previous assumptions on a and λ, we have Sa,λ ∈ Λ
α−1
β (R) if

β > α− 1 and Sa,λ ∈ Λ1−δ(R) for all δ ∈ (0, 1) if β = α− 1.

For example, we obtain the uniform Hölder 
ontinuity of the fun
tion Sa,λ with λn = n3+n2

and an = n−α for n ∈ N where α ∈ (1, 4) for example. By the previous 
orollary, we have

Sa,λ ∈ Λ
α−1
3 (R) sin
e n3 ≤ λn ≤ 3n3 for n ∈ N. In fa
t, this example is a part of another

generalisation of Riemann fun
tion (see [29℄).
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Figure 4.1. Graphi
al representations of R2,1 and R2,3/2.
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Figure 4.2. Graphi
al representations of R2,2 and R2,4.
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Figure 4.3. Graphi
al representation of R2,10.

4.3 Behaviour of Rα,β as β In
reases

If we �x α > 1, we know that the uniform Hölder exponent of Rα,β de
reases as β in
reases,

thanks to Theorem 4.1.1. Moreover, we know that this exponent is exa
tly the Hölder exponent

of Rα,β at the origin. This phenomenon is 
learly illustrated in Figure 4.1, Figure 4.2 and

Figure 4.3 in the 
ase α = 2.

As β tends to in�nity, we note that the graphi
al representation of Rα,β looks like to the one

of the fun
tion s : x 7→ sin(πx) (in a 
ertain sense to establish), with some noise, �u
tuations or

os
illations all around. In fa
t, s is simply the �rst term of the series de�ning Rα,β. In the next

two propositions, we give a 
onvergen
e result and show that the �u
tuations have a 
onstant

amplitude (i.e. independent of β). To do so, let us re
all the usual de�nition of the mean of an

integrable fun
tion over a bounded interval.

De�nition 4.3.1. Let a, b ∈ R be su
h that a < b and let f be an integrable fun
tion on (a, b).

The mean of the fun
tion f over the inverval (a, b) is de�ned by

ma,b
f :=

1

b− a

∫ b

a
f(x) dx.

Proposition 4.3.2. Let α > 1. For all a, b ∈ R su
h that a < b, we have

lim
β→+∞

ma,b
Rα,β

= ma,b
s .

Proof. We have

∣∣∣∣
∫ b

a
(Rα,β(x)− sin(πx)) dx

∣∣∣∣ =
∣∣∣∣∣

+∞∑

n=2

cos(πnβa)− cos(πnβb)

πnα+β

∣∣∣∣∣ ≤
2

π
(ζ(α+ β)− 1)

and we know that ζ(x) → 1 as x→ +∞, hen
e the 
on
lusion. �
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Proposition 4.3.3. Let α > 1 and let β ∈ N. The fun
tion Rα,β is periodi
 of period 2 and we

have ∫ 1

−1
(Rα,β(x)− sin(πx))2 dx = ζ(2α) − 1.

Proof. The periodi
ity of Rα,β is easy to 
he
k. Let us 
al
ulate the integral. By developing

x 7→ Rα,β(x)− sin(πx) in Fourier series, we have

Rα,β(x)− sin(πx) =
a0
2

+

+∞∑

m=1

(am cos(πmx) + bm sin(πmx))

in L2([−1, 1]) where a0 = am = 0 and

bm = 2

∫ 1

0
(Rα,β(x)− sin(πx)) sin(πmx) dx

=
+∞∑

n=2

1

nα

∫ 1

0

(
cos(xπ(nβ −m))− cos(xπ(nβ +m))

)
dx

=





1

mα/β
if m = kβ for one k ∈ N \{1}

0 otherwise

for all m ∈ N. Consequently, by Parseval formula, we obtain

∫ 1

−1
(Rα,β(x)− sin(πx))2 dx =

+∞∑

m=1

b2m =

+∞∑

k=2

1

k2α
= ζ(2α)− 1,

as expe
ted. �

The two previous propositions are illustrated in Figure 4.4. Let us end this se
tion with a

simple remark about the behaviour of Rα,β as α tends to in�nity.

Remark 4.3.4. Proposition 4.3.2 is also �satis�ed� for α: we have

lim
α→+∞

ma,b
Rα,β

= ma,b
s

for all β > 0 and all a, b ∈ R su
h that a < b. Moreover, by Proposition 4.3.3, we have

lim
α→+∞

∫ 1

−1
(Rα,β(x)− sin(πx))2 dx = 0

for all β ∈ N. In fa
t, a stronger result holds: for any �xed β > 0, Rα,β 
onverges uniformly

on R to s as α tends to in�nity be
ause we have

|Rα,β(x)− sin(πx)| ≤
+∞∑

n=2

1

nα
= ζ(α)− 1

for all x ∈ R.
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Figure 4.4. Mean value and amplitude of �u
tuations of x 7→ R2,10(x)− sin(πx)
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Chapter 5

Nonstationary Orthonormal Basis

of Wavelets

The 
lassi
al theory of wavelets in L2(R) is now a well known topi
 and tool in various 
on-

texts (fun
tional analysis, signal analysis, multifra
tal analysis,. . . ). Typi
ally, an orthonormal

basis of wavelets of L2(R) is an orthonormal basis of L2(R) of type

2j/2ψ(2j · −k), j, k ∈ Z,

where the square integrable fun
tion ψ is 
alled the �mother wavelet�. Many examples are known

and the usual method to obtain su
h bases 
onsists to use a standard pro
edure (see [33,87,92℄)

starting from a multiresolution analysis (or a s
aling fun
tion). The question arising naturally

is whether every orthonormal basis of wavelets 
an always be obtained from a multiresolution

analysis with su
h a pro
edure. The answer is negative (see the example given by Journé

in [52,87℄) and ne
essary and su�
ient 
onditions have been proposed by several authors in [11,

47,52,81,82℄.

In several 
ontexts, to answer pre
ise problems whi
h 
an not be solved in the standard

setting, a generalization of the 
lassi
al de�nition of multiresolution analysis and orthonormal

basis of wavelets have been proposed (see [15,16,35,119℄). This new point of view is 
on
erned

with the introdu
tion of a �nonstationary� situation, in the sense that the mother wavelet is now

admitted to depend on the s
ale j. The proposed de�nition (either in the L2(R) 
ase, see [35℄,

or in the Sobolev 
ase, see [16℄) is the following: a nonstationary orthonormal basis of wavelets

of L2(R) is an orthonormal basis of L2(R) of type

2j/2ψ(j)(2j · −k), j, k ∈ Z,

where the square integrable fun
tions ψ(j)
, j ∈ Z, are again 
alled the �mother wavelets�. Several

expli
it examples are known, even in the more general 
ase of biorthogonal wavelets, and all of

them have been 
onstru
ted from a nonstationary multiresolution analysis in a very similar way

to the stationary 
ase (see [12,15,16,35,41,119℄). More pre
isely, the papers [12,15,16,35,119℄

involve Exponential-Splines while the paper [41℄ is 
on
erned with Splines. On the one hand,

the paper [41℄ shows that it is possible to 
onstru
t an in�nitely di�erentiable orthonormal basis

of wavelets with 
ompa
t support in a nonstationary setting (it is known that this is not possible

in the stationary 
ase). On the other hand, some of the 
onstru
tions of [15,16,119℄ lead to

fun
tions of the same type, but starting from a di�erent point of view. Firstly, the paper [119℄ is


on
erned with L2(R) and with signal analysis purposes, involving re
onstru
tion of exponential

polynomials. Se
ondly, the papers [15,16℄ fo
us on the problem of the 
onstru
tion of regular

59
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orthonormal 
ompa
tly supported basis of wavelets in Sobolev spa
es, as a generalization of

Daube
hies' 
ompa
tly supported wavelets.

Similarly to the stationary 
ase, a natural question arising in the nonstationary 
ontext

is whether every nonstationary orthonormal basis of wavelets 
an always be obtained from a

multiresolution analysis, with the introdu
tion of some natural dependen
e on the s
ale. The

purpose of this 
hapter is to try to answer this question.

In this 
hapter, we �rst give the de�nition of nonstationary orthonormal basis of wavelets

of L2(R) and a theoreti
al 
hara
terization of su
h bases. We then 
onsider the 
onstru
tion of

su
h bases from a nonstationary multiresolution analysis of L2(R) and we present a ne
essary

and su�
ient 
ondition about su
h a building pro
edure (under some additional asymptoti
 as-

sumption on the mother wavelets). Finally, we show the non existen
e of �regular� nonstationary

bases of wavelets in the Hardy spa
e H2(R). The results presented in this 
hapter are mainly

from [18℄.

5.1 Nonstationary Orthonormal Basis of Wavelets

Let us �rst re
all the notion of nonstationary basis of wavelets of L2(R) (see [16,35,98℄).

De�nition 5.1.1. Let ψ(j) ∈ L2(R) for j ∈ Z. A nonstationary orthonormal basis of wavelets

of L2(R) is an orthonormal basis of L2(R) of type

2j/2ψ(j)(2j · −k), j, k ∈ Z .

The fun
tions ψ(j)
, j ∈ Z, are 
alled the mother wavelets of this basis.

Remark 5.1.2. The mother wavelets ψ(j)
are not wavelets in the sense of De�nition 3.1.1. They

are just square integrable fun
tions.

The study of two series involving a sequen
e of square integrable fun
tions allows to de-

termine whether this sequen
e leads to a nonstationary orthonormal basis of wavelets. It is

the obje
t of the following �theoreti
al� 
hara
terization of nonstationary orthonormal bases of

wavelets. This result will be useful in the following, espe
ially for the theorem 
on
erning the


onstru
tion of a nonstationary orthonormal basis of wavelets starting from a nonstationary

multiresolution analysis. The proof is inspired from the stationary 
ase (see [47, 52℄) and is

presented in Se
tion 5.5.

Theorem 5.1.3. For j ∈ Z, let ψ(j) ∈ L2(R) su
h that ‖ψ(j)‖L2(R) = 1.

(a) If we have ∑

j∈Z

|ψ̂(−j)(2jξ)|2 = 1 (5.1)

for almost all ξ ∈ R and

tp,q(ξ) :=

+∞∑

j=0

ψ̂(p−j)(2jξ) ψ̂(p−j)(2j(ξ + 2qπ)) = 0 (5.2)

for almost all ξ ∈ R and for all p ∈ Z and q ∈ 2Z+1, then {2j/2ψ(j)(2j · −k) : j, k ∈ Z} is

an orthonormal basis of L2(R).
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(b) Conversely, if {2j/2ψ(j)(2j · −k) : j, k ∈ Z} is an orthonormal basis of L2(R) and if there

exist α,A > 0 su
h that ∫

R

(1 + |ξ|)α|ψ̂(−j)(ξ)|2 dξ ≤ A (5.3)

for all j ∈ N, Equalities (5.1) and (5.2) are satis�ed almost everywhere on R.

Contrary to the stationary 
ase, some additional dependen
es on the s
ale j appear. More-

over, Condition (5.3) has also been added and will be 
alled it Additional asymptoti
 
ondition

in the following of this 
hapter. We mainly use it to show the integrability of some series on

the s
ale index j of mother wavelets (see Expressions (5.13) and (5.19)). It is inspired from

Condition (5.6) (see [16℄).

Remark 5.1.4. In [98℄, at the same time, independently, the authors got the same result with

the following additional 
ondition instead of Condition (5.3): the series

+∞∑

j=1

2j |ψ̂(−j)(2j ·)|2 (5.4)


onverges in L1
loc(R \{0}). In fa
t, this 
ondition is weaker than Condition (5.3) and is a
tually

also visible in the proof of Theorem 5.1.3 (see the end of the proof of Lemma 5.5.4).

Let us already analyse the 
onvergen
e of the series appearing in Theorem 5.1.3. The se
ond

series (i.e. the series tp,q in Equality (5.2)) 
onverges in L1(R) thanks to Cau
hy-S
hwarz's

inequality and ‖ψ(j)‖L2(R) = 1 for all j ∈ Z. It then 
onverges almost everywhere on R by

Levi's theorem. By 
ontrast, it is di�
ult to show that the �rst series 
onverges almost every-

where be
ause the sum is over all the integers. We wait for Se
tion 5.5 and more pre
isely for

Proposition 5.5.5.

5.2 Nonstationary Multiresolution Analysis

A 
lassi
al method to 
onstru
t a nonstationary orthonormal basis of wavelets of L2(R) 
on-

sists to start from a nonstationary multiresolution analysis (or from s
aling fun
tions) of L2(R)

(see [16,35,98,119℄).

De�nition 5.2.1. A nonstationary multiresolution analysis of L2(R) is an in
reasing sequen
e

(Vj)j∈Z of 
losed linear subspa
es of L2(R) su
h that

(a)

⋂

j∈Z

Vj = {0} and

⋃

j∈Z

Vj = L2(R),

(b) for j ∈ Z, there exists ϕ(j) ∈ Vj su
h that {2j/2ϕ(j)(2j ·−k) : k ∈ Z} is an orthonormal basis

of Vj .

The fun
tions ϕ(j)
, j ∈ Z, are 
alled s
aling fun
tions.

In fa
t, the se
ond point of this de�nition 
an be weakened as follows: for j ∈ Z, there exists

g(j) ∈ Vj su
h that {2j/2g(j)(2j · −k) : k ∈ Z} is a Riesz basis of Vj . For �xed j ∈ Z, it means

that
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(a) for ea
h f ∈ Vj , there exists a unique sequen
e (ck)k∈Z ∈ ℓ2(Z) su
h that

f(·) =
∑

k∈Z

ck2
j/2g(j)(2j · −k)

in L2(R),

(b) there exist Aj , Bj > 0 su
h that

Aj
∑

k∈Z

|ck|2 ≤
∥∥∥∥∥
∑

k∈Z

ck2
j/2g(j)(2j · −k)

∥∥∥∥∥

2

L2(R)

≤ Bj
∑

k∈Z

|ck|2

for all sequen
e (ck)k∈Z ∈ ℓ2(Z).

Thanks to Lemma below (see [16℄), it then su�
es to de�ne ϕ(j)
by

ϕ̂(j)(ξ) :=
ĝ(j)(ξ)√∑

k∈Z

|ĝ(j)(ξ + 2kπ)|2

for almost every ξ ∈ R and {2j/2ϕ(j)(2j · −k) : k ∈ Z} is an orthonormal basis of Vj .

Lemma 5.2.2. Let g ∈ L2(R) and j ∈ Z. The fun
tions 2j/2g(2j · −k), k ∈ Z, are orthonormal

in L2(R) if and only if ∑

k∈Z

|ĝ(ξ + 2kπ)|2 = 1

for almost every ξ ∈ R.

Without going into the details, let us give some information about the 
onstru
tion of a

nonstationary multiresolution analysis of L2(R) from s
aling fun
tions (see [16℄).

Proposition 5.2.3. For j ∈ Z, let ϕ(j) ∈ L2(R). Let us assume that, for ea
h j ∈ Z, the

fun
tions 2j/2ϕ(j)(2j · −k), k ∈ Z, are orthonormal in L2(R). Let us set

Vj := span
{
2j/2ϕ(j)(2j · −k) : k ∈ Z

}
, j ∈ Z .

(a) We have Vj ⊂ Vj+1 for all j ∈ Z if and only if, for all j ∈ Z, there exists a 2π-periodi
 and

lo
ally square integrable fun
tion m
(j+1)
0 su
h that

ϕ̂(j)(2ξ) = m
(j+1)
0 (ξ)ϕ̂(j+1)(ξ) (5.5)

for almost every ξ ∈ R.

(b) The union of (Vj)j∈Z is dense in L2(R) if and only if

lim
j→+∞

|ϕ̂(j)(2−jξ)| = 1

for almost every ξ ∈ R.

(
) If there exist A,α > 0 su
h that

∫

R

(1 + |ξ|)α |ϕ̂(j)(ξ)|2 dξ ≤ A (5.6)

for all j ∈ −N, then the interse
tion of (Vj)j∈Z is redu
ed to {0}.
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The fun
tions m
(j)
0 , j ∈ Z, are 
alled �lters. Let us mention that, for all j ∈ Z, they satisfy

the equality

|m(j)
0 (ξ)|2 + |m(j)

0 (ξ + π)|2 = 1 (5.7)

for almost all ξ ∈ R. Equation (5.5) is often 
alled the s
aling equation. Condition (5.6) is

similar to Additional asymptoti
 
ondition (5.3).

The following result allows to 
onstru
t a nonstationary orthonormal basis of wavelets

of L2(R) from s
aling fun
tions (and �lters).

Theorem 5.2.4. For j ∈ Z, let ϕ(j) ∈ L2(R). Let us assume that the spa
es

Vj := span
{
2j/2ϕ(j)(2j · −k) : k ∈ Z

}
, j ∈ Z

form a nonstationary multiresolution analysis of L2(R). For j ∈ Z, let us de�ne ψ(j) ∈ L2(R) by

ψ̂(j)(ξ) = e−iξ/2m
(j+1)
0 (ξ/2 + π) ϕ̂(j+1)(ξ/2)

for almost every ξ ∈ R, where m
(j+1)
0 is a �lter 
oming from S
aling equation (5.5). Then,

{2j/2ψ(j)(2j · −k) : j, k ∈ Z} is an orthonormal basis of L2(R).

Under Additional asymptoti
 
ondition (5.3) (of the theoreti
al 
hara
terization of nonsta-

tionary orthonormal bases of wavelets), the following result gives a ne
essary and su�
ient


ondition to obtain a nonstationary basis of wavelets from a nonstationary multiresolution anal-

ysis. Again, we generalize the proof of [52℄ to the nonstationary 
ase, whi
h is presented in

Se
tion 5.6.

Theorem 5.2.5. For j ∈ Z, let ψ(j) ∈ L2(R). Let us assume that {2j/2ψ(j)(2j · −k) : j, k ∈ Z}
is an orthonormal basis of L2(R).

(a) If the mother wavelets ψ(j)
, j ∈ Z, 
ome from a nonstationary multiresolution analysis, then

Dj(ξ) :=
+∞∑

n=1

∑

k∈Z

|ψ̂(j−n)(2n(ξ + 2kπ))|2 = 1 (5.8)

for almost all ξ ∈ R and for all j ∈ Z.

(b) Conversely, if Dj = 1 almost everywhere on R for all j ∈ Z and if we assume that Additional

asymptoti
 
ondition (5.3) is satis�ed, then the mother wavelets ψ(j)
, j ∈ Z, 
ome from a

nonstationary multiresolution analysis of L2(R).

For j ∈ Z, the fun
tion Dj is sometimes 
alled the dimension fun
tion of the mother

wavelet ψ(j)
(see [22℄). For all j ∈ Z, the double series in Expression (5.8) 
onverges in L1([0, 2π])

be
ause ‖ψ(j)‖L2(R) = 1 and then almost everywhere on R by Levi's theorem and by periodi
ity.

Additional asymptoti
 
ondition (5.3) is mentioned be
ause we use the theoreti
al 
hara
-

terization of wavelets in the se
ond part of the proof of Theorem 5.2.5 (and more pre
isely in

Lemma 5.6.2). In fa
t, it is not ne
essary if the nonstationary orthonormal basis of wavelets

veri�es Equalities (5.1) and (5.2) of Theorem 5.1.3.

In the se
ond part of Theorem 5.2.5, it a
tually su�
es to have Dj > 0 almost everywhere

on (0, 2π) for all j ∈ Z. This is the purpose of the following proposition.
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Proposition 5.2.6. For j ∈ Z, let ψ(j) ∈ L2(R). Let us assume that {2j/2ψ(j)(2j ·−k) : j, k ∈ Z}
is an orthonormal basis of L2(R). Let also assume that Additional asymptoti
 
ondition (5.3) is

satis�ed. For all j ∈ Z, we have Dj = 1 almost everywhere on R if and only if we have Dj > 0

almost everywhere on (0, 2π).

We give the proof of this proposition later, sin
e it uses some 
onsiderations of the proof of

Theorem 5.2.5 (see Se
tion 5.6).

5.3 The Example of Exponential-Splines

In this se
tion, we illustrate the previous results with the example of the Exponential-Splines.

The Exponential-Spline of parameter λ ∈ Cn (n ∈ N) is the fun
tion Nλ de�ned by

N̂λ(ξ) :=

n∏

ℓ=1

eλℓ−iξ − 1

λℓ − iξ

for almost every ξ ∈ R (see [35, 79℄). The 
lassi
al Spline 
orresponds to the 
ase λ = 0.

Ex
ept this parti
ular 
ase, the usual stru
ture of (stationary) multiresolution analysis 
annot

be applied to 
onstru
t a (stationary) orthonormal basis of wavelets of L2(R) from Exponential-

Splines (be
ause Nλ 
annot be expressed in terms of its 2-dilates). The nonstationary setting

allows it (see [35,79℄).

Let us 
onsider in details the 
ase of the Exponential-Spline Mµ := Niµ with µ ∈ R \{0}.
By de�nition, we 
learly have

Mµ(x) = eiµx χ[0,1](x), x ∈ R

and

M̂µ(ξ) =





ei
µ−ξ
2

sin
(
µ−ξ
2

)

µ−ξ
2

if ξ 6= µ

1 if ξ = µ

.

For all j ∈ Z, it is easy to 
he
k that {2j/2M2−jµ(2
j · −k) : k ∈ Z} is an orthonormal family

of L2(R). Let us set

Vj := span
{
2j/2M2−jµ(2

j · −k) : k ∈ Z
}

for j ∈ Z and let us show that (Vj)j∈Z is a nonstationary multiresolution analysis of L2(R) with

Proposition 5.2.3.

(a) For all j ∈ Z, we have Vj ⊂ Vj+1 be
ause we have the following s
aling equation:

M̂2−jµ(2ξ) = e
i
2
(2−(j+1)µ−ξ) cos

(
2−(j+1)µ− ξ

2

)
M̂2−(j+1)µ(ξ)

for almost every ξ ∈ R.

(b) For almost every ξ ∈ R, we dire
tly have

lim
j→+∞

|M̂2−jµ(2
−jξ)| = lim

j→+∞

∣∣∣∣∣
sin(2−j µ−ξ2 )

2−j µ−ξ2

∣∣∣∣∣ = 1

and the union of Vj , j ∈ Z, is therefore dense in L2(R).
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(
) Let α > 0; the fun
tion ξ 7→ (1 + |ξ|)α|M̂2−jµ(ξ)|2 is integrable on R only for α ∈ (0, 1). We

have ∫

R

(1 + |ξ|)α|M̂2−jµ(ξ)|2 = 2

∫

R

(1 + |2−jµ− 2t|)α
∣∣∣∣
sin(t)

t

∣∣∣∣
2

dt (5.9)

and then, Proposition 5.2.3 does not allow to show that the interse
tion of Vj , j ∈ Z, is

redu
ed to {0}. However, [35℄ studies the dimension of the interse
tion of Vj , j ∈ Z, and

proves that it is well redu
ed to {0} sin
e µ is a real parameter.

Consequently, (Vj)j∈Z is a nonstationary multiresolution analysis of L2(R). If we de�ne the

square integrable fun
tion ψ(j)
by

ψ̂(j)(ξ) := i e−i
ξ
2

sin2
(
2−jµ−ξ

4

)

2−jµ−ξ
4

for almost every ξ ∈ R and for all j ∈ Z, the family {2j/2ψ(j)(2j ·−k) : j, k ∈ Z} is a nonstationary
orthonormal basis of wavelets of L2(R) by Theorem 5.2.4.

Remark 5.3.1. The previous example shows that Condition (5.6) is only su�
ient, but not

ne
essary to have the triviality of the interse
tion of Vj , j ∈ Z, de�ned in Proposition 5.2.3.

Let us now show that the nonstationary orthonormal basis of wavelets 
onstru
ted from the

s
aling fun
tions M2−jµ, j ∈ Z, satis�es Equalities (5.1) and (5.2) of Theorem 5.1.3. To get

that, we use the following equalities.

Lemma 5.3.2. For all x ∈ R, we have

+∞∑

j=0

sin4(2jx)

22j
= sin2(x) and

+∞∑

j=1

sin4(2−jx)

2−2j
= x2 − sin2(x).

Proof. The two series are 
learly 
onvergent. Let us �rst remark that

sin4(y) = sin2(y)− 1

4
sin2(2y)

for all y ∈ R. Then, we have

+∞∑

j=0

sin4(2jx)

22j
= lim

J→+∞




J∑

j=0

(
sin(2jx)

2j

)2

−
J∑

j=0

(
sin(2j+1x)

2j+1

)2



= lim
J→+∞

sin2(x)−
(
sin(2J+1x)

2J+1

)2

= sin2(x)

for all x ∈ R. Similarly, we also have

+∞∑

j=1

sin4(2−jx)

2−2j
= lim

J→+∞

((
sin(2−Jx)

2−J

)2

− sin2(x)

)
= x2 − sin2(x)

for all x ∈ R. �
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Firstly, for almost every ξ ∈ R, we have

∑

j∈Z

|ψ̂(−j)(2jξ)|2 =
∑

j∈Z

sin4
(
2jµ−2jξ

4

)

(
2jµ−2jξ

4

)2 =
1

θ2

∑

j∈Z

sin4(2jθ)

22j
= 1,

setting θ := (µ − ξ)/4 and using Lemma 5.3.2. Se
ondly, for all p ∈ Z and q ∈ 2Z+1 and for

almost every ξ ∈ R, we have

tp,q(ξ) =

+∞∑

j=0

ei2
jqπ

sin2
(
2j−p−2jξ

4

)

2j−pµ−2jξ
4

sin2
(
2j−p−2j(ξ+2qπ)

4

)

2j−pµ−2j (ξ+2qπ)
4

=
1

θ(θ − qπ
2 )


− sin2(θ) cos2(θ) +

+∞∑

j=1

sin4(2jθ)

22j




=
− sin2(θ) cos2(θ) + sin2(θ)− sin4(θ)

θ(θ − qπ
2 )

= 0

setting θ := (2−pµ−ξ)/4 and using again Lemma 5.3.2. Consequently, thanks to Theorem 5.1.3,

we have again proved that {2j/2ψ(j)(2j · −k) : j, k ∈ Z} is a nonstationary orthonormal basis of

wavelets of L2(R).

Remark 5.3.3. The fun
tions ψ(j)
, j ∈ Z, satisfy the Equalities (5.1) and (5.2) of Theorem 5.1.3

and are the mother wavelets of a nonstationary orthonormal basis of wavelets of L2(R). How-

ever, they do not verify Additional asymptoti
 
ondition (5.3) by an argument similar to Ex-

pression (5.9). Moreover, they do not verify Condition (5.4) (i.e. the other 
ondition proposed

in [98℄). Indeed, for J ∈ N and for a, b > 0 su
h that a < |µ| < b, we have

J∑

j=1

2j
∫

R

|ψ̂(−j)(2jξ)|2 χ[a,b](|ξ|) dξ =

J∑

j=1

∫

R

χ[2ja,2jb](|t|)
sin4

(
2jµ−t

4

)

(
2jµ−t

4

)2 dt

= 4
J∑

j=1

(∫ 2j µ−a
4

2j µ−b
4

sin4(y)

y2
dy +

∫ 2j b+µ
4

2j a+µ
4

sin4(y)

y2
dy

)

and the general term of this sum does not tend to 0 if j → +∞ sin
e 0 belongs to one of the two

domains of integration of the previous integrals. Consequently, this example shows that both

Conditions (5.3) and (5.4) of Theorem 5.1.3 are only su�
ient, but not ne
essary.

Let us end this se
tion with the 
omputation of the dimension Dj of the mother wavelet ψ(j)

for all j ∈ Z. We know that they verify the two equalities of Theorem 5.1.3. If we show that

Dj = 1 almost everywhere for all j ∈ Z, then the mother wavelets 
ome from a nonstationary

multiresolution analysis of L2(R) by Theorem 5.2.5, what we already know sin
e we use the

s
aling fun
tions M2−jµ, j ∈ Z, to 
onstru
t ψ(j)
, j ∈ Z. For all j ∈ Z and for almost all ξ ∈ R,
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we have

Dj(ξ) =

+∞∑

n=1

∑

k∈Z

|ψ̂(j−n)(2n(ξ + 2kπ))|2

=
+∞∑

n=1

∑

k∈Z

sin4
(
2n 2−jµ−ξ

4 − 2n kπ2

)

(
2n
(
2−jµ−ξ

4 − kπ
2

))2

= 4

+∞∑

n=1

sin4(2nθ)

22n

∑

k∈Z

1

(2θ − kπ)2
,

setting θ := (2−jµ − ξ)/4. The �rst series is equal to sin2(θ) − sin4(θ) = sin2(2θ)/4 by

Lemma 5.3.2 and the se
ond series to 1/ sin2(2θ), using the summation by residues. Thus,

we obtain Dj(ξ) = 1.

5.4 Smooth Nonstationary Orthonormal Basis of Wavelets in the

Hardy Spa
e H2(R)

We know that there exists no �regular� orthonormal basis of wavelets in the Hardy spa
e

H2(R) (see [10,52℄). Is there su
h a result in the nonstationary 
ase? The answer is given by

the following result.

Theorem 5.4.1. There is no sequen
e (ψ(j))j∈Z of fun
tions whi
h belong to H2(R) su
h that

(a) |ψ̂(j)| is 
ontinuous on R for all j ∈ Z,

(b) there exist α,A > 0 su
h that

|ψ̂(j)(ξ)| ≤ A

(1 + ξ)α+1/2

for all ξ ≥ 0 and j ∈ Z,

(
) there exist β,B, η > 0 su
h that

|ψ̂(j)(ξ)| ≤ B ξβ

for all ξ ∈ [0, η) and j ∈ N,

and su
h that {2j/2ψ(j)(2j · −k) : j, k ∈ Z} forms an orthonormal basis of H2(R).

The proof of this theorem is given in Se
tion 5.7, be
ause it is based on some results used

in the developments of the proofs of Theorem 5.1.3 and Theorem 5.2.5 (see the two following

se
tions). The �rst steps are similar to the stationary 
ase (see [52℄).

5.5 Proof of Theorem 5.1.3

Before proving Theorem 5.1.3, let us make some observations, similarly to the stationary


ase in [52℄.
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5.5.1 Auxiliary Results and Notations

The following proposition gives a way to 
he
k that the fun
tions ψj,k(·) := 2j/2ψ(j)(2j ·−k),
j, k ∈ Z, form an orthonormal basis of L2(R) (see for example [33,52℄).

Proposition 5.5.1. Let {ej : j ∈ N} be a family of elements of a Hilbert spa
e H su
h that

‖ej‖H = 1 for j ∈ N. Then, {ej : j ∈ N} is an orthonormal basis of H if and only if

+∞∑

j=1

| 〈f, ej〉 |2 = ‖f‖2H (5.10)

for all f ∈ H. Moreover, if Equality (5.10) is veri�ed for all f ∈ D where D is a dense subset

of H, Equality (5.10) holds for all f ∈ H.

In our 
ase, sin
e we assume that ‖ψ(j)‖L2(R) = 1 for all j ∈ Z, the family {ψj,k : j, k ∈ Z}
is an orthonormal basis of L2(R) if and only if

∑

j,k∈Z

| 〈f, ψj,k〉 |2 = ‖f‖2L2(R)

for all f in the dense subspa
e

D :=
{
f ∈ L2(R) : f̂ ∈ L∞(R) and supp(f̂) is a 
ompa
t subset of R \{0}

}

of L2(R). The fa
t that the support of f̂ is a 
ompa
t of R \{0} is used to have the 
onvergen
e

of some series (see Expression (5.14) in the proof of Lemma 5.5.4 where a > 0). The following

lemma returns to the density of D in L2(R).

Lemma 5.5.2. The set D is dense in L2(R).

Proof. Let f ∈ L2(R) and ε > 0. Sin
e f̂ ∈ L2(R), there exists ρ ∈ D(R) su
h that

‖f̂ − ρ‖L2(R) ≤
√
π

2
ε.

Let us set ρm := 1
2π (ρ− ρχ[− 1

m
, 1
m
]) for m ∈ N. There exists M ∈ N su
h that

‖ρχ[− 1
m
, 1
m
]‖L2(R) ≤

√
π

2
ε

for m ≥M . Consequently, for m ≥M , we obtain

‖f − ρ̌m‖L2(R) ≤
1√
2π

(‖f̂ − ρ‖L2(R) + ‖ρχ[− 1
m
, 1
m
]‖L2(R)) ≤ ε.

Sin
e ρ̌M ∈ D by 
onstru
tion, we have the 
on
lusion. �

Let us then 
al
ulate the quantity

I :=
∑

j,k∈Z

| 〈f, ψj,k〉 |2, f ∈ D .
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For f ∈ D, we have

I =
1

(2π)2

∑

j,k∈Z

∣∣∣
〈
f̂ , ψ̂j,k

〉∣∣∣
2

=
1

(2π)2

∑

j,k∈Z

∣∣∣∣
∫

R

2−j/2 f̂(ξ) ei2
−jξk ψ̂(j)(2−jξ) dξ

∣∣∣∣
2

=
1

(2π)2

∑

j,k∈Z

2j
∣∣∣∣
∫

R

f̂(2jξ) ψ̂(j)(ξ) eikξ dξ

∣∣∣∣
2

.

For j ∈ Z, let us set Fj(ξ) := f̂(2jξ)ψ̂(j)(ξ) for almost every ξ ∈ R. By 
onstru
tion, Fj ∈
L1(R) ∩ L2(R) and supp(Fj) is a 
ompa
t subset of R \{0} for j ∈ Z. We use the following

lemma for Fj (see [30,52℄ for example).

Lemma 5.5.3. Let F ∈ L1(R) ∩ L2(R) su
h that supp(F ) is a 
ompa
t of R \{0}. Then, the

series ∑

k∈Z

F (·+ 2kπ)


onverges almost everywhere on R to a 2π−periodi
 and square integrable fun
tion Φ and we

have ∫

R

Φ(ξ)F (ξ) dξ =
1

2π

∑

k∈Z

|F̂ (k)|2.

For j ∈ Z, we set Φj(ξ) :=
∑

k∈Z Fj(ξ + 2kπ) for almost every ξ ∈ R as in the previous

lemma. We then have

I =
1

(2π)2

∑

j,k∈Z

2j
∣∣∣∣
∫

R

Fj(ξ) e
ikξ dξ

∣∣∣∣
2

=
1

(2π)2

∑

j,k∈Z

2j|F̂j(k)|2

=
1

2π

∑

j∈Z

2j
∫

R

Φj(ξ)Fj(ξ) dξ

=
1

2π

∑

j∈Z

2j
∫

R

f̂(2jξ) ψ̂(j)(ξ)
∑

k∈Z

f̂(2j(ξ + 2kπ)) ψ̂(j)(ξ + 2kπ) dξ.

Taking 
are of the 
onvergen
e of series (see later), we get

I = I0 + I1

with

I0 :=
1

2π

∫

R

|f̂(ξ)|2
∑

j∈Z

|ψ̂(j)(2−jξ)|2 dξ

and

I1 :=
1

2π

∑

j∈Z

2j
∫

R

f̂(2jξ) ψ̂(j)(ξ)
∑

k∈Z \{0}

f̂(2j(ξ + 2kπ)) ψ̂(j)(ξ + 2kπ) dξ. (5.11)

Let us look at the 
onvergen
e of the series I0 and I1. To do that, we use the following

lemma.
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Lemma 5.5.4. Under Additional asymptoti
 
ondition (5.3), the series

∑

j∈Z

∑

k∈Z \{0}

2j |f̂(2j ·)| |f̂ (2j(·+ 2kπ))| |ψ̂(j)(·)|2 (5.12)


onverges almost everywhere on R and de�nes an integrable fun
tion on R for all f ∈ D.

Proof. Sin
e f ∈ D, we 
an assume that supp(f̂) ⊂ {ξ ∈ R \{0} : a < |ξ| < b} for b > a > 0.

We write δ := diam(supp(f̂)).

(a) If 2j 2π > δ, then at most one of the points 2jξ or 2j(ξ + 2kπ) belongs to supp(f̂) for

ξ ∈ R \{0} and k ∈ Z \{0}. Hen
e, in the sum on j in Expression (5.12), we only 
onsider

j ≤ j0 where j0 is the largest integer number whi
h veri�es 2j02π ≤ δ.

(b) We have f̂(2j(ξ + 2kπ)) 6= 0 for at most 1 + δ/2j2π integer number k. Using the de�nition

of j0 and the fa
t that f ∈ D, we have

2j
∑

k∈Z \{0}

|f̂(2j(ξ + 2kπ))| ≤ 2j
(
1 +

δ

2j2π

)
‖f̂‖L∞(R) ≤

(
2j0 +

δ

2π

)
‖f̂‖L∞(R)

≤ δ

π
‖f̂‖L∞(R)

for all j ≤ j0 and almost all ξ ∈ R \{0}.
(
) If f̂(2jξ) 6= 0, then we have 2−ja ≤ |ξ| ≤ 2−jb.

Hen
e, for almost all ξ ∈ R \{0}, we have

∑

j∈Z

∑

k∈Z \{0}

2j |f̂(2jξ)| |f̂ (2j(ξ + 2kπ))| |ψ̂(j)(ξ)|2 ≤ δ

π
‖f̂‖2L∞(R)

j0∑

j=−∞

χ[2−ja,2−jb](|ξ|) |ψ̂(j)(ξ)|2.

It only remains to show that the series

j0∑

j=−∞

χ[2−ja,2−jb](| · |) |ψ̂(j)(·)|2 (5.13)

is integrable on R. Indeed, the sequen
e (gJ )J∈N of integrable fun
tions on R de�ned by

gJ(ξ) :=

j0∑

j=−J

χ[2−ja,2−jb](|ξ|) |ψ̂(j)(ξ)|2

for almost every ξ ∈ R is 
learly in
reasing. Moreover, using Condition (5.3), we have

∫

R

gJ (ξ) dξ =

j0∑

j=−J

∫

R

χ[2−ja,2−jb](|ξ|)
(1 + |ξ|)α (1 + |ξ|)α|ψ̂(j)(ξ)|2 dξ

≤
j0∑

j=−J

1

(1 + 2−ja)α

∫

R

(1 + |ξ|)α|ψ̂(j)(ξ)|2 dξ

≤ A

j0∑

j=−∞

1

(1 + 2−ja)α
. (5.14)

Thus, by Levi's theorem, the series in Expression (5.13) and then in Expression (5.12) are

integrable on R and 
onverge almost everywhere on R. �
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Proposition 5.5.5. Under Additional asymptoti
 
ondition (5.3),

(a) the series I1 is 
onvergent,

(b) the series I 
onverges if and only if

∑

j∈Z

|ψ̂(j)(2−j ·)|2 ∈ L1
loc(R \{0}). (5.15)

Proof. (a) Sin
e

2|ψ̂(j)(ξ)||ψ̂(j)(ξ + 2kπ)| ≤ |ψ̂(j)(ξ)|2 + |ψ̂(j)(ξ + 2kπ)|2 (5.16)

for all k ∈ Z \{0} and for almost all ξ ∈ R, I1 is 
onvergent thanks to Lemma 5.5.4.

(b) With the previous item, I 
onverges if and only if I0 
onverges. We then have to show

that I0 
onverges if and only if the series in Expression (5.15) is lo
ally integrable on R \{0}. If
we suppose that I0 is 
onvergent for all f ∈ D, let K be a 
ompa
t of R \{0}. Taking f su
h

that f̂ := χK , we have

I0 =
1

2π

∫

R

|f̂(ξ)|2
∑

j∈Z

|ψ̂(j)(2−jξ)|2 dξ = 1

2π

∫

K

∑

j∈Z

|ψ̂(j)(2−jξ)|2 dξ

and then the series in Expression (5.15) is lo
ally integrable on R \{0}. Re
ipro
ally, if we

suppose that the series in Expression (5.15) is lo
ally integrable on R \{0}, we have

I0 =
1

2π

∫

R

|f̂(ξ)|2
∑

j∈Z

|ψ̂(j)(2−jξ)|2 dξ ≤ 1

2π
‖f̂‖2L∞(R)

∫

supp(f̂)

∑

j∈Z

|ψ̂(j)(2−jξ)|2 dξ

sin
e f ∈ D and we have the 
on
lusion. �

The series of Equality (5.1) of Theorem 5.1.3 dire
tly appears in the de�nition of I0. The

series of Equality (5.2) also appears in I1 when we write I1 as follows:

I1 =
1

2π

∫

R

∑

p∈Z

∑

q∈2Z+1

2p f̂(2pξ) f̂(2p(ξ + 2qπ)) tp,q(ξ) dξ.

Let us get this. For every k ∈ Z \{0}, there exist unique ℓ ∈ N0 and q ∈ 2Z+1 su
h that

k = 2ℓq. Then, from Expression (5.11), sin
e I1 is 
onvergent, we have

2πI1 =

∫

R

∑

j∈Z

f̂(ξ) ψ̂(−j)(2jξ)
∑

k∈Z \{0}

f̂(ξ + 2−j2kπ) ψ̂(−j)(2jξ + 2kπ) dξ

=

∫

R

∑

j∈Z

f̂(ξ) ψ̂(−j)(2jξ)
∑

q∈2Z+1

+∞∑

ℓ=0

f̂(ξ + 2−j 2 2ℓqπ) ψ̂(−j)(2jξ + 22ℓqπ) dξ

=

∫

R

f̂(ξ)
∑

q∈2Z+1

+∞∑

ℓ=0

∑

p∈Z

ψ̂(p−ℓ)(2ℓ−pξ) ψ̂(p−ℓ)(2ℓ(2−pξ + 2qπ)) f̂(ξ + 2p 2qπ) dξ

=

∫

R

∑

p∈Z

∑

q∈2Z+1

2p tp,q(ξ) f̂(2pξ) f̂(2
p(ξ + 2qπ)) dξ.

Before proving Theorem 5.1.3, let us re
all some elements about the notion of Lebesgue point

(see [106℄).
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De�nition 5.5.6. Let F be a measurable and lo
ally integrable fun
tion on R. The real x0 is

a Lebesgue point for F if

lim
δ→0+

1

2δ

∫ x0+δ

x0−δ
|F (x) − F (x0)| dx = 0.

Proposition 5.5.7. If F is a measurable and lo
ally integrable fun
tion on R, then almost

every real number is a Lebesgue point for F .

This previous proposition will be useful to prove the ne
essary 
ondition of Theorem 5.1.3.

5.5.2 Proof of the Su�
ient Condition of Theorem 5.1.3

We are now armed to prove Theorem 5.1.3. We pro
eed as in [52℄, with some adaptations

to the nonstationary 
ase. The su�
ient 
ondition is relatively simple.

Using Equalities (5.2) and (5.1) and the previous 
onsiderations on I, I0 and I1, we su

es-

sively obtain

∑

j,k∈Z

| 〈f, ψj,k〉 |2 = I = I0 =
1

2π

∫

R

|f̂(ξ)|2
∑

j∈Z

|ψ̂(j)(2−jξ)|2 dξ = ‖f‖2L2(R)

for all f ∈ D . Hen
e the 
on
lusion by Proposition 5.5.1.

5.5.3 Proof of the Ne
essary Condition of Theorem 5.1.3

Let us now show the ne
essary 
ondition of Theorem 5.1.3. Let us assume that {2j/2ψ(j)(2j ·
−k) : j, k ∈ Z} is an orthonormal basis of L2(R).

Equality (5.1)

Let us begin with Equality (5.1). Be
ause the series I 
onverges by hypothesis (and Propo-

sition 5.5.1), the fun
tion

S(·) :=
∑

j∈Z

|ψ̂(−j)(2j ·)|2

is lo
ally integrable on R \{0} thanks to Proposition 5.5.5. With Proposition 5.5.7, it su�
es to

show that S(ξ0) = 1 for some Lebesgue point ξ0 6= 0 of S. Let δ > 0 su
h that [ξ0 − δ, ξ0 + δ] ⊂
R \{0}. We denote by I(δ), I

(δ)
0 and I

(δ)
1 respe
tively the quantities I, I0 and I1 when we take

f = fδ where

f̂δ(ξ) :=
1√
2δ
χ[ξ0−δ,ξ0+δ](ξ)

for almost every ξ ∈ R. By 
onstru
tion, fδ ∈ D. On the one hand, we have

I(δ) =
∑

j,k∈Z

| 〈fδ, ψj,k〉 |2 = ‖fδ‖2L2(R) =
1

2π
‖f̂δ‖2L2(R) =

1

2π

∫ ξ0+δ

ξ0−δ

1

2δ
dξ =

1

2π

and on the other hand, we have

I(δ) = I
(δ)
0 + I

(δ)
1 =

1

2π

∫ ξ0+δ

ξ0−δ

1

2δ

∑

j∈Z

|ψ̂(−j)(2jξ)|2 dξ + I
(δ)
1 =

1

2π

1

2δ

∫ ξ0+δ

ξ0−δ
S(ξ) dξ + I

(δ)
1 .
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Consequently, taking the limit as δ → 0+, we obtain

1 = S(ξ0) + 2π lim
δ→0+

I
(δ)
1

sin
e ξ0 is a Lebesgue point of S. It only remains to prove that limδ→0+ I
(δ)
1 = 0. We adapt the

proof of Lemma 5.5.4 as follows.

Let us 
onsider ξ0 > 0 (the 
ase ξ0 < 0 is similar). Using Inequality (5.16), we have

2π |I(δ)1 | ≤
∫

R

∑

j∈Z

∑

k∈Z \{0}

2j |f̂δ(2jξ)| |f̂δ(2j(ξ + 2kπ))| |ψ̂(j)(ξ)|2 dξ.

Let j0 be the largest integer number whi
h veri�es 2j0π ≤ δ. Sin
e ξ0− δ > 0, that ‖f̂δ‖L∞(R) =

1/
√
2δ and that

2jξ ∈ supp(f̂δ) ⇒ ξ ≥ 2−j0(ξ0 − δ)

with j ≤ j0, we obtain

2π |I(δ)1 | ≤ 1

π

∫ +∞

π
δ
(ξ0−δ)

j0∑

j=−∞

χ[2−j(ξ0−δ),2−j(ξ0+δ)](ξ) |ψ̂(j)(ξ)|2 dξ,

as in the proof of Lemma 5.5.4. For �xed δ, we also know that the series

j0∑

j=−∞

χ[2−j(ξ0−δ),2−j (ξ0+δ)](·) |ψ̂(j)(·)|2

is integrable on R. As [2−j(ξ0 − δ), 2−j(ξ0 + δ)] ⊂ [2−j(ξ0 − δ′), 2−j(ξ0 + δ′)] for δ < δ′ with

δ′ ∈ (0, ξ0), we have

2π|I(δ)1 | ≤
∫ +∞

π
δ
(ξ0−δ)

j0∑

j=−∞

χ[2−j(ξ0−δ′),2−j(ξ0+δ′)](ξ) |ψ̂(j)(ξ)|2 dξ → 0

if δ → 0+ by Lebesgue's theorem. Thus, limδ→0+ I
(δ)
1 = 0 and S(ξ0) = 1.

Equality (5.2)

Let us now prove Equality (5.2). Let p0 ∈ Z and q0 ∈ 2Z+1. With Proposition 5.5.7 again,

it su�
es to show that tp0,q0(ξ0) = 0 for some Lebesgue point ξ0 of the integrable fun
tion tp0,q0 .

First, from ‖f‖2L2(R) = I = I0 + I1 (by Proposition 5.5.1) and I0 = ‖f‖2L2(R) (by Equality (5.1),

now a
quired with the previous paragraph) for f ∈ D, we get I1 = 0. Then, we have

∫

R

∑

p∈Z

∑

q∈2Z+1

2p f̂(2pξ) ĝ(2p(ξ + 2qπ)) tp,q(ξ) dξ = 0 (5.17)

for all f, g ∈ D thanks to the polarization identity be
ause the appli
ation

(f, g) ∈ D×D 7→
∫

R

∑

p∈Z

∑

q∈2Z+1

2p f̂(2pξ) ĝ(2p(ξ + 2qπ)) tp,q(ξ) dξ ∈ C

is a sesquilinear form.
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Let us assume that ξ0 6= 0 and ξ0 +2q0π 6= 0. Let δ > 0 be su
h that 0 /∈ [ξ0 − δ, ξ0 + δ] and

0 /∈ [ξ0 + 2q0π − δ, ξ0 + 2q0π + δ]. Let us de�ne the fun
tions fδ and gδ by

f̂δ(ξ) :=
1√
2δ
χ[2p0(ξ0−δ),2p0 (ξ0+δ)](ξ) and ĝδ(ξ) := f̂δ(ξ − 2p02q0π)

for almost every ξ ∈ R. By 
onstru
tion, we have fδ, gδ ∈ D and f̂δ(ξ)ĝδ(ξ + 2p02q0π) =

(1/2δ)χ[2p0 (ξ0−δ),2p0 (ξ0+δ)](ξ) for almost all ξ ∈ R. With Equality (5.17) for f = fδ and g = gδ ,

we then obtain

0 = 2p0
∫

R

f̂δ(2p0ξ) ĝδ(2
p0(ξ + 2q0π)) tp0,q0(ξ) dξ + Jδ =

2p0

2δ

∫ ξ0+δ

ξ0−δ
tp0,q0(ξ) dξ + Jδ

where

Jδ :=

∫

R

∑

p∈Z

∑

q∈2Z+1

(p,q)6=(p0,q0)

2p f̂δ(2pξ) ĝδ(2
p(ξ + 2qπ)) tp,q(ξ) dξ.

Sin
e ξ0 is a Lebesgue point of tp0,q0, we have

0 = 2p0tp0,q0(ξ0) + lim
δ→0+

Jδ

and it only remains to prove that limδ→0+ Jδ = 0 to have the 
on
lusion.

Let us suppose that ξ0 > 0 (the 
ase ξ0 < 0 is similar) and δ < π. Let us �x ξ ∈ R and

q ∈ 2Z+1. If f̂δ(2pξ)ĝδ(2
p(ξ +2qπ)) 6= 0, we must have |2pξ − 2p0ξ0| ≤ 2p0δ and |2p(ξ +2qπ)−

2p0(ξ0 + 2q0π)| ≤ 2p0δ. Consequently, we have

|2pq − 2p0q0| ≤
1

2π
(|(2p2qπ − 2p02q0π − (2pξ − 2p0ξ0)|+ |2pξ − 2p0ξ0|) ≤ 2p0

δ

π
< 2p0 . (5.18)

If p ≥ p0, we 
an easily show that |2p0q0 − 2pq| is greater than 2p0 be
ause q and q0 are odd,

whi
h is in 
ontradi
tion with Inequality (5.18). If p < p0, we have |2p0q0 − 2pq| ≥ 2p. Let j0 be

the largest integer number su
h that 2j0 ≤ 2p0δ/π. We so obtain

Jδ =

∫

R

j0∑

p=−∞

∑

q∈2Z+1

2p f̂δ(2pξ) ĝδ(2
p(ξ + 2qπ)) tp,q(ξ) dξ.

Using a similar argument as in Inequality (5.16), we 
an write

|Jδ| ≤ Jδ,1 + Jδ,2

where we set

Jδ,1 :=

∫

R

j0∑

p=−∞

∑

q∈2Z+1

2p|f̂δ(2pξ)| |ĝδ(2p(ξ + 2qπ))| 1
2
τp(ξ) dξ

and

Jδ,2 :=

∫

R

j0∑

p=−∞

∑

q∈2Z+1

2p|f̂δ(2p(ξ + 2qπ))| |ĝδ(2pξ)|
1

2
τp(ξ) dξ

with

τp(ξ) :=

+∞∑

ℓ=0

|ψ̂(p−ℓ)(2ℓξ)|2
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for almost all ξ ∈ R. Sin
e ‖ψ(j)‖L2(R) = 1 for j ∈ Z, this last series 
onverges in L1(R) by

Levi's theorem.

Similarly to the proof of Lemma 5.5.4 (and the proof of the previous paragraph), we obtain

Jδ,1 ≤
2p0

π

∫ +∞

π
δ
(ξ0−δ)

j0∑

p=−∞

χ[2p0−p(ξ0−δ),2p0−p(ξ0+δ)](ξ) τp(ξ) dξ

and the series

j0∑

p=−∞

χ[2p0−p(ξ0−δ),2p0−p(ξ0+δ)](·) τp(·) (5.19)

is integrable on R by Levi's theorem. Indeed, as in the proof of Lemma 5.5.4, the sequen
e

(hJ )J∈N of integrable fun
tions on R de�ned by

hJ(ξ) :=

j0∑

p=−J

χ[2p0−p(ξ0−δ),2p0−p(ξ0+δ)](ξ) τp(ξ)

for almost every ξ ∈ R is in
reasing be
ause τp ∈ L1(R) is positive. Moreover, using Additional

asymptoti
 
ondition (5.3), we have

∫

R

hJ (ξ) dξ =

j0∑

p=−J

+∞∑

ℓ=0

∫

R

χ[2p0−p(ξ0−δ),2p0−p(ξ0+δ)](ξ)

(1 + |2ℓξ|)α (1 + |2ℓξ|)α |ψ̂(p−ℓ)(2ℓξ)|2 dξ

≤
j0∑

p=−J

+∞∑

ℓ=0

1

(1 + 2ℓ+p0−p(ξ0 − δ))α

∫

R

(1 + |2ℓξ|)α |ψ̂(p−ℓ)(2ℓξ)|2 dξ

=

j0∑

p=−J

+∞∑

ℓ=0

2−ℓ

(1 + 2ℓ+p0−p(ξ0 − δ))α

∫

R

(1 + |ξ|)α |ψ̂(p−ℓ)(ξ)|2 dξ

≤ A

j0∑

p=−J

+∞∑

ℓ=0

1

2ℓ2α(ℓ+p0−p)(ξ0 − δ)α

=
2−αp0 A

(ξ0 − δ)α

j0∑

p=−J

2pα
+∞∑

ℓ=0

(
1

2α+1

)ℓ

≤ 2−αp0 A

(ξ0 − δ)α
1

1− 2−(α+1)

j0∑

p=−∞

2pα.

As [2p0−p(ξ0 − δ), 2p0−p(ξ0 + δ)] ⊂ [2p0−p(ξ0 − δ′), 2p0−p(ξ0 + δ′)] for δ < δ′ with δ′ ∈ (0, ξ0), we

have

Jδ,1 ≤
2p0

π

∫ +∞

π
δ
(ξ0−δ)

j0∑

p=−∞

χ[2p0−p(ξ0−δ′),2p0−p(ξ0+δ′)](ξ) τp(ξ) dξ → 0

as δ → 0+ by Lebesgue's theorem. Thus, limδ→0+ Jδ,1 = 0 and limδ→0+ Jδ,2 = 0 by a similar

reasoning. Finally, we have limδ→0+ Jδ = 0 and tp0,q0(ξ0) = 0.

5.6 Proofs of Theorem 5.2.5 and Proposition 5.2.6

Let us now prove Theorem 5.2.5 and let us begin with the ne
essary 
ondition. We pro
eed

as in the stationary 
ase (see [52℄).
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5.6.1 Proof of the Ne
essary Condition of Theorem 5.2.5

By hypothesis, the mother wavelets ψ(j)
, j ∈ Z, 
ome from a nonstationary multiresolution

analysis of L2(R) and there exist thus s
aling fun
tions ϕ(j)
(and �lters m

(j)
0 ), j ∈ Z, leading to

their 
onstru
tion. The following proposition shows how to get |ϕ̂(j)|2 from |ψ̂(m)|2, m ∈ Z su
h

that m < j. The proof follows the stationary 
ase with some easy adaptations (see [52℄).

Proposition 5.6.1. For all j ∈ Z and for almost all ξ ∈ R, we have

|ϕ̂(j)(ξ)|2 =

+∞∑

n=1

|ψ̂(j−n)(2nξ)|2.

Proof. Let j ∈ Z. Using Equality (5.7), Equality (5.5) of Proposition 5.2.3 and Theorem 5.2.4,

we have

|ϕ̂(j)(ξ)|2 = |ϕ̂(j)(ξ)|2
(
|m(j)

0 (ξ)|2 + |m(j)
0 (ξ + π)|2

)
= |ϕ̂(j−1)(2ξ)|2 + |ψ̂(j−1)(2ξ)|2

and then

|ϕ̂(j)(ξ)|2 = |ϕ̂(j−N)(2N ξ)|2 +
N∑

n=1

|ψ̂(j−n)(2nξ)|2

for almost all ξ ∈ R and for all N ∈ N. Sin
e ‖ψ(m)‖L2(R) = 1 for all m ∈ Z, the series

+∞∑

n=1

|ψ̂(j−n)(2n ·)|2


onverges in L1(R) and then almost everywhere on R by Levi's theorem. Consequently, the

sequen
e (|ϕ̂(j−N)(2N ·)|)N∈N 
onverges almost everywhere on R. Moreover,

∫

R

|ϕ̂(j−N)(2N ξ)|2 dξ = 2π2−N → 0

as N → +∞. Hen
e

lim
N→+∞

|ϕ̂(j−N)(2N ξ)|2 = 0

for almost every ξ ∈ R, whi
h leads to the 
on
lusion. �

For all j ∈ Z, using Lemma 5.2.2 and Proposition 5.6.1, we have

1 =
∑

k∈Z

|ϕ̂(j)(ξ + 2kπ)|2 =
∑

k∈Z

+∞∑

n=1

|ψ̂(j−n)(2n(ξ + 2kπ))|2 = Dj(ξ)

for almost all ξ ∈ R, sin
e {2j/2ϕ(j)(2j · −k) : k ∈ Z} is an orthonormal family of L2(R).

5.6.2 Proof of the Su�
ient Condition of Theorem 5.2.5

Let us now 
onsider the su�
ient 
ondition. Let us assume that Dj(ξ) = 1 for all j ∈ Z

and for almost all ξ ∈ R and let us 
onstru
t s
aling fun
tions. Basi
ally, for all j ∈ Z and for

almost all ξ ∈ R, sin
e Dj(ξ) = 1 by hypothesis, we 
hoose the smallest n ∈ N su
h that

∑

k∈Z

|ψ̂(j−n)(2n(ξ + 2kπ))|2 6= 0
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and then we de�ne ϕ(j)
by

ϕ̂(j)(ξ) :=
ψ̂(j−n)(2nξ)√∑

k∈Z

|ψ̂(j−n)(2n(ξ + 2kπ))|2

for almost all ξ ∈ R.

Let us look more pre
isely at the 
onstru
tion. Let us �x j ∈ Z and n ∈ N and let us de�ne

the in�nite ve
tor

Ψj,n(ξ) :=
(
ψ̂(j−n)(2n(ξ + 2kπ))

)
k∈Z

of ℓ2(Z) for almost all ξ ∈ R. The following lemma will be useful later. The proof uses the

theoreti
al 
hara
terization of nonstationary orthonormal bases of wavelets (see Theorem 5.1.3)

and thus Additional asymptoti
 
ondition (5.3).

Lemma 5.6.2. For all j ∈ Z and n ∈ N, for almost every ξ ∈ R, we have

ψ̂(j−n)(2nξ) =

+∞∑

r=1

∑

k∈Z

ψ̂(j−n)(2n(ξ + 2kπ)) ψ̂(j−r)(2r(ξ + 2kπ)) ψ̂(j−r)(2rξ). (5.20)

Proof. Let us give the idea of the proof. The double series 
onverges almost everywhere for all

j ∈ Z and n ∈ N thanks to Cau
hy-S
hwarz's inequality, the 
onvergen
e of Dj for j ∈ Z and

Equality (5.1) of Theorem 5.1.3. For the equality, if we denote Gj,n(ξ) the se
ond member of

Expression (5.20), we have Gj,n(ξ) = Gj−1,n−1(2ξ) for all j ∈ Z, all n ∈ N \{1} and almost all

ξ ∈ R by Theorem 5.1.3 and Proposition 5.6.3 below. In 
onsequen
e, for all j ∈ Z, all n ∈ N

and almost all ξ ∈ R, we have Gj,n(ξ) = Gj−(n−1),1(2
n−1ξ) by re
ursion and thus the 
on
lusion

be
ause Gj−(n−1),1(ξ) = ψ̂(j−n)(2ξ). �

Proposition 5.6.3. The family {2j/2ψ(j)(2j · −k) : j, k ∈ Z} is orthonormal in L2(R) if and

only if ∑

k∈Z

|ψ̂(j)(·+ 2kπ)|2 = 1

almost everywhere for all j ∈ Z and

∑

k∈Z

ψ̂(j−p)(2p(·+ 2kπ)) ψ̂(j)(·+ 2kπ) = 0

almost everywhere for all j ∈ Z and p ∈ N.

Proof. It su�
es to adapt the proof of the stationary 
ase (see [52℄) to the nonstationary 
ase.

Let us note that the �rst equality is similar to the one of Lemma 5.2.2 (see [16℄). �

Let us 
ome ba
k to the su�
ient 
ondition. Thanks to Lemma 5.6.2, we 
an write

Ψj,n(ξ) =
+∞∑

r=1

〈Ψj,n(ξ),Ψj,r(ξ)〉 Ψj,r(ξ) (5.21)

for almost all ξ ∈ R. Moreover, for almost all ξ ∈ R, we 
an see that

+∞∑

n=1

‖Ψj,n(ξ)‖2ℓ2(Z) =
+∞∑

n=1

∑

k∈Z

|ψ̂(j−n)(2n(ξ + 2kπ))|2 = Dj(ξ) = 1. (5.22)
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For all j ∈ Z, we de�ne

Fj(ξ) := span {Ψj,n(ξ) : n ∈ N}

for almost all ξ ∈ R. It is a subspa
e of ℓ2(Z) of dimension 1 by the following proposition

(see [52℄) thanks to Equalities (5.21) and (5.22).

Proposition 5.6.4. Let {vn : n ∈ N} be a family of ve
tors in a Hilbert spa
e H su
h that

+∞∑

n=1

‖vn‖2 = C and vm =
+∞∑

r=1

〈vm, vr〉 vr

for all m ∈ N. Then, the dimension of the subspa
e span {vn : n ∈ N} of H is equal to C.

In 
onsequen
e, Fj(ξ) is generated by only one unit ve
tor Uj(ξ). To 
onstru
t it, we �rst

make a partition of [0, 2π]:

Ej,n := {ξ ∈ [0, 2π] : Ψj,n(ξ) 6= 0 and Ψj,m(ξ) = 0 for m < n} , n ∈ N

and the null set Ej,0 := {ξ ∈ [0, 2π] : Dj(ξ) = 0}. We 
an then de�ne Uj almost everywhere on

[0, 2π] by

Uj(ξ) :=
Ψj,n(ξ)

‖Ψj,n(ξ)‖ℓ2(Z)
if ξ ∈ Ej,n.

Let us write Uj(ξ) := (u
(j)
k (ξ))k∈Z and de�ne ϕ(j)

almost everywhere on R by

ϕ̂(j)(ξ) := u
(j)
k (ξ − 2kπ) if ξ ∈ [0, 2π] + 2kπ (k ∈ Z).

As in the stationary 
ase (see [52℄), these ϕ(j)
, j ∈ Z, are the sought s
aling fun
tions.

5.6.3 Proof of Proposition 5.2.6

Let us now prove Proposition 5.2.6. In fa
t, it su�
es to show that, for all j ∈ Z, Dj > 0

almost everywhere on (0, 2π) implies Dj = 1 almost everywhere on R.

Let us �x j ∈ Z. By de�nition, Dj is 2π-periodi
. With the notations of Subse
tion 5.6.2,

we know that Dj(ξ) is the dimension of Fj(ξ) for almost all ξ ∈ R (see Proposition 5.6.4).

Consequently, Dj(ξ) ∈ N for almost all ξ ∈ R be
ause Dj > 0 almost everywhere on (0, 2π).

Moreover, we have

∫ 2π

0
Dj(ξ) dξ =

+∞∑

n=1

∑

k∈Z

∫ 2(k+1)π

2kπ
|ψ̂(j−n)(2nξ)|2 dξ =

+∞∑

n=1

2n‖ψ̂(j−n)‖L2(R) = 2π

be
ause ‖ψ(m)‖L2(R) = 1 for all m ∈ Z. We so have Dj(ξ) = 1 for almost all ξ ∈ R.

5.7 Proof of Theorem 5.4.1

Let us now prove Theorem 5.4.1. By 
ontradi
tion, let us assume that we have an orthonor-

mal basis {2j/2ψ(j)(2j · −k) : j, k ∈ Z} of H2(R) satisfying the given regularity 
onditions.
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Using the two �rst 
onditions of regularity, for j ∈ Z, the series

sj(·) :=
+∞∑

n=1

|ψ̂(j−n)(2n ·)|2


onverges uniformly on 
ompa
t subsets of R \{0} and then represents a 
ontinuous fun
tion

on R \{0}. Moreover, there exists C > 0 su
h that

sj(ξ) ≤
C

ξ2α+1

for all ξ > 0 and j ∈ Z be
ause

sj(ξ) ≤
+∞∑

n=1

A2

(1 + 2nξ)2α+1
≤ A2

ξ2α+1

+∞∑

n=1

1

2n(2α+1)
≤ C

ξ2α+1
.

By de�nition, for j ∈ Z, we 
an see that

Dj(·) =
∑

k∈Z

sj(·+ 2kπ).

This series 
onverges uniformly on 
ompa
t subsets of [−π, 0) ∪ (0, π] and then represents a


ontinuous fun
tion on this set. Sin
e ‖ψ(m)‖L2(R) = 1 for all m ∈ Z, Dj = 1 almost everywhere

on R by a similar reasoning as in the proof of Proposition 5.2.6 (see Subse
tion 5.6.3), adapted

to the 
ase H2(R) (Additional asymptoti
 
ondition (5.3) is satis�ed thanks to the se
ond

hypothesis).

Let us �x j ∈ Z. For all k ∈ Z, the fun
tion sj(· − 2kπ) is 
ontinuous on R \{2kπ}. The

series

tj(·) :=
∑

k∈Z \{0}

sj(·+ 2kπ)


onverges uniformly on [−π, π] and then represents a 
ontinuous fun
tion on [−π, π]. By 
on-

stru
tion, we have

Dj(ξ) = sj(ξ) + tj(ξ)

for all ξ ∈ [−π, 0) ∪ (0, π]. By 
ontinuity of ea
h term, we obtain

1 = lim
ξ→0−

Dj(ξ) = lim
ξ→0−

(sj(ξ) + tj(ξ)) = 0 + tj(0)

be
ause ψ(j) ∈ H2(R) and

1 = lim
ξ→0+

Dj(ξ) = lim
ξ→0+

(sj(ξ) + tj(ξ)) = lim
ξ→0+

sj(ξ) + tj(0).

Hen
e, for all j ∈ Z, we get

lim
ξ→0+

sj(ξ) = 0. (5.23)

Let us 
onsider sj(2
−jξ) for j ∈ N and ξ ∈ (0, η). On the one hand, there exists δ ∈ (0, η)

su
h that

0 ≤ sj(2
−jξ) ≤ 1

2
(5.24)
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for all ξ ∈ (0, δ) and all j ∈ N. Indeed, using the third hypothesis, we have

sj(2
−jξ) =

+∞∑

ℓ=1−j

|ψ̂(−ℓ)(2ℓξ)|2 = s0(ξ) +

j−1∑

ℓ=0

|ψ̂(ℓ)(2−ℓξ)|2

≤ s0(ξ) +B2 ξ2β
j−1∑

ℓ=0

2−2ℓβ = s0(ξ) +B2 ξ2β
1− 4−βj

1− 4−β

≤ s0(ξ) +Bβ ξ
2β

for all j ∈ N and for all ξ ∈ (0, η) where Bβ is a 
onstant depending only on β. It follows that,

using Equality (5.23) with s0, we have Inequality (5.24). On the other hand, using Equality (5.1)

(of Theorem 5.2.5 in the present setting), we have

sj(2
−jξ) =

+∞∑

ℓ=1−j

|ψ̂(−ℓ)(2ℓξ)|2 → 1

as j → +∞ for almost every ξ ≥ 0. Hen
e we get a 
ontradi
tion with Inequality (5.24), taking

ξ0 ∈ (0, δ) su
h that sj(2
−jξ0) → 1 as j → +∞.



Chapter 6

Nonstationary Continuous

Wavelet Transform

In the previous 
hapter, we have investigated nonstationary orthonormal bases of wavelets

of L2(R). Initially, this nonstationarity was introdu
ed in various situations: the 
onstru
tion

of bases of wavelets in Sobolev spa
es (see [15,16℄), the 
onstru
tion of in�nitely di�erentiable


ompa
tly supported bases of wavelets in L2(R) (see [41℄),. . .

Up to now, the nonstationarity has been only 
onsidered in the 
ontext of orthonormal bases

of wavelets. What about the 
ontinuous wavelet transform? In [95℄ (see pages 80-81), the idea

of a nonstationary 
ontinuous wavelet transform is put forward. Apparently, it 
ould be useful

in the study of parti
ular singularities, 
alled os
illating singularities (see [88℄ for example), of

a fun
tion.

Let us already mention that the 
ase of the 
ontinuous wavelet transform in Sobolev spa
es

is studied in [105℄. In 
omparison with the 
ase of orthonormal basis of wavelets, it appears

that only one wavelet (not a family of wavelets) is su�
ient to de�ne the 
ontinuous wavelet

transform of a distribution whi
h belongs to a Sobolev spa
e and to 
onsider the re
onstru
tion

of this distribution from its 
ontinuous wavelet transform.

The purpose of this 
hapter is to present a nonstationary version of the 
ontinuous wavelet

transform, whi
h does not seem to have been investigated before. In this 
hapter, we �rst

de�ne the notions of nonstationary family of wavelets and of nonstationary 
ontinuous wavelet

transform in L2(R). We then give some examples and we study the re
onstru
tion of a square

integrable fun
tion from its nonstationary 
ontinuous wavelet transform.

6.1 Nonstationary Continuous Wavelet Transform

Let us begin with the introdu
tion of the notions of nonstationary family of wavelets and

nonstationary 
ontinuous wavelet transform.

De�nition 6.1.1. The set Ψ := {ψ(a) : a ∈ R \{0}} is a nonstationary family of wavelets

if ψ(a) ∈ L1(R) ∩ L2(R) for all a ∈ R \{0} and if Ψ satis�es the nonstationary admissibility


ondition: the fun
tion

a 7→ |ψ̂(a)(aξ)|2
|a|

is integrable on R for all ξ ∈ R and the integral

∫

R

|ψ̂(a)(aξ)|2
|a| da

81
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is independent of ξ for almost all ξ ∈ R.

Using the nonstationary family of wavelets Ψ, the nonstationary 
ontinuous wavelet trans-

form of a fun
tion f ∈ L2(R) is the fun
tion WΨ f de�ned by

WΨ f(a, b) :=

∫

R

f(x)ψa,b(x) dx = 〈f, ψa,b〉 , a ∈ R \{0}, b ∈ R

where

ψa,b(x) :=
1

a
ψ(a)

(
x− b

a

)
, x ∈ R .

Let us 
onsider some examples of nonstationary family of wavelets.

(a) If ψ is a wavelet, then {ψ} is 
learly a nonstationary family of wavelets. Indeed, we dire
tly

have ∫

R

|ψ̂(aξ)|2
|a| da =

∫

R

|ψ̂(t)|2
|t| dt,

whi
h is independent of ξ for all almost ξ ∈ R. The stationary 
ase is thus a parti
ular 
ase

of the nonstationary 
ase.

(b) Let ψ be an even or odd wavelet and let p ∈ R \{−1}. For a ∈ R \{0}, let us set

ψ(a)(x) :=
1

|a|pψ
(

x

|a|p
)
, x ∈ R .

Then, Ψ := {ψ(a) : a ∈ R \{0}} is a nonstationary family of wavelets. Indeed, for almost all

ξ ∈ R, we have ψ̂(a)(ξ) = ψ̂(|a|pξ) and
∫

R

|ψ̂(a)(aξ)|2
|a| da =

∫

R

|ψ̂(|a|paξ)|2
|a| da = 2

∫ +∞

0

|ψ̂(ap+1ξ)|2
a

da

be
ause |ψ̂| is an even fun
tion. We then have

∫

R

|ψ̂(a)(aξ)|2
|a| da =

2

|p+ 1|

∫ +∞

0

|ψ̂(t)|2
t

dt =
1

|p+ 1|

∫

R

|ψ̂(t)|2
|t| dt,

whi
h is independent of ξ for almost all ξ ∈ R. For example,

{
1

|a|p
(
−χ[−|a|p,0) + χ[0,|a|p)

)
: a ∈ R \{0}

}

and {
x 7→ − 2x

|a|2p e
−x2/|a|2p : a ∈ R \{0}

}

are su
h nonstationary families of wavelets. In this 
ase, the nonstationary 
ontinuous

wavelet transform of f ∈ L2(R) related to Ψ is

WΨ f(a, b) = Wψ f(a|a|p, b)

for all a ∈ R \{0} and b ∈ R.
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(
) If ψ is a wavelet and if ρ is a fun
tion de�ned on R \{0} su
h that |ρ| = 1 on R \{0}, then

Ψ := {ρ(a)ψ(·) : a ∈ R \{0}}

is 
learly a nonstationary family of wavelets (thanks to the same argument as Item (a)). In

this 
ase, the nonstationary 
ontinuous wavelet transform of f ∈ L2(R) related to Ψ is

WΨ f(a, b) = ρ(a) Wψ f(a, b)

for all a ∈ R \{0} and b ∈ R.

(d) Let p and q be the fun
tions de�ned on R \{0} by

p(a) :=
log(|a|+ 1)

|a| and q(a) :=

√
|a|

|a|+ 1

1√
log(|a|+ 1)

.

For a ∈ R \{0}, let us set

ψ(a)(x) := q(a) (xDx + 1)
p(a)

π(p2(a) + x2)
, x ∈ R

and let us note that we have

ψ(a)(x) =
q(a)

p(a)
ψP

(
x

p(a)

)
=

√( |a|
log(|a|+ 1)

)3 1√
|a|+ 1

ψP

( |a|x
log(|a|+ 1)

)

for all x ∈ R, where ψP is the Poisson wavelet:

ψP (x) :=
1

π

1− x2

(1 + x2)2
, x ∈ R .

Then, Ψ := {ψ(a) : a ∈ R \{0}} is a nonstationary family of wavelets. Indeed, for almost all

ξ ∈ R, we have

∫

R

|ψ̂(a)(aξ)|2
|a| da = 2|ξ|2

∫ +∞

0

log(a+ 1)

a+ 1
e−2|ξ| log(a+1) da = 2

∫ +∞

0
t e−2t dt =

1

2
.

In this 
ase, the nonstationary 
ontinuous wavelet transform of f ∈ L2(R) related to Ψ is

WΨ f(a, b) = q(a) WψP
f(ap(a), b) =

√
|a|

|a|+ 1

1√
log(|a| + 1)

WψP
f

(
a log(|a|+ 1)

|a| , b

)

for all a ∈ R \{0} and b ∈ R.

Let us note that all the previous examples of nonstationary families of wavelets are a
tually


onstru
ted from one wavelet. All the presented nonstationary 
ontinuous wavelet transforms


an be then redu
ed to a 
lassi
al 
ontinuous wavelet transform to a multipli
ative fa
tor. It

is 
ertainly possible to �nd a nonstationary family of wavelets where su
h a situation does not

o

ur.
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6.2 Re
onstru
tion Formula

If Ψ is a nonstationary family of wavelets, it is possible to re
onstru
t a square integrable

fun
tion f from WΨ f(a, b) with a ∈ R \{0} and b ∈ R. This is the obje
t of the following

result (whi
h is the nonstationary version of Theorem 3.1.3). The proof is very similar to the

stationary 
ase (see [33℄) and it allows to understand the 
hoi
e and the use of the nonstationary

admissibility 
ondition.

Theorem 6.2.1. Let Ψ := {ψ(a) : a ∈ R \{0}} be a nonstationary family of wavelets su
h that

∫

R

|ψ̂(a)(aξ)|2
|a| da = 1 (6.1)

for almost all ξ ∈ R. For all f, g ∈ L2(R), we have
∫∫

R2
WΨ f(a, b)WΨ g(a, b)

dadb

|a| = 〈f, g〉 . (6.2)

Moreover, for f ∈ L2(R), we have

lim
ε→0+
r→+∞

∥∥∥∥∥f(·)−
∫

{a′∈R:ε<|a′|<r}

(∫

R

WΨ f(a, b)ψa,b(·) db
)
da

|a|

∥∥∥∥∥
L2(R)

= 0.

Proof. 1. Let us �rst show that

(a, b) 7→ WΨ h(a, b)√
|a|

is square integrable on R2
for all h ∈ L2(R). We �rst have

WΨ h(a, b) =
1

a

(
h ⋆ ψ(a)

(
− ·
a

))
(b) =

1

2π
F+
ξ→b

(
ĥ(ξ)ψ̂(a)(aξ)

)
(6.3)

for almost all a, b ∈ R, where we noti
e that ξ 7→ ĥ(ξ)ψ̂(a)(aξ) ∈ L1(R) ∩ L2(R) be
ause

ĥ ∈ L2(R) and ξ 7→ ψ̂(a)(aξ) ∈ L2(R) ∩ L∞(R) by hypothesis. For almost all �xed a ∈ R, the

fun
tion

b 7→ |WΨ h(a, b)|2
|a| =

1

4π2|a|
∣∣∣F+

ξ→b

(
ĥ(ξ)ψ̂(a)(aξ)

)∣∣∣
2

is then integrable on R. Moreover, we have

∫

R

|WΨ h(a, b)|2
|a| db =

1

2π

∫

R

|ĥ(b)|2 |ψ̂
(a)(ab)|2
|a| db

and this fun
tion of a is integrable on R by Fubini's theorem be
ause the fun
tion

(a, b) 7→ |ĥ(b)|2 |ψ̂
(a)(ab)|2
|a|

is integrable on R2
by Tonelli's theorem. Indeed, for almost all �xed b ∈ R, the fun
tion a 7→

|ψ̂(a)(ab)|2/|a| is integrable on R be
ause Ψ satis�es the nonstationary admissibility 
ondition.

Using Equality (6.1), we have

∫ +∞

0
|f̂(b)|2 |ψ̂

(a)(ab)|2
|a| da = |ĥ(b)|2
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and b 7→ |ĥ(b)|2 is integrable on R. By Tonelli's theorem again, we then have the integrability

of (a, b) 7→ |WΨ h(a, b)|2/|a| on R2
.

2. Let us now show Equality (6.2). Using Equality (6.3), we su

essively have

∫∫

R2
WΨ f(a, b)WΨ g(a, b)

dadb

|a|

=
1

4π2

∫

R

(∫

R

F+
ξ→b

(
f̂(ξ)ψ̂(a)(aξ)

)
F+
ξ→b

(
ĝ(ξ)ψ̂(a)(aξ)

)
db

)
da

|a|

=
1

4π2

∫

R

〈
F̂a, Ĝa

〉 da

|a|

=
1

2π

∫

R

〈Fa, Ga〉
da

|a|

where, for all a ∈ R \{0}, we have setted Fa(ξ) := f̂(ξ)ψ̂(a)(aξ) and Ga(ξ) := ĝ(ξ)ψ̂(a)(aξ) for

almost all ξ ∈ R. Using Equality (6.1), we then have

∫∫

(0,+∞)×R

WΨ f(a, b)WΨ g(a, b)
dadb

a
=

1

2π

∫

R

f̂(ξ)ĝ(ξ)

(∫

R

|ψ̂(a)(aξ)|2
|a| da

)
dξ

=
1

2π

〈
f̂ , ĝ
〉

= 〈f, g〉 .

3. Let us �nish with the 
onvergen
e in L2(R) and let us set

Iε,r(·) :=
∫

{a′∈R:ε<|a′|<r}

(∫

R

WΨ f(a, b)ψa,b(·) db
)
da

|a|

for r > ε > 0. With Equality (6.2), we dire
tly have

‖f − Iε,r‖L2(R) = sup
‖g‖L2(R)=1

| 〈f − Iε,r, g〉 | = sup
‖g‖L2(R)=1

∣∣∣∣
∫∫

X
WΨ f(a, b)WΨ g(a, b)

dadb

|a|

∣∣∣∣

where X := (R \((−r,−ε) ∪ (ε, r))) × R. By Cau
hy-S
hwarz's inequality, we obtain

‖f − Iε,r‖L2(R) ≤ sup
‖g‖L2(R)=1

√∫∫

X

|WΨ f(a, b)|2
|a| dadb

√∫∫

X

|WΨ g(a, b)|2
|a| dadb.

However, with Equality (6.2), we have

∫∫

X

|WΨ g(a, b)|2
|a| dadb ≤

∫∫

R2

|WΨ g(a, b)|2
|a| dadb = ‖g‖2L2(R).

Consequently, we have

‖f − Iε,r‖L2(R) ≤
√∫∫

X

|WΨ f(a, b)|2
|a| dadb→ 0

if ε → 0+ and r → +∞ by Lebesgue's theorem sin
e (a, b) 7→ |WΨ f(a, b)|2/|a| is integrable
on R2

. Hen
e the 
on
lusion. �
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As in the stationary 
ase, it is possible to re
over a square integrable fun
tion f from

WΨ f(a, b) with a > 0 only and b ∈ R, where Ψ a nonstationary family of wavelets. In this


ontext, we slightly adapt the nonstationary admissibility 
ondition and then also the notion

of nonstationary family of wavelets. The set Ψ := {ψ(a) : a > 0} is a nonstationary family of

wavelets if ψ(a) ∈ L1(R) ∩ L2(R) for all a > 0, if the fun
tion

a 7→ |ψ̂(a)(aξ)|2
a

is integrable on (0,+∞) for all ξ ∈ R and if the integral

∫ +∞

0

|ψ̂(a)(aξ)|2
a

da

is independent of ξ ∈ R for almost all ξ ∈ R. We have the following re
onstru
tion formula. The

proof is similar to the one of the previous theorem.

Theorem 6.2.2. Let Ψ := {ψ(a) : a > 0} be a nonstationary family of wavelets su
h that

∫ +∞

0

|ψ̂(a)(aξ)|2
a

da = 1

for almost all ξ ∈ R. For all f, g ∈ L2(R), we have

∫∫

(0,+∞)×R

WΨ f(a, b)WΨ g(a, b)
dadb

a
= 〈f, g〉 .

Moreover, for f ∈ L2(R), we have

lim
ε→0+
r→+∞

∥∥∥∥∥f(·)−
∫ r

ε

(∫

R

WΨ f(a, b)ψa,b(·) db
)
da

a

∥∥∥∥∥
L2(R)

= 0.
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Sν
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Chapter 7

From Sν
Spa
es to Lν

Spa
es

The study of the Hölder 
ontinuity of a fun
tion by means of its wavelet 
oe�
ients, i.e. its


oe�
ients in an orthonormal basis of wavelets, is a widely used tool (see [3,59,92℄). We have

already 
onsidered this kind of study in Chapter 3 with the 
ontinuous wavelet transform of a

fun
tion. In order to investigate the regularity of a fun
tion with the sequen
e made up of its

wavelet 
oe�
ients, Sν spa
es �rst (see [64℄) and then more re
ently Lν spa
es (see [13℄) have

been introdu
ed.

Up to now, in Chapter 1, we have presented the notions of Hölder 
ontinuity and Hölder

exponent to study the regularity of a fun
tion. If a fun
tion is very irregular, in the sense that its

Hölder exponent 
hanges at ea
h point, these notions are not more really relevant. In this 
ase,

the spe
trum of singularities of the fun
tion gives a more appropriate information (see [65℄ for

example). For ea
h possible value h taken by the Hölder exponent of a fun
tion, this quantity

a
tually measures the �size� of the set of real numbers where the Hölder exponent of the fun
tion

is equal to h. In general, it is impossible to 
al
ulate the spe
trum of singularities of a fun
tion

be
ause of the determination of several intri
ate limits whi
h are in its de�nition. Therefore,

one tries to estimate this spe
trum from some quantities whi
h are numeri
ally 
omputable

(see [65,67℄). It is just the purpose of the methods developed with Sν spa
es and Lν spa
es.

From this point of view, the method based on Lν spa
es allows to obtain theoreti
ally better

approximations of the spe
trum of singularities than the one based on Sν spa
es (see [13℄), whi
h
still improved the one based on Besov spa
es (see [64℄) given by the Fris
h-Parisi 
onje
ture

(see [63,99℄).

At �rst sight, Sν spa
es and Lν spa
es are spa
es of fun
tions. They are both de�ned from

a 
ertain quantity, 
alled wavelet pro�le in the 
ase of Sν spa
es and leader pro�le in the 
ase of

Lν spa
es, whi
h depends on the wavelet 
oe�
ients of fun
tions. It has been proved that these

two pro�les and these two types of spa
es are a
tually independent of the 
hosen orthonormal

basis of wavelets to represent the fun
tions (see [13,64℄). Therefore, Sν spa
es and Lν spa
es


an be 
onsidered as sequen
e spa
es (and no more as fun
tion spa
es). Likewise, the two pro�les


an be dire
tly asso
iated to a sequen
e (and no more to a fun
tion). This will be the point of

view that we will adopt in all of this part, ex
ept only for some parti
ular remarks or 
omments.

This 
hapter is a presentation of Lν spa
es and a preparation to the next 
hapter. After

some preliminaries about wavelet 
oe�
ients and wavelet leaders in the 
ontext of sequen
es, we

re
all the notions of wavelet pro�le and spa
e Sν in a �rst time and the notions of leader pro�le

and spa
e Lν in a se
ond time. Then, we give some examples and we 
ompare the spa
es Sν
and Lν .
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7.1 Wavelet Coe�
ients and Wavelet Leaders

Initially, Sν and Lν spa
es have been introdu
ed to study the regularity of fun
tions from its

wavelet 
oe�
ients. Sin
e we are interested in lo
al properties of fun
tions, we 
an assume (as

in [9,13,64℄) that the fun
tions that we 
onsider are 1-periodi
. To represent su
h fun
tions, we


an use an orthonormal basis of wavelets of the spa
e of the 1-periodi
 fun
tions of L2([0, 1]).

For that, we take a mother wavelet ψ ∈ S(R) (as done in [83℄) and we write

ψj,k(·) :=
∑

l∈Z

ψ(2j(· − l)− k), j ∈ N0, k ∈
{
0, . . . , 2j − 1

}
.

We know that the 1-periodi
 fun
tions 2j/2ψj,k, j ∈ N0, k ∈ {0, . . . , 2j − 1}, together with

the 
onstant fun
tion 1 form an orthonormal basis of the spa
e of the 1-periodi
 fun
tions of

L2([0, 1]) (see [33,88,92℄ for more details). If f is su
h a fun
tion, we have

f = c+

+∞∑

j=0

2j−1∑

k=0

cj,kψj,k

in L2([0, 1]) where c :=
∫ 1
0 f(x) dx and

cj,k := 2j
∫ 1

0
f(x)ψj,k(x) dx, j ∈ N0, k ∈

{
0, . . . , 2j − 1

}
.

In 
omparison with Chapter 5, the index k does not vary in Z, but in {0, . . . , 2j − 1} for ea
h

�xed s
ale j ∈ N0. We are then interested in sequen
es with a 
ouple of indi
es (j, k) where

j ∈ N0 and k ∈ {0, . . . , 2j − 1}.
Let us denote

Λ :=
⋃

j∈N0

{(j, k) : k ∈ {0, . . . , 2j − 1}}

and Ω := CΛ
. The elements of a sequen
e ~c ∈ Ω are still 
alled wavelet 
oe�
ients (of ~c ), even

if we are no more in the 
ontext of fun
tions. As mentioned in the introdu
tion of this 
hapter,

Sν or Lν 
an be seen as fun
tion or sequen
e spa
es and thus, there is no problem with this

abuse of language.

For j ∈ N0 and k ∈ {0, . . . , 2j − 1}, we use the notation λ(j, k), or simply λ if there is no

ambiguity, to refer to the dyadi
 interval

λ(j, k) :=
{
x ∈ R : 2jx− k ∈ [0, 1)

}
=

[
k

2j
,
k + 1

2j

)
.

For j ∈ N0, Λj represents the set of all dyadi
 intervals of [0, 1) of length 2−j . In the following,

we will use the two equivalent notations cj,k and cλ for (j, k) ∈ Λ to denote the elements of ~c ∈ Ω

(indeed, for any (j, k) ∈ Λ 
orresponds a unique dyadi
 interval of [0, 1) and re
ipro
ally).

De�nition 7.1.1. The wavelet leaders of ~c ∈ Ω are the quantities

dλ := sup
λ′⊂λ

|cλ′ |, λ ∈ Λj , j ∈ N0 .

With this de�nition, it may happen that dλ = +∞. However, in Se
tion 7.3, we will see that

all the wavelet leaders of a sequen
e of Lν are �nite. For the wavelet leaders of ~c, we will also

use the two equivalent notations dλ and dj,k for (j, k) ∈ Λ.
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7.2 Wavelet Pro�le and Spa
e Sν

7.2.1 De�nitions

Let us re
all the notions of wavelet pro�le and spa
e Sν (see [8,9,42,64℄).

De�nition 7.2.1. The wavelet pro�le of a sequen
e ~c ∈ Ω is the fun
tion ν~c de�ned by

ν~c(α) := lim
ε→0+

(
lim sup
j→+∞

(
log(#Ej(1, α + ε)(~c ))

log(2j)

))
, α ∈ R,

where

Ej(C,α)(~c ) :=
{
k ∈ {0, . . . , 2j − 1} : |cj,k| ≥ C2−αj

}

for j ∈ N0, C > 0 and α ∈ R.

This de�nition formalizes the idea that at large s
ales j, there are about 2ν~c(α)j wavelet


oe�
ients larger in modulus than 2−αj (with the 
onvention 2−∞ := 0). By 
onstru
tion, for

~c ∈ Ω, ν~c is non-de
reasing, right-
ontinuous and with values in {−∞} ∪ [0, 1].

Before giving the de�nition of spa
e Sν , we need the notion of admissible pro�le.

De�nition 7.2.2. An admissible pro�le is a non-de
reasing and right-
ontinuous fun
tion ν

with values in {−∞} ∪ [0, 1] su
h that

αmin := inf {α ∈ R : ν(α) ≥ 0} ∈ R .

De�nition 7.2.3. Given an admissible pro�le ν, a sequen
e ~c ∈ Ω belongs to Sν if

ν~c(α) ≤ ν(α)

for all α ∈ R.

Equivalently, ~c belongs to Sν if and only if for every α ∈ R, ε > 0 and C > 0, there exists

J ∈ N0 su
h that

#Ej(C,α)(~c ) ≤ 2(ν(α)+ε)j

for all j ≥ J . When ν(α) = −∞, we use the 
onvention 2−∞j := 0 for all j ∈ N0. Heuristi
ally,

a sequen
e ~c of Ω belongs to Sν if at ea
h large s
ale j, the number of k su
h that |cj,k| ≥ 2−αj

is of order smaller than 2ν(α)j . This spa
e is a ve
tor spa
e (see Se
tion 2 in [8℄).

Some examples of Sν spa
es for parti
ular admissible pro�le ν are given in [42℄.

7.2.2 Basi
 Results

In this subse
tion, we summarize the topologi
al properties of Sν established in [8℄. This

will permit to 
ompare them with the ones of Lν studied in the next 
hapter.

Theorem 7.2.4. There exists a unique metrizable topology that is stronger than the topology

of the pointwise 
onvergen
e and that makes Sν a 
omplete topologi
al ve
tor spa
e. This

topology is separable.
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More pre
isely, in order to de�ne a 
omplete metrizable topology on Sν , auxiliary spa
es

were introdu
ed. For any α ∈ R and any β ∈ {−∞} ∪ [0,+∞), the spa
e A(α, β) is de�ned by

A(α, β) :=
{
~c ∈ Ω : ∃C,C ′ ≥ 0 su
h that #Ej(C,α)(~c ) ≤ C ′2βj ∀j ∈ N0

}
.

This spa
e is endowed with the distan
e

δα,β(~c,~c
′) := inf

{
C + C ′ : C,C ′ ≥ 0 and #Ej(C,α)(~c − ~c ′) ≤ C ′2βj ∀j ∈ N0

}

for ~c,~c ′ ∈ A(α, β). Let us remark that if β = −∞, then A(α,−∞) is the spa
e cα, i.e. the

spa
e of sequen
es ~c ∈ Ω su
h that the sequen
e (2αjcj,k)(j,k)∈Λ is bounded. Let us note that

c0 = ℓ∞(Λ). Moreover, (A(α,−∞), δα,−∞) is the topologi
al normed spa
e (cα, ‖ · ‖cα) where

‖~c ‖cα := sup
(j,k)∈Λ

2αj |cj,k|, ~c ∈ cα.

If β ≥ 1, then A(α, β) = Ω. Moreover, if β > 1, the topology de�ned by the distan
e δα,β is

equivalent to the topology of the pointwise 
onvergen
e.

Proposition 7.2.5. For any sequen
e (αn)n∈N dense in R and any sequen
e (εm)m∈N of stri
tly

positive numbers de
reasing to 0, we have

Sν =
⋂

m∈N

⋂

n∈N

A(αn, ν(αn) + εm).

The topology of Sν is de�ned as the proje
tive limit topology, i.e. the 
oarsest topology that

makes ea
h in
lusion Sν ⊂ A(αn, ν(αn) + εm) 
ontinuous. This topology is equivalent to the

topology given by the distan
e

δ :=
+∞∑

m=1

+∞∑

n=1

2−(m+n) δαn,ν(αn)+εm

1 + δαn,ν(αn)+εm

(see Se
tion 5 in [8℄).

Let us re
all the 
hara
terization of the 
ompa
t sets of Sν (see Se
tion 6 in [8℄). For

m,n ∈ N, let Cm,n and C ′
m,n be positive or null 
onstants and let us de�ne

Km,n :=
{
~c ∈ Ω : #{k ∈ {0, . . . , 2j − 1} : |cj,k| > Cm,n 2

−αnj} ≤ C ′
m,n 2

(ν(αn)+εm)j ∀j ∈ N0

}

(taking the usual sequen
es of Proposition 7.2.5). We write

K :=
⋂

m∈N

⋂

n∈N

Km,n.

Proposition 7.2.6. A set is a 
ompa
t subset of (Sν , δ) if and only if it is 
losed in (Sν , δ) and
in
luded in some K.

7.3 Leader Pro�le and Spa
e Lν

7.3.1 De�nitions

Let us now de�ne the notions of leader pro�le of a sequen
e and spa
e Lν (see �rstly [14℄

and se
ondly [13℄ whi
h gives the de�nitions of leader pro�le and spa
e Lν in a more general


ontext). In fa
t, there are just the notions of wavelet pro�le and spa
e Sν where wavelet


oe�
ients are repla
ed by wavelet leaders.
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De�nition 7.3.1. The leader pro�le of ~c ∈ Ω is the fun
tion ν̃~c de�ned by

ν̃~c(α) := lim
ε→0+

(
lim sup
j→+∞

(
log(#Ẽj(1, α + ε)(~c ))

log(2j)

))
, α ∈ R,

where

Ẽj(C,α)(~c ) :=
{
k ∈ {0, . . . , 2j − 1} : dj,k ≥ C2−αj

}

for j ∈ N0, C > 0 and α ∈ R.

This de�nition formalizes the idea that at large s
ales j, there are about 2ν̃~c(α)j wavelet

leaders larger than 2−αj .

De�nition 7.3.2. Given an admissible pro�le ν, Lν is the spa
e of sequen
es ~c ∈ Ω su
h that

ν̃~c(α) ≤ ν(α)

for all α ∈ R.

Just as in the 
ase of Sν spa
es, we get the following des
ription of Lν (the proof is a simple

adaptation of the proof of Lemma 2.3 in [8℄).

Proposition 7.3.3. Let ν be an admissible pro�le. A sequen
e ~c ∈ Ω belongs to Lν if and only

if for every α ∈ R, ε > 0 and C > 0, there exists J ∈ N0 su
h that

#Ẽj(C,α)(~c ) ≤ 2(ν(α)+ε)j (7.1)

for all j ≥ J .

Proof. Let ~c ∈ Lν and let α ∈ R, η > 0 and C > 0. By de�nition of ν̃~c, there exists ε > 0 su
h

that

inf
J∈N0

sup
j≥J

log(#Ẽj(1, α + ε)(~c ))

log(2j)
≤ ν(α)

and then, there exists J ∈ N0 su
h that

log(#Ẽj(1, α + ε)(~c ))

log(2j)
≤ ν(α) + η.

and that 2−εj ≤ C for all j ≥ J . Thus, for j ≥ J , we have

#Ẽj(C,α)(~c ) ≤ #Ẽj(1, α + ε)(~c ) ≤ 2(ν(α)+η)j .

Re
ipro
ally, let ~c ∈ Ω be su
h that ~c satis�es Inequality (7.1). Let α ∈ R and ε > 0. By

hypothesis, there exists J ∈ N0 su
h that

#Ẽj(1, α + ε)(~c ) ≤ 2(ν(α+ε)+ε)j

for all j ≥ J . Then, we dire
tly obtain

sup
j≥J

log(#Ẽj(1, α + ε)(~c ))

log(2j)
≤ ν(α+ ε) + ε.

Taking the in�mum on J ∈ N0 and then the limit as ε→ 0+, we have the 
on
lusion thanks to

the right-
ontinuity of ν. �
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7.3.2 First Properties

Let us begin by showing that Lν is a ve
tor spa
e. The proof is similar to the one for Sν
(see [64℄).

Proposition 7.3.4. Given an admissible pro�le ν, Lν is a ve
tor spa
e.

Proof. It is evident that

~0 ∈ Lν . Let ~c,~c ′ ∈ Lν and θ ∈ C \{0}. To have the 
on
lusion, let us

show that ~c+ ~c ′ ∈ Lν and θ~c ∈ Lν . Let us �x α ∈ R, ε > 0 and C > 0.

On the one hand, by hypothesis and by Proposition 7.3.3, there exists J ∈ N0 su
h that

#

{
k ∈ {0, . . . , 2j − 1} : dj,k ≤

C

|θ| 2
−αj

}
≤ 2(ν(α)+ε)j

and then

#

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|θcλ′ | ≤ C 2−αj

}
≤ 2(ν(α)+ε)j

for all j ≥ J . Thus θ~c ∈ Lν .
On the other hand, by hypothesis and by Proposition 7.3.3 again, there exists J ∈ N0 su
h

that εj/2 ≥ 1,

#

{
k ∈ {0, . . . , 2j − 1} : dj,k ≤

C

2
2−αj

}
≤ 2(ν(α)+

ε
2
)j

and

#

{
k ∈ {0, . . . , 2j − 1} : d′j,k ≤

C

2
2−αj

}
≤ 2(ν(α)+

ε
2
)j

for all j ≥ J . Sin
e

sup
λ′⊂λ

|cλ′ + c′λ′ | ≥ C2−αj ⇒
[
sup
λ′⊂λ

|cλ′ | ≥
C

2
2−αj or sup

λ′⊂λ
|c′λ′ | ≥

C

2
2−αj

]
,

we have

#

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|cλ′ + c′λ′ | ≥ C 2−αj

}

≤ #Ẽj

(
C

2
, α

)
(~c ) + #Ẽj

(
C

2
, α

)
(~c ′)

≤ 2 . 2(ν(α)+
ε
2
)j

≤ 2(ν(α)+ε)j

for all j ≥ J . Thus, ~c+ ~c ′ ∈ Lν . �

Contrary to the spa
e Sν , a sequen
e of Lν is automati
ally bounded. This is the obje
t of

the following result. Consequently, if a sequen
e belongs to Lν , its wavelet leaders are �nite.

Proposition 7.3.5. Given an admissible pro�le ν, we have Lν ⊂ c0.

Proof. Let ~c ∈ Lν and let α < αmin. By de�nition of αmin and by Proposition 7.3.3, there

exists J ∈ N0 su
h that dj,k < 2−αj for all j ≥ J and k ∈ {0, . . . , 2j − 1}. Moreover, there
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exists C ′ > 0 su
h that 2αjdj,k ≤ C ′
for all j ∈ {0, . . . , J − 1} and k ∈ {0, . . . , 2j − 1}. Setting

C := max{C ′, 1}, we obtain dj,k ≤ C2−αj for all (j, k) ∈ Λ. In parti
ular,

d0,0 = sup
(j,k)∈Λ

|cj,k| ≤ C

and thus, ~c ∈ c0. �

Remark 7.3.6. In fa
t, we 
an assume that αmin ≥ 0 in the de�nition of admissible pro�le

(see De�nition 7.2.2) to 
onsider Lν spa
es. Let us assume that αmin < 0 and let us de�ne the

admissible pro�le ν† as follows:

ν†(α) :=

{
ν(α) if α ≥ 0

−∞ if α < 0
.

We dire
tly have Lν† ⊂ Lν be
ause ν† ≤ ν on R. For the other in
lusion, let ~c ∈ Lν . By


onstru
tion, we have ν† = ν on (−∞, αmin) ∪ [0,+∞). Let α ∈ [αmin, 0), ε > 0 and C > 0. By

Proposition 7.3.3, there exists J ∈ N0 su
h that

#Ẽj(C,α)(~c ) ≤ 2(ν(α)+ε)j

for all j ≥ J . Sin
e ~c ∈ c0 by Proposition 7.3.5, there exists C ′ > 0 su
h that dj,k ≤ C ′
for all

(j, k) ∈ Λ. Moreover, be
ause α < 0, there exists J ′ ≥ J su
h that 2−αjC > C ′
for all j ≥ J ′

.

Consequently, #Ẽj(C,α)(~c ) = 0 for all j ≥ J ′
and ~c ∈ Lν†. Hen
e Lν† = Lν .

Therefore, from now on, we will always assume that ν is an admissible pro�le with αmin ≥ 0.

7.3.3 Examples and Comparison of Spa
es Lν and Sν

Let us now 
ompare the spa
es Lν and Sν and let us give some examples for parti
ular

admissible pro�le ν. From the de�nition of the wavelet leaders, it is dire
t to see that ν~c ≤ ν̃~c
for any sequen
e ~c ∈ Ω sin
e |cj,k| ≤ dj,k for every (j, k) ∈ Λ. Therefore, given an admissible

pro�le ν, we have

Lν ⊂ Sν . (7.2)

Here is an easy example where the in
lusion is stri
t. Let us 
onsider the admissible pro�le ν

de�ned by

ν(α) :=

{
1 if α ≥ 0

−∞ if α < 0
(7.3)

and let us show that Lν = c0. We know that Lν ⊂ c0 (see Proposition 7.3.5). For the other

in
lusion, let ~c ∈ c0 and let α ∈ R, ε > 0 and C > 0. If α ≥ 0, we dire
tly have

#Ẽj(C,α)(~c ) ≤ 2j ≤ 2j(ν(α)+ε)

for all j ∈ N0. Let us now assume that α < 0. By hypothesis, there exists C ′ > 0 su
h that

dj,k ≤ C ′
for all (j, k) ∈ Λ. Moreover, there exists J ∈ N0 su
h that C2−αj > C ′

and then

#{k ∈ {0, . . . , 2j − 1} : dj,k ≥ C2−αj} = 0 for all j ≥ J . By Proposition 7.3.3, ~c ∈ Lν .
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We know that Sν =
⋂
ε>0 c

−ε
(see [42℄). In this 
ase, Sν is not in
luded in Lν . Indeed, on

the one hand, the sequen
e ~c ∈ Ω de�ned by

cj,k :=

{
j if k = 0

0 if k ∈ {1, . . . , 2j − 1} (7.4)

for all s
ale j ∈ N0, is not bounded and does not belong to Lν . On the other hand, it belongs

to c−ε for all ε > 0 be
ause j2−εj tends to 0 for j → +∞.

In the previous example, the admissible pro�le is su
h that αmin = 0. In fa
t, in this 
ase,

the in
lusion Lν ⊂ Sν is always stri
t, as shown in the next proposition.

Proposition 7.3.7. If ν is an admissible pro�le su
h that αmin = 0, then Lν is stri
tly in
luded

in Sν .

Proof. Sin
e Lν is in
luded in c0, it su�
es to �nd an element of Sν whi
h does not belong

to c0. Su
h an example is given by the sequen
e ~c ∈ Ω de�ned in Expression (7.4). We know

that ~c /∈ c0 and let us show that ~c ∈ Sν . Let α ∈ R, ε > 0 and C > 0. If α < 0, there exists

J ∈ N0 su
h that j < C2−αj and then #Ej(C,α)(~c ) = 0 for all j ≥ J . If α ≥ 0, we have

#Ej(C,α)(~c ) ≤ 1 ≤ 2(ν(α)+ε)j for all j ∈ N0. Hen
e the 
on
lusion. �

Let us study what happens in the 
ase αmin > 0. Let us begin with an example. Let us


onsider the admissible pro�le ν de�ned by

ν(α) :=

{
1 if α ≥ a

−∞ if α < a

where a > 0. We know that Sν =
⋂
ε>0 c

a−ε
(see [42℄) and let us show that Lν = Sν . Using

In
lusion (7.2), it su�
es to prove that

⋂
ε>0 c

a−ε ⊂ Lν . Let ~c ∈ ca−ε for all ε > 0 and let α ∈ R,

ε > 0 and C > 0. If α ≥ a, we dire
tly have

#Ẽj(C,α)(~c ) ≤ 2j ≤ 2j(ν(α)+ε)

for all j ∈ N0. Let us now assume that α < a. There exists δ > 0 su
h that a− δ > 0 and that

α− a+ δ < 0. Sin
e ~c ∈ ca−δ, there exists C ′ > 0 su
h that 2(a−δ)j |cj,k| ≤ C ′
for all (j, k) ∈ Λ.

Then, for j′ ≥ j and k′ ∈ {0, . . . , 2j′ − 1}, we have

|cj′,k′ | ≤ C ′ 2−(a−δ)j′ ≤ C ′ 2(α−a+δ)j 2−αj .

Sin
e there exists J ∈ N0 su
h that C ′2(α−a+δ)j ≤ C/2 for all j ≥ J , we so obtain

dj,k < C 2−αj

for all j ≥ J and k ∈ {0, . . . , 2j − 1}. Thus, #Ẽj(C,α)(~c ) = 0 for j ≥ J . Consequently, ~c ∈ Lν .
The next result gives a ne
essary and su�
ient 
ondition on the admissible pro�le ν to have

the equality of the spa
es Lν and Sν (see [14℄).

Theorem 7.3.8. Let ν be an admissible pro�le su
h that αmin > 0. Then, Lν = Sν if and only

if

ν(α) = α sup
α′∈(0,α]

ν(α′)

α′
(7.5)

for all α ∈ [αmin, infα′≥αmin
α′

ν(α′) ].
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In fa
t, Condition (7.5) means that the admissible pro�le ν is with in
reasing-visibility on

the given interval (see [89℄). It is indeed the 
ase in the previous example.

Without going into the details, let us give a last example. If ν is an admissible pro�le whi
h

is 
on
ave, Lν 
an be des
ribed as a 
ountable interse
tion of os
illation spa
es (see [14℄).

In the next 
hapter, we will endow Lν spa
es with a natural topology, in a similar way as

Sν spa
es (see [8℄). We will also study some 
lassi
al topologi
al properties like separability or


ompa
t subsets.

To �nish this 
hapter, let us mention that, if we 
onsider Lν as a fun
tion spa
e (see the

beginning of this 
hapter), the topology that we will de�ne on Lν is a �good� topology, in the

sense that it is also independent of the 
hosen orthonormal basis of wavelets (see [14℄). This will

allow to 
onsider the spa
e Lν as either a topologi
al fun
tion spa
e or a topologi
al sequen
e

spa
e.





Chapter 8

Topology on Lν
Spa
es

In [8℄, Sν spa
es are endowed with a natural topology. Some topologi
al properties have

been also studied (see also [5�7℄ for more information). The main elements have been re
alled

in Se
tion 7.2.

In this 
hapter, we adapt most of results of [8℄ in the 
ase of Lν spa
es. More pre
isely, we

�rst de�ne a topology on Lν spa
es. To do so, we introdu
e auxiliary spa
es. We then study

the 
ompa
t subsets and the separability of Lν . We �nish by the 
omparison of the topologies

of the spa
es Sν and Lν . The results presented in this 
hapter are from [14℄.

8.1 Auxiliary Spa
es

As for the 
ase of Sν spa
es, a useful des
ription 
an also be obtained by the introdu
tion

of auxiliary spa
es. These new spa
es will be used to de�ne a topology on Lν .

De�nition 8.1.1. Let α ∈ R and β ∈ {−∞} ∪ [0,+∞). A sequen
e ~c ∈ Ω belongs to the

auxiliary spa
e Ã(α, β) if there exist C,C ′ ≥ 0 su
h that

#Ẽj(C,α)(~c ) ≤ C ′2βj

for all j ∈ N0.

Let us �rst note that the auxiliary spa
es are ve
tor spa
es. To prove it, it su�
es to adapt

the proof of Proposition 7.3.4. For some parti
ular β, we 
an identify the spa
e Ã(α, β). This

is the obje
t of the following remark.

Remark 8.1.2. (a) If β = −∞, then Ã(α, β) is the set of the sequen
es ~c ∈ Ω su
h that

(2αjdj,k)(j,k)∈Λ is bounded. In fa
t, we even have

Ã(α,−∞) =

{
cα if α > 0

c0 if α ≤ 0
.

Indeed, on the one hand, if α > 0, it is 
lear that Ã(α,−∞) ⊂ cα be
ause |cj,k| ≤ dj,k for

all (j, k) ∈ Λ and all ~c ∈ Ω. Moreover, if there exists C > 0 su
h that 2αj |cj,k| ≤ C for all

(j, k) ∈ Λ, we have

|cj′,k′ | ≤ C2−αj
′ ≤ C2−αj

for all j′ ≥ j and k′ ∈ {0, . . . , 2j′ − 1} and then 2αjdj,k ≤ C for all (j, k) ∈ Λ. So,

cα ⊂ Ã(α,−∞). On the other hand, if α ≤ 0, we have Ã(α,−∞) ⊂ c0 be
ause |cj,k| ≤ 20d0,0
for all (j, k) ∈ Λ and ~c ∈ Ω. Moreover, we have the other in
lusion be
ause 2αjdj,k ≤ d0,0
for all (j, k) ∈ Λ and ~c ∈ Ω.

99
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(b) If β ≥ 1, then Ã(α, β) = Ω sin
e, for all ~c ∈ Ω and all j ∈ N0, α ∈ R and C > 0, we have

#Ẽj(C,α)(~c ) ≤ 2j ≤ 2βj .

As for Sν spa
es, we have the following result whi
h allows to des
ribe Lν spa
es as a


ountable interse
tion (of auxiliary spa
es). This proof is a simple adaptation of the proof of

Theorem 5.4 in [8℄.

Proposition 8.1.3. For any dense sequen
e (αn)n∈N in R and any sequen
e (εm)m∈N of stri
tly

positive numbers whi
h 
onverges to 0, we have

Lν =
⋂

ε>0

⋂

α∈R

Ã(α, ν(α) + ε) =
⋂

m∈N

⋂

n∈N

Ã(αn, ν(αn) + εm).

Proof. Let us show the following in
lusions:

Lν ⊂
⋂

ε>0

⋂

α∈R

Ã(α, ν(α) + ε) ⊂
⋂

m∈N

⋂

n∈N

Ã(αn, ν(αn) + εm) ⊂ Lν .

1. For the �rst in
lusion, let ~c ∈ Lν , α ∈ R and ε > 0. By Proposition 7.3.3, there exists

J ∈ N0 su
h that

#Ẽj(1, α)(~c ) ≤ 2(ν(α)+ε)j

for all j ≥ J . Moreover, there exists C ′ > 0 su
h that 2αjdj,k < C ′
for all j ∈ {0, . . . , J − 1} and

k ∈ {0, . . . , 2j − 1}. Then,
#Ẽj(C

′, α)(~c ) = 0 ≤ 2(ν(α)+ε)j

for all j ∈ {0, . . . , J − 1}. Consequently, setting C := max{C ′, 1}, we have

#Ẽj(C,α)(~c ) ≤ 2(ν(α)+ε)j

for all j ∈ N0 and thus, ~c ∈ Ã(α, ν(α) + ε). We so have the �rst in
lusion.

2. The se
ond in
lusion is evident.

3. For the third in
lusion, let ~c ∈ Ã(αn, ν(αn)+εm) for all m,n ∈ N. Let us �x α ∈ R, ε > 0

and C > 0. Let us 
onsider the two following 
ases.

(a) If ν(α) = −∞, then there exists n ∈ N su
h that ν(αn) = −∞ and that αn > α by

hypothesis. Then, ~c ∈ Ã(αn,−∞) and there exists C ′ > 0 su
h that dj,k ≤ C ′2−αnj
for all

(j, k) ∈ Λ. Moreover, there exists J ∈ N0 su
h that C ′2(α−αn)j < C for all j ≥ J , and so

dj,k < C2−αj for all j ≥ J and k ∈ {0, . . . , 2j − 1}. Thus, for j ≥ J , we have

#Ẽj(C,α)(~c ) = 0 ≤ 2(ν(α)+ε)j .

(b) If ν(α) ∈ [0, 1], there exist m,n ∈ N su
h that

αn > α, 3εm ≤ ε and ν(α) ≤ ν(αn) ≤ ν(α) + εm

by hypothesis. Sin
e ~c ∈ Ã(αn, ν(αn) + εm), there exist C0, C
′
0 ≥ 0 su
h that

#Ẽj(C0, αn) ≤ C ′
02

(ν(αn)+εm)j

for all j ∈ N0. Moreover, there exists J ∈ N0 su
h that C02
−αnj ≤ C2−αj and that C ′

0 ≤ 2jε/3

for all j ≥ J . Consequently, for j ≥ J , we have

#Ẽj(C,α)(~c ) ≤ #Ẽj(C0, αn)(~c ) ≤ C ′
02

(ν(αn)+εm)j ≤ 2j
ε
3 2j(ν(α)+

2ε
3
) ≤ 2j(ν(α)+ε).

Thus, ~c ∈ Lν by Proposition 7.3.3. Hen
e the 
on
lusion.

�
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Let us now de�ne a distan
e on these auxiliary spa
es. The proof is adapted from the proof

of Lemma 3.3 in [8℄ to the 
ase of wavelet leaders.

De�nition 8.1.4. Let α ∈ R and β ∈ {−∞} ∪ [0,+∞). For ~c,~c ′ ∈ Ã(α, β), we write

δ̃α,β(~c,~c
′) := inf

{
C + C ′ : C,C ′ ≥ 0 and #Ẽj(C,α)(~c − ~c ′) ≤ C ′2βj ∀j ∈ N0

}
.

Lemma 8.1.5. For α ∈ R and β ∈ {−∞} ∪ [0,+∞), δ̃α,β is a distan
e on Ã(α, β) whi
h is

invariant by translation and whi
h satis�es

δ̃α,β(θ~c,~0) ≤ max{1, |θ|} δ̃α,β(~c,~0) (8.1)

for all ~c ∈ Ã(α, β) and θ ∈ C.

Proof. 1. By de�nition, it is 
lear that δ̃α,β is positive, symmetri
 and invariant by translation.

2. Let us show that if δ̃α,β(~c,~c
′) = 0 for ~c,~c ′ ∈ Ã(α, β), then ~c = ~c ′. Thanks to the

translation invarian
e, it su�
es to prove it for ~c ′ = ~0. Let ~c ∈ Ã(α, β) be su
h that δ̃α,β(~c,~0) =

0. By hypothesis, for all η > 0, there exist C,C ′ ≥ 0 su
h that C + C ′ ≤ η and that

#{k ∈ {0, . . . , 2j − 1} : dj,k ≥ C2−αj} ≤ C ′2βj

for all j ∈ N0. Let us take j0 ∈ N0, ε ∈ (0, 1) and η := min{ε2−βj0 , ε2αj0}. Then, we have

#{k ∈ {0, . . . , 2j − 1} : dj0,k ≥ C2−αj0} ≤ C ′2βj0 ≤ ε < 1

and then dj0,k < C2−αj0 ≤ ε for all k ∈ {0, . . . , 2j0 − 1}. As ε and j0 are 
hosen arbitrarily, we

obtain dj0,k = 0 for all (j0, k) ∈ Λ. Hen
e ~c = ~0.

3. Let us prove the triangle inequality. With the translation invarian
e, it su�
es to show

that

δ̃α,β(~c− ~c ′,~0) ≤ δ̃α,β(~c,~0) + δ̃α,β(~c
′,~0)

for all ~c,~c ′ ∈ Ã(α, β). By de�nition of δ̃α,β , for all η > 0, there exist C1, C
′
1, C2, C

′
2 ≥ 0 su
h

that C1 + C ′
1 ≤ η/2 + δ̃α,β(~c,~0), C2 + C ′

2 ≤ η/2 + δ̃α,β(~c
′,~0),

#Ẽj(C1, α)(~c ) ≤ C ′
12
βj

and #Ẽj(C2, α)(~c
′) ≤ C ′

22
βj

for all j ∈ N0.

Let us �x j ∈ N0. If k /∈ Ẽj(C1, α)(~c ) ∪ Ẽj(C2, α)(~c
′), we have

sup
λ′⊂λ(j,k)

|cλ′ − c′λ′ | ≤ dj,k + d′j,k < (C1 + C2)2
−αj ,

that means that k /∈ Ẽj(C1 + C2, α)(~c − ~c ′). We so obtain

Ẽj(C1 + C2, α)(~c − ~c ′) ⊂
(
Ẽj(C1, α)(~c ) ∪ Ẽj(C2, α)(~c

′)
)
.

Then, we have

#Ẽj(C1 + C2, α)(~c − ~c ′) ≤ #Ẽj(C1, α)(~c ) + #Ẽj(C2, α)(~c
′) ≤ (C ′

1 + C ′
2)2

βj .
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Consequently, we su

essively have

δ̃α,β(~c− ~c ′,~0) ≤ (C1 + C2) + (C ′
1 +C ′

2) ≤ η + δ̃α,β(~c,~0) + δ̃α,β(~c
′,~0)

and the 
on
lusion follows sin
e η is 
hosen arbitrarily.

With these three points, we 
an 
on
lude that δ̃α,β is a distan
e on Ã(α, β).

4. To �nish, let us show Inequality (8.1). Let ~c ∈ Ã(α, β) and θ ∈ C. If |θ| ≤ 1, we dire
tly

have δ̃α,β(θ~c,~0) ≤ δ̃α,β(~c,~0) be
ause

#

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|θcλ′ | ≥ C2−αj

}
≤ #

{
k ∈ {0, . . . , 2j − 1} : dj,k ≥ C2−αj

}

for all j ∈ N0 and all C > 0. If |θ| > 1, we have δ̃α,β(θ~c,~0) ≤ |θ|δ̃α,β(~c,~0) be
ause

{
k ∈ {0, . . . , 2j − 1} : dj,k ≥ C2−αj

}
=

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|θcλ′ | ≥ C|θ|2−αj

}

for all j ∈ N0 and C > 0. �

If β = −∞, then (Ã(α, β), δ̃α,β) is the topologi
al normed spa
e (cα, ‖ · ‖cα) if α > 0 and

(c0, ‖ · ‖c0) if α ≤ 0. Moreover, if β ≥ 1, we have δ̃α,β ≤ 1. In the following proposition, we

also get more information about the topology in the 
ase β > 1. The proofs of some points are

similar to the ones of Proposition 3.5 in [8℄.

For auxiliary spa
es of Sν , it is known that the topology de�ned by δα,β is stronger than the

pointwise topology; these topologies are equivalent when β > 1. In the Lν 
ase, the topology

de�ned by δ̃α,β is also stronger than the pointwise topology. In fa
t, it is even stronger than the

uniform topology, i.e. the topology de�ned by the norm of c0. The equivalen
e with uniform

topology happens if β > 1.

Proposition 8.1.6. Let α ∈ R and β ∈ {−∞} ∪ [0,+∞[.

(a) The addition is 
ontinuous on (Ã(α, β), δ̃α,β).

(b) The spa
e (Ã(α, β), δ̃α,β) has a stronger topology than the uniform topology. Moreover,

every Cau
hy sequen
e in (Ã(α, β), δ̃α,β) is also a uniform Cau
hy sequen
e.

(
) If β > 1, the topology de�ned by the distan
e δ̃α,β is equivalent to the uniform topology.

(d) (i) If B is a bounded set of (Ã(α, β), δ̃α,β), then there exists r > 0 su
h that

B ⊂
{
~c ∈ Ω : #{k ∈ {0, . . . , 2j − 1} : dj,k ≥ r 2−αj} ≤ r 2βj ∀j ∈ N0

}

⊂
{
~c ∈ Ω : #{k ∈ {0, . . . , 2j − 1} : dj,k > r 2−αj} ≤ r 2βj ∀j ∈ N0

}
.

(ii) Let r, r′ ≥ 0, α′ ≥ α and β′ ≤ β. The set

B :=
{
~c ∈ Ω : #{k ∈ {0, . . . , 2j − 1} : dj,k > r 2−α

′j} ≤ r′ 2β
′j ∀j ∈ N0

}

is a bounded set of (Ã(α, β), δ̃α,β). Moreover, B is 
losed for the uniform 
onvergen
e.

(e) The spa
e (Ã(α, β), δ̃α,β) is a 
omplete metri
 spa
e.
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Proof. (a) The �rst point is obvious using the triangle inequality with the distan
e δ̃α,β.

(b) Let (~c (m))m∈N be a sequen
e of elements of Ã(α, β) whi
h 
onverges to ~c in (Ã(α, β), δ̃α,β).

If β = −∞, it su�
es to observe that we have

sup
(j,k)∈Λ

|c(m)
j,k − cj,k| = 2α0 sup

λ′⊂λ(0,0)
|c(m)
λ′ − cλ′ | ≤ sup

(j,k)∈Λ
2αj sup

λ′⊂λ(j,k)
|c(m)
λ′ − cλ′ | = δ̃α,−∞(~c (m),~c )

for every m ∈ N. Let us 
onsider now the 
ase β ≥ 0. Let ε > 0 and η := min{1
2 , ε}. By

hypothesis, there exists M ∈ N su
h that

#

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(m)
λ′ − cλ′ | ≥ η2−αj

}
≤ η2βj

for all j ∈ N0 and m ≥M . Consequently, taking j = 0, we obtain for all m ≥M ,

sup
(j0,k0)∈Λ

|c(m)
j0,k0

− cj0,k0 | = sup
λ′⊂λ(0,0)

|c(m)
λ′ − cλ′ | < η ≤ ε.

The proof is similar for Cau
hy sequen
es.

(
) With the previous point, it only remains to show that the uniform topology is stronger

than the topology de�ned by the distan
e δ̃α,β (in the 
ase β > 1). Let (~c (m))m∈N be a sequen
e

of Ã(α, β) = Ω whi
h 
onverges uniformly to ~c and let ε > 0. There exists J ∈ N0 su
h that

2j ≤ ε2βj for every j ≥ J be
ause β > 1 and then we have

#

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(m)
λ′ − cλ′ | ≥ ε2−αj

}
≤ 2j ≤ ε2βj

for every j ≥ J and m ∈ N. Let us now �x j ∈ {0, . . . , J − 1}. Using the uniform 
onvergen
e,

there exists M ∈ N (whi
h only depends on ε) su
h that

sup
λ′⊂λ(j,k)

|c(m)
λ′ − cλ′ | < ε2−αj

for every k ∈ {0, . . . , 2j − 1} and m ≥M . So, for every m ≥M , we have

#

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(m)
λ′ − cλ′ | ≥ ε2−αj

}
= 0 ≤ ε2βj .

Consequently, we have δ̃α,β(~c
(m),~c ) ≤ 2ε for all m ≥ M and thus (~c (m))m∈N 
onverges to ~c in

(Ã(α, β), δ̃α,β).

(d)(i) The se
ond in
lusion is 
lear. Let us prove the �rst in
lusion. Sin
e B is a bounded set

in the metri
 spa
e (Ã(α, β), δ̃α,β), there exists C > 0 su
h that δ̃α,β(~x, ~y) < C for all ~x, ~y ∈ B.

Let ~x ∈ B be su
h that δ̃α,β(~x,~0) ≤ C. By the triangle inequality, we then have

δ̃α,β(~c,~0) ≤ δ̃α,β(~c, ~x) + δ̃α,β(~x,~0) < 2C

for all ~c ∈ B. Consequently, we obtain

B ⊂
{
~c ∈ Ω : #{k ∈ {0, . . . , 2j − 1} : dj,k ≥ C 2−αj} ≤ C 2βj ∀j ∈ N0

}
.
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(d)(ii) By de�nition and by hypothesis, it is 
lear that B ⊂ Ã(α, β). By the triangle inequal-

ity again, we have

δ̃α,β(~x, ~y) ≤ δ̃α,β(~x,~0) + δ̃α,β(~y,~0) ≤ 2(r + r′)

for all ~x, ~y ∈ B and then, B is bounded in (Ã(α, β), δ̃α,β). Let us now show that B is 
losed for

the uniform 
onvergen
e. Let (~c (m))m∈N be a sequen
e of B whi
h 
onverges uniformly to ~c and

let ε > 0. Then, there exists M ∈ N su
h that

sup
λ′⊂λ(0,0)

|c(m)
λ′ − cλ′ | < ε

for all m ≥M . For (j, k) ∈ Λ, we have

dj,k > r2−α
′j ⇒ d

(M)
j,k > r2−α

′j .

Otherwise, d
(M)
j,k ≤ r2−α

′j
and then, taking ε smaller if needed, we have

r2−α
′j < dj,k − ε ≤ sup

λ′⊂λ(j,k)
|c(M)
λ′ − cλ′ |+ d

(M)
j,k − ε ≤ r2−α

′j,

whi
h is absurd. So ~c ∈ B be
ause

#{k ∈ {0, . . . , 2j − 1} : dj,k > r2−α
′j} ≤ #{k ∈ {0, . . . , 2j − 1} : d

(M)
j,k > r2−α

′j} ≤ r′2β
′j

for all j ∈ N0.

(e) Sin
e (Ã(α, β), δ̃α,β) is a metri
 spa
e, it only remains to show that if (~c (m))m∈N is

a Cau
hy sequen
e in (Ã(α, β), δ̃α,β), it 
onverges in (Ã(α, β), δ̃α,β). From Item (b) of this

proposition, (~c (m))m∈N is also a uniform Cau
hy sequen
e and then it 
onverges uniformly to ~c.

By hypothesis, if η > 0, there exists M ∈ N su
h that

#

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(p)λ′ − c

(q)
λ′ | > η2−αj

}
≤ η2βj

for all j ∈ N0 and for all p, q ≥M . Then, ~c (q) belongs to the set

{
~a ∈ Ω : #

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(p)λ′ − aλ′ | > η2−αj

}
≤ η2βj ∀j ∈ N0

}

for all p, q ≥ M . As the previous set is 
losed for the uniform 
onvergen
e (it is similar to the

last part of the proof of Item (d) of this proposition), ~c also belongs to

{
~a ∈ Ω : #

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(p)λ′ − aλ′ | > η2−αj

}
≤ η2βj ∀j ∈ N0

}

for all p ≥M . Thus, ~c ∈ Ã(α, β) and δ̃α,β(~c
(p),~c ) ≤ 2η for all p ≥M . Hen
e the 
on
lusion. �

Remark 8.1.7. If β ∈ [0, 1] and α > 0, the s
alar multipli
ation

(θ,~c ) ∈ C×Ã(α, β) 7→ θ~c ∈ Ã(α, β)

is not 
ontinuous and 
onsequently, the spa
e (Ã(α, β), δ̃α,β) is not a topologi
al ve
tor spa
e.
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Indeed, let ~c be the sequen
e de�ned by

cj,k :=

{
j2−αj if k ∈ {0, . . . , ⌊2βj⌋ − 1}
0 if k ∈ {⌊2βj⌋, . . . , 2j − 1}

for j ∈ N0. From some s
ale, this sequen
e is stri
tly de
reasing. Moreover, for large s
ale j, we

have ⌊2β(j+1)⌋/2 ≤ ⌊2βj⌋, whi
h implies that we do not have non-zero 
oe�
ients in a dyadi


interval λ(j, k) with k ∈ {0, . . . , 2j − 1} where cj,k = 0. In other words, there exists J ∈ N0 su
h

that dj,k = cj,k for all j ≥ J and k ∈ {0, . . . , 2j − 1} and so,

#Ẽj(C,α)(~c ) ≤ ⌊2βj⌋ ≤ 2βj

for all j ≥ J . For j ∈ {0, . . . , J − 1}, we have

#Ẽj(C,α)(~c ) ≤ 2j ≤ 2βj 2(1−β)J .

Thus, setting C ′ := 2(1−β)J ≥ 1, we have

#Ẽj(C,α)(~c ) ≤ C ′ 2βj

for all j ∈ N0 and ~c ∈ Ã(α, β).

Let us now prove that the sequen
e (~c/m)m∈N does not 
onverge to

~0 in (Ã(α, β), δ̃α,β),

following the idea of Proposition 3.5 in [8℄. By 
ontradi
tion, let us assume that we have the


onvergen
e. Then, there exists M ≥ J su
h that

#

{
k ∈ {0, . . . , 2j − 1} :

1

m
dj,k ≥

1

2
2−αj

}
≤ 1

2
2βj

for all m ≥M and j ∈ N0. Taking j = m, we have

#

{
k ∈ {0, . . . , 2m − 1} :

1

m
cm,k ≥

1

2
2−αm

}
≤ 1

2
2βm

and then

⌊2βm⌋ ≤ 1

2
2βm

for all m ≥ M . Hen
e a 
ontradi
tion. If β = 0, it is 
lear. If β ∈ (0, 1], we a
tually have

m ≤ 1/β and we have the 
ontradi
tion if we assume that M is also stri
tly greater than 1/β.

This 
ounterexample also shows that the topology de�ned by δ̃α,β and the uniform topology

are not equivalent for su
h β and α.

Let us end this se
tion with some relations between auxiliary spa
es. The se
ond part is

useful to obtain the 
ontinuity of the s
alar multipli
ation in Lν .

Lemma 8.1.8. (a) If α ≥ α′
and β ≤ β′, then

Ã(α, β) ⊂ Ã(α′, β′) and δ̃α′,β′ ≤ δ̃α,β .

(b) Let α′ > α and β′ < β. If the sequen
e (θm)m∈N 
onverges to θ in C and if the sequen
e

(~c (m))m∈N of c0 
onverges to ~c in (Ã(α, β), δ̃α,β) with ~c ∈ Ã(α′, β′), then the sequen
e

(θm~c
(m))m∈N 
onverges to θ~c in (Ã(α, β), δ̃α,β).
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Proof. The �rst item is obvious. The se
ond one is similar to the one given for the Sν 
ase (see
Lemma 4.2 in [8℄). Sin
e the sequen
e (θm)m∈N 
onverges to θ in C, there exists D > 0 su
h

that |θm − θ| ≤ D for all m ∈ N. We have

θm~c
(m) − θ~c = (θm − θ)(~c (m) − ~c )− θ(~c (m) − ~c ) + (θm − θ)~c

and then

δ̃α,β(θm~c
(m), θ~c ) ≤ max{1,D} δ̃α,β(~c (m),~c ) + max{1, |θ|} δ̃α,β(~c (m),~c ) + δ̃α,β((θm − θ)~c,~0)

thanks to Lemma 8.1.5. The two �rst terms 
onverge to 0, using hypotheses and the �rst point

of this lemma. Let us now 
onsider the 
onvergen
e of the third term. Sin
e ~c ∈ Ã(α′, β′), there

exist C,C ′ ≥ 0 su
h that

#Ẽj(C,α
′)(~c ) ≤ C ′2β

′j

for all j ∈ N0. Let η > 0. Then, there exists J ∈ N0 su
h that DC2−j(α
′−α) ≤ η and

C ′2−j(β−β
′) ≤ η for all j ≥ J . Consequently, we have, for all j ≥ J and m ∈ N,

#
{
k ∈ {0, . . . , 2j − 1} : |θm − θ| dj,k ≥ η2−αj

}
≤ η2βj

be
ause |θm− θ| ≤ D for all m ∈ N. Sin
e the sequen
e (θm)m∈N 
onverges to θ and that ~c ∈ c0,

there exists M ∈ N su
h that

|θm − θ|dj,k < η2−αj

for all m ≥M , j ∈ {0, . . . , J − 1} and k ∈ {0, . . . , 2j − 1}. Hen
e δ̃α,β((θm − θ)~c,~0) ≤ 2η for all

m ≥M and we get the 
on
lusion. �

Remark 8.1.9. (a) The assumption that the sequen
es belong to c0 will not be restri
tive

be
ause we know that Lν ⊂ c0 (see Proposition 7.3.5).

(b) If β = β′ = −∞, this lemma remains true.

8.2 Topology on Lν

By Proposition 8.1.3, we know that Lν is a 
ountable interse
tion of auxiliary spa
es. As

in the 
ase of Sν spa
es, this des
ription allows to obtain a stru
ture of 
omplete metri
 spa
e

on Lν . Indeed, the idea is to use the following 
lassi
al result of fun
tional analysis (see for

example [72℄) to de�ne a topology on Lν .

Proposition 8.2.1. For m ∈ N, let Em be a spa
e endowed with the topology de�ned by the

distan
e dm. Let us set E :=
⋂
m∈NEm. On E, let us 
onsider the topology τ de�ned as follows:

for every e ∈ E, a basis of neighbourhoods of e is given by the family of sets

⋂

(m)

{f ∈ E : dm(e, f) ≤ rm}

where rm > 0 for every m ∈ N and (m) means that it is an interse
tion on a �nite number of

values of m. Then, this topology satis�es the following properties.

(a) For every m ∈ N, the identity i : (E, τ) → (Em, dm) is 
ontinuous and τ is the weakest

topology on E whi
h veri�es this property.
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(b) The topology τ is equivalent to the topology de�ned on E by the distan
e d given by

d(e, f) :=

+∞∑

m=1

2−m
dm(e, f)

1 + dm(e, f)
, e, f ∈ E.

(
) A sequen
e is a Cau
hy sequen
e in (E, τ) if and only if it is a Cau
hy sequen
e in (Em, dm)

for every m ∈ N.

(d) A sequen
e 
onverges to e in (E, τ) if and only if it 
onverges to e in (Em, dm) for every

m ∈ N.

Using some properties of the auxiliary spa
es (Ã(α, β), δ̃α,β) and Proposition 8.2.1, we 
an

de�ne a distan
e on the spa
es Lν and obtain some additional information on these spa
es. The

reasoning is an adaptation of Se
tion 5 in [8℄.

De�nition 8.2.2. Let α := (αn)n∈N be a dense sequen
e in R and ε := (εm)m∈N be a sequen
e

of (0,+∞) whi
h 
onverges to 0. We denote

δ̃α,ε :=
+∞∑

m=1

+∞∑

n=1

2−(m+n) δ̃αn,ν(αn)+εm

1 + δ̃αn,ν(αn)+εm

.

Proposition 8.2.3. Let α and ε be sequen
es 
hosen as above.

(a) The appli
ation δ̃α,ε is a distan
e on Lν .
(b) The topology de�ned by δ̃α,ε on Lν is the weakest topology su
h that, for every m,n ∈ N,

the identity i : Lν → Ã(αn, ν(αn) + εm) is 
ontinuous.

(
) A sequen
e in Lν is a Cau
hy sequen
e in (Lν , δ̃α,ε) if and only if, for every m,n ∈ N, it is

a Cau
hy sequen
e in (Ã(αn, ν(αn) + εm), δ̃αn,ν(αn)+εm).

(d) A sequen
e in Lν 
onverges in (Lν , δ̃α,ε) if and only if, for every m,n ∈ N, it 
onverges in

(Ã(αn, ν(αn) + εm), δ̃αn,ν(αn)+εm).

(e) The spa
e (Lν , δ̃α,ε) is a 
omplete topologi
al metri
 spa
e.

Proof. The four �rst items are simply 
onsequen
es of Proposition 8.2.1 and of some results


on
erning auxiliary spa
es (see Se
tion 8.1). Let us prove the last item.

It is 
lear that the addition is 
ontinuous in (Lν , δ̃) thanks to Item (a) of Proposition 8.1.6

and the se
ond item of this proposition. Let us show that the s
alar multipli
ation (θ,~c) ∈
C×Lν 7→ θ~c ∈ Lν is also 
ontinuous in (Lν , δ̃). Let (θl)l∈N be a sequen
e of C whi
h 
onverges

to θ and let (~c (l))l∈N be a sequen
e of Lν whi
h 
onverges to ~c in (Lν , δ̃). If (θl~c (l))l∈N 
onverges

to θ~c in (Ã(α, ν(α) + ε), δ̃α,ν(α)+ε) for all α ∈ R and all ε > 0, we have the 
on
lusion thanks to

Item (d) of this proposition. Let us �x α ∈ R and ε > 0. Then, there exist m,n ∈ N su
h that

εm < ε, αn > α and ν(αn) + εm < ν(α) + ε.

Using Item (d) of this proposition, the sequen
e (~c (l))l∈N 
onverges to ~c in (Ã(αn, ν(αn) +

εm), δ̃αn,ν(αn)+εm). By Proposition 8.1.3, ~c ∈ Ã(α, ν(α)+ε). Consequently, (θl~c
(l))l∈N 
onverges

to θ~c in (Ã(α, ν(α) + ε), δ̃α,ν(α)+ε) by Lemma 8.1.8. Thus, (Lν , δ̃α,ε) is a topologi
al metri


spa
e.

Moreover, (Lν , δ̃α,ε) is 
omplete thanks to Items (d) and (
) of this proposition and Item (e)

of Proposition 8.1.6. �
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In fa
t, all the distan
es δ̃α,ε where α and ε are sequen
es as in De�nition 8.2.2 de�ne the

same topology on Lν . We even have the following more general result.

Proposition 8.2.4. If δ̃1 and δ̃2 de�ne 
omplete topologies on Lν whi
h are stronger than the

pointwise topology, then these topologies are equivalent.

Proof. It is a dire
t 
onsequen
e of the 
losed graph theorem. �

With the two previous propositions, the 
hoi
e of sequen
es α and ε of De�nition 8.2.2 has

thus no importan
e for the topology de�ned on Lν from the distan
e δ̃α,ε. Therefore, in the

following, we write δ̃ this distan
e on Lν , independently of these α and ε.

Remark 8.2.5. Combining Proposition 8.2.3 (Item (d)) and Proposition 8.1.6 (Item (b)), the

spa
e (Lν , δ̃) has a stronger topology than the uniform topology. Moreover, the in
lusion Lν ⊂ c0

is 
ontinuous.

8.3 Compa
t Subsets of Lν

Let us 
ontinue with the 
hara
terization of 
ompa
t subsets of (Lν , δ̃). This 
hara
terization
will only holds if αmin > 0. It is parti
ularly useful to prove the 
onvergen
e of sequen
es in Lν .
For m,n ∈ N, let Cm,n and C ′

m,n be positive or null 
onstants and let us de�ne

K̃m,n :=
{
~c ∈ Ω : #{k ∈ {0, . . . , 2j − 1} : dj,k > Cm,n 2

−αnj} ≤ C ′
m,n 2

(ν(αn)+εm)j ∀j ∈ N0

}

(by taking the usual sequen
es of Proposition 8.1.3 and De�nition 8.2.2). We write

K̃ :=
⋂

m∈N

⋂

n∈N

K̃m,n. (8.2)

Let us note that K̃m,n is a bounded set of (Ã(αn, ν(αn)+εm), δ̃αn,ν(αn)+εm) by Proposition 8.1.6

(Item (d)) and that K̃ ⊂ Lν by Proposition 8.1.3.

Here are some useful observations to obtain the 
hara
terization of 
ompa
t subsets of (Lν , δ̃).

Lemma 8.3.1. (a) From any sequen
e of K̃, we 
an extra
t a subsequen
e whi
h 
onverges

pointwise.

(b) Let α > 0 and let B be a bounded set of (cα, ‖ · ‖cα). If (~c (l))l∈N is a sequen
e of B whi
h


onverges pointwise to ~c, then it 
onverges uniformly to ~c.

(
) Let α0 ∈ R and β0 ≥ 0 and let B be a bounded set of (Ã(α0, β0), δ̃α0 ,β0). If (~c (l))l∈N is a

sequen
e of B whi
h 
onverges uniformly to ~c, then it 
onverges to ~c in (Ã(α, β), δ̃α,β) for

all α and β su
h that α < α0 and β > β0.

(d) Let α0 ≥ 0 and let B be a bounded set of (cα0 , ‖ · ‖cα0 ). If (~c (l))l∈N is a sequen
e of B whi
h


onverges uniformly to ~c, then it 
onverges to ~c in (cα, ‖ · ‖cα) for all α < α0.

Proof. (a) Let (~c (l))l∈N be a sequen
e of K̃. There exists n ∈ N su
h that αn < αmin and then

we have

|c(l)j,k| ≤ 2−αnCm,n
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for all l ∈ N and (j, k) ∈ Λ. This means that the sequen
e (~c (l))l∈N is pointwise bounded in C

and we 
an thus extra
t a pointwise 
onvergent subsequen
e.

(b) Sin
e B is a bounded set of (cα, ‖ · ‖cα), there exists r > 0 su
h that

B ⊂ B′ :=

{
~a ∈ Ω : 2αj sup

λ′⊂λ(j,k)
|aλ′ | ≤ r ∀(j, k) ∈ Λ

}

and B′
is 
losed for the uniform and then the pointwise 
onvergen
e by Proposition 8.1.6

(Item (d)). Moreover, B′
is a bounded set of (cα, ‖ · ‖cα). So, ~c ∈ B′ ⊂ cα and (~c (l) − ~c )l∈N

is bounded in (cα, ‖ · ‖cα). Consequently, using again Proposition 8.1.6 (Item (d)), there exists

R > 0 su
h that |c(l)j,k − cj,k| ≤ R2−αj for all (j, k) ∈ Λ and all l ∈ N. Let η > 0. On the one

hand, sin
e α > 0, there exists J ∈ N0 su
h that R2−αj < η for every j ≥ J and then

|c(l)j,k − cj,k| < η

for all l ∈ N, j ≥ J and k ∈ {0, . . . , 2j − 1}. On the other hand, thanks to the pointwise


onvergen
e, there exists L ∈ N (whi
h only depends on η) su
h that

|c(l)j,k − cj,k| < η

for all l ≥ L, j ∈ {0, . . . , J − 1} and k ∈ {0, . . . , 2j − 1}. Thus, for all l ≥ L, we obtain

sup
(j,k)∈Λ

|c(l)j,k − cj,k| < η.

(
) Sin
e the sequen
e (~c (l) −~c )l∈N is bounded in (Ã(α0, β0), δ̃α0,β0) (by the same argument

as in the previous item of this proposition), there exist R,R′ ≥ 0 su
h that

#

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(l)λ′ − cλ′ | > R2−α0j

}
≤ R′2β0j

for all j ∈ N0 and l ∈ N, using Proposition 8.1.6 (Item (d)). Let η > 0. Sin
e α < α0 and

β > β0, there exists J ∈ N0 su
h that R2−α0j < η2−αj and R′2β0j < η2βj for every j ≥ J and

then

#

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(l)λ′ − cλ′ | ≥ η2−αj

}
≤ η2βj

for all l ∈ N and j ≥ J . Moreover, thanks to the uniform 
onvergen
e, there exists L ∈ N (whi
h

only depends on η) su
h that

sup
λ′⊂λ(j,k)

|c(l)λ′ − cλ′ | < η2−αj

for all l ≥ L, j ∈ {0, . . . , J − 1} and k ∈ {0, . . . , 2j − 1}, and then

#

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(l)λ′ − cλ′ | ≥ η2−αj

}
= 0 ≤ η2βj

for all l ≥ L and j ∈ {0, . . . , J − 1}. Thus, we have δ̃α,β(~c (l),~c ) ≤ 2η for every l ≥ L.

(d) The proof of this item is similar to the two previous ones. �
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Proposition 8.3.2. Let us assume that αmin > 0. A set is a 
ompa
t subset of (Lν , δ̃) if and
only if it is 
losed in (Lν , δ̃) and in
luded in some K̃.

Proof. Sin
e any 
ompa
t set of a metri
 spa
e is 
losed and bounded, the 
ondition is obviously

ne
essary.

To prove that the 
ondition is also su�
ient, it su�
es to show that K̃ is 
ompa
t. Let

(~c (l))l∈N be a sequen
e of K̃. By Lemma 8.3.1 (Item (a)), we 
an extra
t a subsequen
e whi
h


onverges pointwise. Let us note (~c (p(l)))l∈N this subsequen
e and ~c its pointwise limit. Let us

show that (~c (p(l)))l∈N 
onverges to ~c in (Lν , δ̃).
As αmin > 0, there exists n0 ∈ N su
h that 0 < αn0 < αmin. By 
onstru
tion, ~c (p(l)) ∈ K̃m,n0

for all l ∈ N andm ∈ N and we know that K̃m,n0 is bounded in (cαn0 , ‖·‖cαn0 ) by Proposition 8.1.6

(Item (d)). Using Lemma 8.3.1 (Item (b)), we get that (~c (p(l)))l∈N 
onverges uniformly to ~c.

Let α ∈ R and ε > 0. If ν(α) ∈ R, there exist n,m ∈ N su
h that

εm < ε, αn > α and ν(αn) + εm < ν(α) + ε.

Lemma 8.3.1 (Item (
)) implies that (~c (p(l)))l∈N 
onverges to ~c in (Ã(α, ν(α) + ε), δ̃α,ν(α)+ε).

If ν(α) = −∞, there exists n ∈ N su
h that αn > α and ν(αn) = −∞. By Lemma 8.3.1

(Item (d)), (~c (p(l)))l∈N 
onverges to ~c in (Ã(α, ν(α) + ε), δ̃α,ν(α)+ε). Proposition 8.2.3 gives the


on
lusion. �

In fa
t, we also have obtained within this last proof the following result.

Corollary 8.3.3. Every sequen
e of K̃ whi
h 
onverges pointwise 
onverges also in (Lν , δ̃) to
an element of K̃.

Remark 8.3.4. The 
hara
terization is not longer valid in the 
ase αmin = 0. Indeed, let ν be

the admissible pro�le de�ned by

ν(α) :=

{
−∞ if α < 0

1 if α ≥ 0

as in Expression (7.3). In this 
ase, we know that Lν = c0 (see Subse
tion 7.3.3 in the previous


hapter). If we assume that we have this 
hara
terization of subset 
ompa
ts of Lν , then the

(
losed) unit ball of c0 would be 
ompa
t (it is easy to show that it is in
luded in some K̃) and

therefore the spa
e would be �nite dimensional. This leads to a 
ontradi
tion.

8.4 Separability

As for the 
hara
terization of the 
ompa
t subsets of Lν , we have to 
onsider separately the

two following 
ases: αmin > 0 and αmin = 0. Let us start with a �rst di�eren
e des
ribed in the

following lemma.

Lemma 8.4.1. If ~c ∈ Ω, let (~cN )N∈N0 be the sequen
e of Ω de�ned by

cNj,k :=

{
cj,k if j ≤ N and k ∈ {0, . . . , 2j − 1}
0 if j > N and k ∈ {0, . . . , 2j − 1} (8.3)

for every N ∈ N0.
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(a) If αmin > 0, (~cN )N∈N0 
onverges to ~c in (Lν , δ̃) for all ~c ∈ Lν .
(b) If αmin = 0, there exists ~c ∈ Lν su
h that (~cN )N∈N0 does not 
onverge to ~c in (Lν , δ̃).
Proof. (a) Sin
e the 
hara
terization of 
ompa
ts of Lν (when αmin > 0) is similar to the one

in Sν 
ase, the proof of this �rst item only needs some adaptations of Lemma 6.3 in [8℄ with

wavelet leaders.

Sin
e ~c ∈ Lν , ~c ∈ Ã(αn, ν(αn) + εm) for all m,n ∈ N by Proposition 8.1.3. Then, for all

m,n ∈ N, there exist Cm,n, C
′
m,n ≥ 0 su
h that

#
{
k ∈ {0, . . . , 2j − 1} : dj,k > Cm,n2

−αnj
}
≤ C ′

m,n2
(ν(αn)+εm)j

for all j ∈ N0 and so, ~c ∈ K̃ where K̃ is de�ned as in Expression (8.2). For all N ∈ N0, we also

have ~cN ∈ K̃ be
ause dNj,k ≤ dj,k for all (j, k) ∈ Λ by de�nition of ~cN . Moreover, (~cN )N∈N0


onverges pointwise to ~c. Corollary 8.3.3 gives the 
on
lusion.

(b) Let us now suppose that αmin = 0 and let us 
onsider the sequen
e ~c de�ned by

cj,k :=

{
1 if k = 0

0 if k ∈ {1, . . . , 2j − 1} .

for ea
h s
ale j ∈ N0. We have dj,k = cj,k for all (j, k) ∈ Λ. Using the assumption αmin = 0, it is

easy to 
he
k that ~c belongs to Lν . By 
ontradi
tion, let us assume that (~cN )N∈N0 
onverges to

~c in (Lν , δ̃). We know that the spa
e (Lν , δ̃) has a stronger topology than the uniform topology

(see Remark 8.2.5). However, for N ∈ N0, we have

sup
(j,k)∈Λ

|cj,k − cNj,k| = 1,

hen
e a 
ontradi
tion. �

Let us begin by studying the separability of Lν with αmin > 0.

Lemma 8.4.2. Let B be a pointwise bounded set of sequen
es and let us assume that there

exists N ∈ N0 su
h that

∀~c ∈ B, ∀j > N, ∀k ∈ {0, . . . , 2j − 1}, cj,k = 0.

If αmin > 0, then B is in
luded in a 
ompa
t subset of Lν .
Proof. Sin
e B is a pointwise bounded set, there exists a 
onstant C > 0 su
h that

sup
j∈{0,...,N}

sup
k∈{0,...,2j−1}

|cj,k| ≤ C

for all ~c ∈ B. Let ~c ∈ B. Then, cj,k = 0 and therefore dj,k = 0 for all j > N and k ∈
{0, . . . , 2j − 1}. Moreover, for all j ∈ {0, . . . , N}, k ∈ {0, . . . , 2j − 1} and n ∈ N, we have

2αnjdj,k ≤ 2αnj sup
j′∈{0,...,N}

sup
k′∈{0,...,2j′−1}

|cj′,k′| ≤ C2αnj ≤ C sup
j′∈{0,...,N}

sup
k′∈{0,...,2j′−1}

2αnj′

Setting Cm,n := C sup
j′∈{0,...,N}

sup
k′∈{0,...,2j′−1}

2αnj′
for m,n ∈ N, we so obtain

#
{
k ∈ {0, . . . , 2j − 1} : dj,k > 2−αnjCm,n

}
= 0 ≤ C ′

m,n2
(ν(αn)+εm)j

for all j ∈ N0 and all 
onstant C ′
m,n ≥ 0. Consequently, ~c ∈ K̃ where K̃ is de�ned as in

Expression (8.2). �
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Proposition 8.4.3. If αmin > 0, the metri
 spa
e (Lν , δ̃) is separable.

Proof. Let us prove that the set

U :=
{
~c ∈ Ω : cj,k ∈ Q+iQ and ∃N ∈ N0 su
h that cj,k = 0 ∀j > N, k ∈ {0, . . . , 2j − 1}

}

is dense in (Lν , δ̃). Let ~c ∈ Lν ; by Lemma 8.4.1, the sequen
e (~cN )N∈N0 de�ned in Expres-

sion (8.3) 
onverges to ~c in (Lν , δ̃). Using the density of Q+iQ in C, we 
an �nd for all N ∈ N0,

a sequen
e (~q
(l)
N )l∈N of U whi
h 
onverges pointwise to ~cN . By Lemma 8.4.2 and Corollary 8.3.3,

the 
onvergen
e also holds in (Lν , δ̃), hen
e the 
on
lusion. �

Let us 
onsider now the 
ase where the admissible pro�le ν is su
h that αmin = 0. The

previous result is no longer valid. Indeed, with the admissible pro�le 
onsidered in Remark 8.3.4,

the spa
e Lν is c0 whi
h is not separable. More generally, we have the following property.

Proposition 8.4.4. If αmin = 0, the metri
 spa
e (Lν , δ̃) is not separable.

Proof. Let us 
onsider the un
ountable set A of sequen
es ~c of Ω su
h that for ea
h s
ale j ∈ N0,

cj,0 ∈ {0, 1} and the other 
oe�
ients are equal to 0. Using the hypothesis αmin = 0, we easily

prove that A is a subset of Lν . Indeed, let ~c ∈ A and let α ∈ R, ε > 0 and C > 0. If α < 0,

there exists J ∈ N0 su
h that C2−αj > 1 for all j ≥ J and we then have

dj,k ≤ 1 < C2−αj

for all j ≥ J and k ∈ {0, . . . , 2j − 1}. If α ≥ 0, we have

#Ẽj(C,α)(~c ) ≤ 1 ≤ 2(ν(α)+ε)j

for all j ∈ N0. Thus, ~c ∈ Lν . Moreover, we 
learly have ‖~c−~c ′‖c0 = 1 for all distin
t elements ~c

and ~c ′ of A.

Let D be a dense subset of (Lν , δ̃). For every ~c ∈ A, there exists a sequen
e (~c (m))m∈N of

elements of D whi
h 
onverges in (Lν , δ̃) to ~c ∈ Lν . Moreover, the 
onvergen
e also holds in c0

by Remark 8.2.5. Consequently, there exists M ∈ N su
h that

‖~c− ~c (m)‖c0 <
1

2

for all m ≥M . In parti
ular, there exists ~a ∈ D su
h that

‖~c− ~a‖c0 <
1

2
.

Sin
e ‖~c − ~c ′‖c0 = 1 for two distin
t elements ~c and ~c ′ of A , D must 
ontain at least as many

elements as A and 
annot be 
ountable. �

8.5 Comparison with the Topology of Sν

In the end of the previous 
hapter, we have studied the in
lusions between Lν and Sν . Let
us re
all that Lν ⊂ Sν for all admissible pro�le ν. Let us now 
ompare the topologies of Lν
and Sν . We have the following proposition; its proof is straightforward.
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Proposition 8.5.1. (a) If α ∈ R and β ∈ {−∞} ∪ [0,+∞[, then we have

Ã(α, β) ⊂ A(α, β) and δα,β ≤ δ̃α,β.

(b) If a sequen
e 
onverges in (Ã(α, β), δ̃α,β), it 
onverges in (A(α, β), δα,β ) to the same limit. If

a sequen
e is a Cau
hy sequen
e in (Ã(α, β), δ̃α,β), it is a Cau
hy sequen
e in (A(α, β), δα,β).

(
) The spa
e (Ã(α, β), δ̃α,β) has a stronger topology than the topology indu
ed by the dis-

tan
e δα,β .

(d) The spa
e (Lν , δ̃) has a stronger topology than the topology indu
ed by the distan
e δ.

Proof. Let us prove the �rst item. Let ~c ∈ Ã(α, β). By de�nition, there exist C,C ′ ≥ 0 su
h

that

#{k ∈ {0, . . . , 2j − 1} : dj,k ≥ C2−αj} ≤ C ′2βj

for all j ∈ N0. Sin
e |cj,k| ≤ dj,k for all (j, k) ∈ Λ, we dire
tly have ~c ∈ A(α, β). The same

argument shows that δα,β(~c,~0) ≤ δ̃α,β(~c,~0).

The other items result from the �rst item of this proposition. �

The topology indu
ed by δ on Lν is not equivalent to the one indu
ed by δ̃. It is the obje
t

of this last result.

Proposition 8.5.2. If Lν is stri
tly in
luded in Sν , then Lν is not 
losed in Sν .

Proof. Let ~c ∈ Sν \Lν and let (~cN )N∈N0 be the sequen
e de�ned from ~c as in Expression (8.3).

For all N ∈ N0, ~c
N

belongs to Lν and then to Sν be
ause it has only a �nite number of non

zero 
oe�
ients. The sequen
e (~cN )N∈N0 
onverges to ~c for the topology of Sν (see Lemma 6.3

in [8℄). Sin
e ~c /∈ Lν , we have the 
on
lusion. �
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8.1. Ã(α, β), δ̃α,β

8.2. α, ε, δ̃α,ε, δ̃

8.3. K̃m,n, K̃

8.4. ~cN

8.5.

125





Index

Admissibility 
ondition

Admissibility 
ondition, 39

Nonstationary admissibility 
ondition, 81

Auxiliary spa
e

Auxiliary spa
e for Lν , 99
Auxiliary spa
e for Sν , 92

Cantor's bije
tion, 25, 31

Continued fra
tion

Finite 
ontinued fra
tion, 21

In�nite 
ontinued fra
tion, 22

Ultimately periodi
 
ontinued fra
tion, 23

Continuous wavelet transform, see Wavelet

Nonstationary 
ontinuous wavelet transform, see Wavelet

Convergent, 21

Darboux fun
tion, see Fun
tion

Dimension fun
tion, 63

Exponential-Spline, 64

Filter, 63

Fun
tion

Cantor fun
tion, see Cantor's bije
tion

Darboux fun
tion, 17

Exponential-Spline fun
tion, see Exponential-Spline

Generalized Riemann fun
tion, 45, 54

Riemann fun
tion, 15, 45

Takagi fun
tion, 7

Weierstrass fun
tion, 7

Generalized Riemann fun
tion, see Fun
tion

Hardy spa
e, 40

Hölder 
ontinuity

Pointwise Hölder 
ontinuity, 7, 12

Uniform Hölder 
ontinuity, 10

Hölder exponent

Pointwise Holder exponent, 14

Restri
ted pointwise Hölder exponent, 16

Restri
ted uniform Hölder exponent, 16

127



128 Index

Hölder spa
e

Pointwise Hölder spa
e, 7, 12

Uniform Hölder spa
e, 10

Khint
hine's 
onstant, 31

Lebesgue point, 72

Lévy's 
ontant, 32

Mean of a fun
tion, 54

Monofra
tal fun
tion, 15

Multifra
tal fun
tion, 15

Multiresolution analysis

Nonstationary multiresolution analysis, 61

Nonharmoni
 Fourier series, 51

Nonstationary

Nonstationary admissibility 
ondition, see Admissibility 
ondition

Nonstationary 
ontinuous wavelet transform, see Wavelet

Nonstationary family of wavelets, see Wavelet

Nonstationary multiresolution analysis, see Multiresolution analysis

Nonstationary orthonormal basis of wavelets, see Wavelet

Orthonormal basis of wavelets, see Wavelet

Nonstationary orthonormal basis of wavelets, see Wavelet

Pro�le

Admissible pro�le, 91, 95

Leader pro�le, 93

Wavelet pro�le, 91

Re
onstru
tion formula, 41, 84

Riemann fun
tion, see Fun
tion

Riesz basis, 61

S
aling

S
aling equation, 63

S
aling fun
tion, 61

Spa
e

Hardy spa
e, see Hardy spa
e

Pointwise Hölder spa
e, see Hölder spa
e

Spa
e Lν , 93
Spa
e Sν , 91
Uniform Hölder spa
e, see Hölder spa
e

Takagi fun
tion, see Fun
tion

Uniform topology, 102



Index 129

Wavelet

Continuous wavelet transform, 39

Lusin wavelet, 43

Nonstationary 
ontinuous wavelet transform, 82

Nonstationary family of wavelets, 81

Nonstationary orthonormal basis of wavelets, 60

Orthonormal basis of wavelets, 59

Poisson wavelet, 83

Wavelet, 39

Wavelet 
oe�
ients, 90

Wavelet leaders, 90

Wavelet pro�le, see Pro�le

Weak os
illation around the origin, 41

Weierstrass fun
tion, see Fun
tion




	Abstract
	Résumé
	Remerciements
	Contents
	Introduction
	I Hölder Continuity of Particular Functions
	Continuous Nowhere Differentiable Functions and Hölder Continuity
	Hölder Continuity and Hölder Spaces
	Pointwise Hölder Continuity
	Uniform Hölder Continuity
	Extension

	Hölder Exponent
	A First Detailed Example: the Darboux Function

	Cantor's Bijection(s)
	Some Preliminaries
	The Space of Sequences of Natural Numbers
	Continued Fractions

	Cantor's Bijection
	Continuity of Cantor's Bijection
	Hölder Continuity of Cantor's Bijection
	Appendix: Another Cantor's Bijection
	A ``Practical'' Proof of Schröder-Bernstein Theorem
	A Bijection between the Unit Square and the Unit Segment Based on the Decimal Expansion


	Continuous Wavelet Transform and Hölder Continuity
	Continuous Wavelet Transform
	General Setting
	The Particular Setting of Continuous and Bounded Functions

	Characterization of Hölder Spaces

	Generalized Riemann Function
	Hölder Continuity of Generalized Riemann Function
	Extension to Nonharmonic Fourier Series
	Behaviour of R, as  Increases


	II Nonstationary Wavelets
	Nonstationary Orthonormal Basis of Wavelets
	Nonstationary Orthonormal Basis of Wavelets
	Nonstationary Multiresolution Analysis
	The Example of Exponential-Splines
	Smooth Nonstationary Orthonormal Basis of Wavelets in the Hardy Space H2(`39`42`"613A``45`47`"603AR)
	Proof of Theorem 5.1.3
	Auxiliary Results and Notations
	Proof of the Sufficient Condition of Theorem 5.1.3
	Proof of the Necessary Condition of Theorem 5.1.3

	Proofs of Theorem 5.2.5 and Proposition 5.2.6
	Proof of the Necessary Condition of Theorem 5.2.5
	Proof of the Sufficient Condition of Theorem 5.2.5
	Proof of Proposition 5.2.6

	Proof of Theorem 5.4.1

	Nonstationary Continuous Wavelet Transform
	Nonstationary Continuous Wavelet Transform
	Reconstruction Formula


	III `39`42`"613A``45`47`"603AS Spaces Revisited with Wavelet Leaders
	From `39`42`"613A``45`47`"603AS Spaces to `39`42`"613A``45`47`"603AL Spaces
	Wavelet Coefficients and Wavelet Leaders
	Wavelet Profile and Space `39`42`"613A``45`47`"603AS
	Definitions
	Basic Results

	Leader Profile and Space `39`42`"613A``45`47`"603AL
	Definitions
	First Properties
	Examples and Comparison of Spaces `39`42`"613A``45`47`"603AL and `39`42`"613A``45`47`"603AS


	Topology on `39`42`"613A``45`47`"603AL Spaces
	Auxiliary Spaces
	Topology on `39`42`"613A``45`47`"603AL
	Compact Subsets of `39`42`"613A``45`47`"603AL
	Separability
	Comparison with the Topology of `39`42`"613A``45`47`"603AS

	Bibliography
	List of Figures
	List of Symbols (by Section)
	Index


