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. L. — Introduction.

WALEOKA [1] and collaborators [2; 3] have recently developed a model
relativistic quantum field theory of nuclear matter and of finite nuclei. In
the simplest and most investigated form of this model, the nucleon field intor-
acts with a neutral scalar-meson (o) field and with a neutral vector-meson (w)
field. Although this is a daring over-gimplification of the nuclear Lagrangian,
the model deserves detailed scrutiny not only because it yields fair agreement
with a number of experimental data, but mainly because it includes some
mesonie degrees of freedom in a way which is completely consistent with the
requirements of rolativistic quantum field theory. Al equations, thorefore,
appear in a Lorentz-covariant form. In particular, it is natural that in this
approach the single-particle wave equation of the shell model emerges in the
form of the relativistic Dirne equation rather than in the form of the nonrel-
ativistic Schrodinger equation. The present paper is mainly devobted to this
relativistic single-particle wave equation and to its relationship with the fa-
miliar nonrelativistic shell model potential. More specifically, our main purpose
iz twofold: i) We discuss the relativistic Hartree-Fock approximation. While
the Hartree approximation has already been investigated in some dotail in
the available literature [4-7!, the Fock contribution had never been properly
investigated. ii) We construct a local single-particle potential which can be
introduced in the Schrodinger equation and then yields exactly the same
phase ghift and bound-state energies as those which would be obtained from
the relativistic wave equation. This step is largely indepondent of the (e.g.
Hartree or Martree-Fock) approximation which has led to a relativistic wave
equation, wheneo its intrinsic interest.

The main features of the relativistic quantwmn field model are bricfly de-
‘seribed in sect. 2. The Hartree and the Hartree-Fock approximations are
investigated in sect. 3 and 4, respectively. In sect. 5, we discuss some limitations
and possible extensions of our work. In many instances we write the equations
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only in the limit of infinite nuclear matter, in which they take a simpler and
more transparent form.

2. — The relativistic quantom field model.

Tollowing WaALECOKA [1] and others {4, 6], we adopbt the following Lagran-
gian density:

(W) L= L L L L L

where the lagt two terms, respectively, describe the interaction between the
nucleon N, on the one hand, and the scalar meson o and the vector meson o,
on the other hand. The relativistie single-particle potential can be identified
with the self-encrgy operator. The most systematic calculational procedure
probably consists in expanding the sclf-energy in powers of the strength of
the meson-nucleon interaction [8]. Alternative methods exist, see, 6.g., ref. {1, 9].
These methods are largely equivalent in the Ilarfree approximation. Here
it is econvonient to adopt the presentation of Miller and Green [4] and of Brock-
mann {b], to whom we refer for furthor detail. These authors treat the meson
fields ag classical ficlds; this implies the omission of all quantities containing
annihilation or creation operators for antiparticles and renders this approach
inappropriate for going beyond the Ilartree-Fock approximation in a system-
atic way. They obtain thé folowing nuclear llamiltonian:

©) H=7y Id”wf:.(x)yo(~ iV 4 m)f (%) b,

oy’

'I_ % z, I(l'wl(lnwzjl’(xl) f;‘(xs) Vm'“xl - xz')/d(xa)/a(xl)b:“ b;' bo ba:'
s

Hera {fa(x)} is a complete set of Dirac spinors and ba (respectively, b:) denotes
an annihilation (respectively, a creation) operator for a nucleon in state «.
The nucleon-nucleon interaction in eq. (2) reads

(3) Verlio — mal) = 200, 2) Vi (1%, — )

with

(4) Iy(1,2) = — p(1)y"2)

() Ly1,2) = (D P2y, (1)7"(2),
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THE SHELL MODEL POTENTIAL FROM A RELATIVISTIC HARTREE-FOCK ATPROACI 5]5
where A, is a ent-off momentum and m, is the mass of meson ¢, while B, denntes
the relativistic total energy of a nucleon in stato «.

3. — Hartree approximation.

31, Relativistic form. — The Hartreo approximation for the singlo-particle
potential can be derived from the model Hamiltonian (2) in the usual way [4, 5].

" It is a local and energy-indepondent operator. In a doubly magic naclous, tho

corresponding relativistic single-particle wave equation reads

(7 {e-p -+ ylm - U + y, US )} v (r) = By ,(r)

where the upper index II refers to « Hartree » and the lower indox ¢ labels the
eigonstates. The sealar and the vector relativistic single-particle potentinls
are given by

(8) Ulr) = — fw' o) Ver(lr—r'l),
®) v = [ oty V(i — 7).

Here p(r) and p,(r) ave the baryon density and the self-consistent scalar density,
respectively,

(10) olr) = 3 yir)p,(r),
© ) o,(r) = 3 P (r)p (r).

The sums in eqs. (10) and (11) run over the A lowest occupied eigenstntes.
These relations take a simple formn in the case of nuclear matior. H k,
denotes the Fermi mowmentum, one then finds [7}

(12) U“:;“L—z’ig, Uf‘:—;'l%g.,
¢ kr *
(13) e = é—i—;!k}, Q':ZE%; fdak ﬁ;;‘_{%ﬁgj;,
0
where
(14) m* =m -} U"

is the «effective mass». In the Hartree approximation, the average binding
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energy per nucleon is given by

(1) 1=3 [rwr g zm),
where

(16) T(k) = {Pulyoly b+ m)lyp> — m
and

(17) (k) = {pul U5 + v, Ullye>

denote the relativistic kinetic energy and the potential onergy, respectively,
of a nucleon with momentum k.

The rosults presented below have been obtained from the following para-
metoer values

(18a) ¢ifdn = 6.57, mg == 550 MeV,

(18) @ JAn=9.256, m, = 182.8 MeV,

and with a cut-off form factor characterized by a mass A = 1530 MeV. These
are the values which had been adoptod by BrRookMANN [5] in his self-consistent
relativistic Uarbreo calenlation of the ground states of 0O and of *Ca. They
are identical to the o- and w-meson parameters of the one-boson exchange
poton‘tiaxl {OBEP) of tho Bonn greup [10]. We emphasize, howover, that the
latler property does not imply that this partieular choice has any « funda-
mental » jmplication. Indeed, the Bonn OBEP contains a number of com-
ponents which are omitted here and correspond to the exchange of other mesons
(%, py -..). Morcover, there.certainly exist sizable corrections *to the Hartroe
approximation, due to tho Fock term (sect. 4) and to higher-order dia-

grams [8, 11]. Tn general, the input meson parameters of a Hartree or of 4.

Hartree-Fock caleulation should, therefore, be considered as effective coupling
constants and masses [1]. We return to this point in sect. 5. .

The full curve in fig. 1 represents the average binding energy per nueleon
as ealeulated from the IMartreo approximation (15). We note that at saturabion
the ealculated Fermi momentn (k, = 1.51 fm™) and the calculated averago
binding energy per nucleon (BjA = - 21.6 MeV) are both larger than the
empirical values (k,~1.36 fm~?, B/A~ — 16 MeV). This indicates, in par-
ticular, that in finite nuclei the root-mean-square radius of the density dis-
tribution as calculated from this relativistic Tlartree model will be somewhat
too small. This is confirmed by Brockmann’s caleulation [6]. It can be checked
that eqgs. (12)-(17) are identical to those derived by Warucka [1] in the frame-
work of his « mean-field approximations. They differ from the direct parb
of the lowest-order contribution to the self-energy [8] by the fact that here
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Fig. 1. — Dependence upon the Fermi momentum ky, of the average binding encrgy
per nucleon as calenlated from the input parametor (18). The full curve corrcspouds
to the Harbree approximation and the dashed one to thoe Hartroe-Fock approximabion.

the eflective mass m* has to bo calculated scli-consistently from eqs. (12)-(14).
Correspondingly, the spinor y, in eq. (17) does not describe a free plane wave,
but it instead includes the effect of the Hartree potontial UT -y, US. v ap-
pears that this self-consistent requirement has beon partly neglected in vef. [11}.
We also note that the baryon density g differs from thoe sealar density o, (see
eqs. (13)). Tigure 2 shows that this difference increases with increasing Fermi
momentum. This has the effect of inereasing the density at saturation as cor-
pared to the value that it would take if one would set g, = p.
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Tig. 2. — Ratio betwoen the baryon density ¢ and the acalar density g,, as calonlated
from eqs. (13) with tho input parametors (18).

3'2. Nonrelativistic form. — In tho case of finite nuelei, one possible test of
the relativistic Hartreo approximation consists in comparing with experiment
the bound single-particle encrgies B, and the baryon density distribution g(r)
ealenlated from tho self-consistent set of eqs. (7)-(11) [4, 5]. However, one can
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perform a more severe test. Indeed, the accumulation of data on bound and,
mainly, scatbering stales of many nuelei have led to o very good knowledge of
tho shell model potential. In its practical formulation, the latter is a local,
energy-dependent operator which, when substituted in the nonvelativistie
Schrindingor equation, yields the experimental single-particle energios and, if
supplemented by an imaginary component, the expoerimental olastic-scattering
phase shifts. Hence it is useful to construct here a potential which, when in-
serled in a Schridinger equation, yields the same bound-state encrgies and
the samo clastic-seattering phase shifts as those which would be obtained
from the relutivistic Dirac equation (7). We dub this potential the « Schrd-
dinger-equivalent potential» and we denote it by U, (r,¢), where I = ¢ 4 m.
1ts construection proceeds as follows.

Leb us denote by @{r;e) the radial part of the large components of the
rolativistic single-particle wave function y (). It ean easily be shown [8] that
the quantity

(19) g(r; &) = |D(r; &)] 1G5 €)
with
(20) - Dir;s) =&} 2m - UM(r) — UMr)

fulfily the following Schrodinger-like radial wave equation [7]

(21) i‘%(;jﬂ -+ {k?,, ——{(—l—f};j) —2m [l/e(r; &) 4 ]; U, (r; s)a-L]}gk(r;a) =0,

whore &k, denotes the relativistic momentum at large disbance

(22) k., = 2me -}- €2,
while

(23)  Urie) = Ur) | Ualr) -+ @[ U20) — U001+ 3= V),
(21) Ulri ) = — [2mDir; O} 5 (VD) = Uy(r)]).

Hers and in the following we usually drop the upper index I, for simplicity.
In eq. (23), the sign ~ refers to the omission of negligible surface terms. We
nobo that U7, depends on energy and that the Schrodinger-equivalent potential
contains a spin-orbit component.

The quantities U (r; ) and U, (r; ¢) can be compared with the central and
gpin-orbit components of the empirical shell model potential, The quantily
which is best determined by the experimental data is the volume integral per
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nucleon

J— —1 8 (490
(25) Ty A4 = A fdrU_(a,e).

Figure 3 shows that in the case of #(a the caleulated and empirical values of
this quantity are in good agreemont over a wide energy range. The same holds
in the case of #0 [6]. The calculated and empirical values of the spin-orbit
component U, (r; &) are also in fair agrecment [7].

500
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IMig. 3. - Adapted from vef. [7]. Comparison bofween the cmpivical (erosses, triangles,
squares, dot) values of the volune intogral per nucleon (26) and the theorclical (full
curve) value caleculated from the sclf-consistent Hartres approximation with the
input paramctors (18), in the case of 4°Ca.

We now turn to a brief discussion of the meaningfulness of theso agree-
ments. The model contains two main parameters, namely the strengths U,
and U, of the vector and of the scalar potentials at the Fermi momentum
k. = 1.36 fm™, which corresponds to the central densily of nuclei. 'The theo-
retical potential depth U_ is energy dependent, with a slopo given by U,jm
(see eq. (26) below). Bince the empirical valne of this slope is approximately
equal to 0.3, the value of U, must be approximately equal to 300 MeV. Sinece,
moreover, the depth U, at low oenergy is approximately egunal to - 55 MeV,
one must have U, = — 350 MeV. This shows that the model paramecters ecan
always be chosen in such a way that U_ is in fair agreement with experiinent
at low and intermediate energies. Then, however, no paramoter is left: U
ig uniquely predicted by the model; the fair agreoment between the empirical
and experimental values of U, (r; ¢) is, thorefore, by no means a trivial con-
sequence of the choice of the input paramecters.

Another noticeable and unavoidable feature of the presont model is that
U, and U, arc comparable in magnitude to the nucleon rest mass. Honee it
appears that a relativistic approach is not a luxury. Indeed, it is then quite
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difficult to derive a Sehrodinger equation as an accurate nenrelativistic limit
of the Dirac equation (7). In particular, the Foldy-Wouthuysen transfor-
mation is not very useful [7]. We emphasize that the Schradinger-like equa-
tion (21) is oxact in the sense that the eigenvalues calculated from eq. (21)
aroe the same as those of eq. (7) and that the asymptotic behaviour of g(r; &)
for largo r is the same as thab of G(r; ¢). In order to complete the proof that it
is legitimate to identify U (r;e) with the standard nonrclativiskic optical-
model potential, one must still show that the difterential elastic-scatboring and
polarization cross-goctions can be obtained in the same way from eq. (21) as
from the usual phase-shift formula associated with the Schrodinger equation.
This can be checked by comparing the oquations contained in rvef. [12, 13].

3'3. Wine botile bottom shape. — In infinite nuclear matter, the Schridinger-
equivalent potential reads

(26) Ue) = U, + Uy -+ (2m)*[U; — U3l + ;j;vo,

where U, and U, are given by eqs. (12) in the case of the Hartroe approxi-
mation. This quantity is plotted in fig. 4 for two values of the Fermi momentum,
namely k, == 1.356 fin™*, which corresponds to the nuclear interior, and k, =
= 1.10 fm~!, which corresponds to the nuclear surfage. Wo note that the two
curvos intersect. This indicates that in a finite nucleus the Schriédingoer-
equivalent potentinl is atill attractive at the nucloar surface at the energy at
which it becomes ropulsive in the nuclear intevior. This « wine bottle bottom
ghape » is exhibited in fig. 5. Its origin has been discussed in ref. |6, 7]. It
mainly lies in the quadratic term (2m)*(U? — Ug] in eq. (23). This quadratic
term is charactoristic of the relativistic Dirac approach and of the scalar and
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Pig. 4. — Schridinger-oquivalent potential in the case of infinite nuclear matter with
k= 135 fn~' (full curve) and ky = 1.10 fin-! {dashed enrve), in the case of the rola-
tivistic artree approximation with the input parnmetors (18).
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Fig. 6. — Adapted from ref. [7]. Schrodinger-equivalent potential as calculated from
the rolativiatic Hartres approximation in fhe case of 4°Ca at ¢ =163 MeV.

vecbor nature of U, and of y,U,, respectively. Farly empirieal evidence for
a wine botile bottom shape was claimed by Brron [14], whe fitted polarization,
reaction and elastic-scattering data for 180 MeV protons on *Fe. In fig. 6
we show that Elton’s phenomenological potential is in fair agreement with the
Schrodinger-equivalent poteatial as caleculated from our nudlear-matier re-
sults by means of a local density approximation. Recent analyses of the scat-
tering of 181 MeV protons by *Ca{156] and of 200 MeV protons by '2C and
13 [16] corroborate the existence of a wine bottle bottom shape for the real
part of the optical-model potential. We note that this shape has also been
found in a theoretical caleulation performed in the framework of the Briecknor-
Hartreo-Fock approximation based on Reid’s hard-core nucleon-nucleon inter-
action [17]. However, the interpretation of the phenomenon appears to be
quite different in the latter theoretical model, in whiclk it is due to Pauli and
binding corrections [18].

r{fm)

Fig. 6. — Adapted from ref. [7). 'The dashed curve represents the real part of the
optical-model potential dotermincd by Luron [14] from tho analysis of 180 MeV
protons seattering by 58Fe. The full curve shows the Schridinger-equivalent potential
as caleulated from the rolativistic Hartreo approximation with the input parameter (18)
at 1856 MeV.
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4. — Hartree-Fock af»proximation.
L)
4°1. Schrodinger-equivalent potential in nuclear mattor. ~ In the relativistic
Tlartree-Fock approximation, the single-particle potential containg nonloeal
terms, as in the familiar nonvelativistic case. In other words, the left-hand
side of the relativistic Dirac single-particle wave equation (7) now contains an
additional term of the form

(27) ),Jd”r’ UNr, r)polr')

where the upper index NL refers to «nonlocal», and where U¥" in general
contains several components which transform as Lorentz-scalar, -vector,
-pseudosealar, ... quantities, respectively, if geveral types of mesons are con-
sidered [19]. In order to keep the discussion simple, it is advantageous to
consider the case of infinite nuclear matter. Then UM“(r, r') is a function of
r— r' only, while

(28) ' w(r) = u(k) exp [ik-r], .

where (k) is a four-component spinor. It is then appropriate to use the mo-
mentum representation. It can be shown [8] that one can write the Fourier
transform of UNY(|r - #'|) in the form

(29) D) = U+ o U ooy USR),

whete the guantities UM, U™ and UY" are scalar functions of k, rather than
matrices.

The form (29) is, of course, also valid for the local part, or equivalently for
the momentum-independent part, of the single-particle potential. We thus
temporarily drop the upper index NL. The relativistic single-particle wave
equation reads

(30) {a-k + o [m -+ Ukk) 4 o Unll) + y.,ov’T: U,(k)]} u(k) = E,u(k) .

Tn order to obtain a Schridingor-oquivalont potential, we proceed as in subsect.
3'2. We thus eliminate the small components of u(k) and obtain the following
dispersion relation (&, = ¢, - m):

k2 EE
s Uy ) = & 4 5o

3
=k

(31)
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with
(32) Uk, e) = Uy(k) -+ Udk) + (2m)-2[ Uk} — Ug(k) + Us(k)}

€ k
+ E Uo(k) “"‘ ,"; U,(k) s

where k and & are related to one another by eq. (31). By comparing this result
with eq. (26), we note that, since all quantities now depend on the momentum
k, one can probably not infer accurate information on each of these various
quantities from our knowledge of the energy dependenco of the depth of tho
empirieal optical-model potential. One must thus turn to dynamical mudels.
In the next subsection, we briefly discuss the Hartree-Fack approximation
in the case of the o, « model

4'2. Hariree-Fock approximation. — We restrict the present discussion to
tho case of infinite nuclear matter and to the o, w model. We only state some
resuits. A detailed discussion will bo published elsewhere. In keeping with
the general expressions given in subsect. 4’1, the Hartree-Fock approxima-
tion yields the fellowing relativistic single-particle wave equation

(33) {a b+ pom + UY + 3, U + UT(B)]} u(k) = B, u(k)
with
(31) UT() = UFE) + 70 U3+ pou s UT(H)

The quantities UY and U are still given by eqs. (12). However, the expres-
gion of g, which was given by eq. (13) in the liartree approximation is now
modified by the fact that the spinor w(k) contains the influence of U¥(k): one has

k¥
_ 2t fasp ™R
(35 = o [ | i

whero the momentum-dependent « offective mass » #(k) reads

(36) (k) =m 4 UY + UJ(k),
while .
(37) k, =k Utk).

The expressions of UF(k), Ul(k) and Uj(k) will not be given here. They
aro similar to results given in ref. [8, 20] with, however, some complications
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ddie to the fact that here we calculate w(k) self-consistently rather than taking
a free plane-wave spinor. One striking difference with the Xartree approxi-
mation is that the o and the « mesons both contribute to al' three terms
U¥(k), US(k) and US(k).

1t turns out that the centribution of UT(k) to the expression (32) of the
Schrodinger-equivalent potential is rather negligible. For low «, whe atbrac-
tive quantity UT(k) is equal to about 25 per cent of the Hartree cemponent
UM of the scalar potential; it tends towards zero for large k. For low k, the
repulsive quantity Ug(k) is equal to approximately forty per cent of the Hartree
contribution U¥ to the fourth component of the vector potential. The Schro-
dinger-equivalent potential UX'(e) (fig. 7) that corresponds to the relativistic

-50

Ue (MeV)

25k \

0° w0’ 10? 10}
£(MeV)

Fig. 1. — Schrodinger-equivalent potential in the case of infinite nuclear matter with
by = 1.356 fin-? (fall curve) and ky=1.10 fin-! (dashed curve), in the case of the rela-
tivistie llartrec-Fock approximation with the input parameters (18).

Hartreo-Fock approximation in the o, » medel is thus loss attractive than the
Schrodinger-equivalent potential associated with the relativistic Hartree ap-
proximation. Hence the fair agreement with the empirical shell model po-
tential depth which had been found in the caso of the relativistic Hartree ap-
proximation no longer holds for the Hartree-Fock approximation if one adopts
tho input parameters (18). Clearly, however, it is possible to somewhat in-
crease the strength ¢? of the coupling between the scalar and the nucleon fields
in order to obtain a good agreement bobween the Hartree-Fock approximation
and the empirical data. This increase would be legitimate, since we emphasized
in subsect. 3'1 that the input parameters should be congidered as «offective »
coupling constants. We find it remarkable that the modification which is
voquired is rather small. 'We also note that the two eurves in fig. 7 inbersect,
as was also the case in fig. 4. This shows that the relativistic Hartree-Fock
maintaing a wine bottle bottom shape for the Schrodinger-equivalent po-
tentinl at intermediato encrgy. In turn, this reflects the fact that the mo-
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mentam dependence of Ug(k) and of UF(k) is quite weak, because in the present
maodel the sffective nucleon-nucleon interaction has short range.

In the self-consistent relativistic Hartree-Fock approximation, the average
binding energy per nucleon is given by

ky

B 3 1 1 .
(38)  H+m= B krdk {5 Uslk) + 5LU.(R) (k) + K, U, (k)]
T2 + m ()] -+ [min(k) + k ki + ﬁi”(k)]“‘] .

The quantity BfA as calculated from this approximation is represented by the
dashed curve in fig. 1. As expected from the preceding discussion, it is less
attractive than the Hartree-Fock approximation. Saturation is reached for
k, = 1.36 fm™?, where B/A = — 8.6 MeV.

5. — Discussion.

The present contribution is centred on the belief that a formulation of the
shell model in the framework of relativistic quantum field theory will lead to
a relativistic Dirac single-particle wave equation rather than to a nonrelativistic
Schrodinger single-particle wave equation. In the nonrelativistic approach,
the shell model emerges from the Hartree-Fock approximation, in which the
effective nucleon-nucleon interaetion is in practice either adjusted in a purely
phenomenological way or else is estimated from realistic nucleon-nncicon
potentials via some (e.g. Brueckner) approximation scheme. Likewise, wo
considered here the shell model potential in the framework of a relativistic
Hartree-Fock approximation. We adopted a simple model in which the inter-
action between two nucleons is mediated by the exchange of a scalar meson
and of a vector meson [1]. To our knowledge, the present work is the firsi
investigation in which the self-consistent Fock confribution is included. We
focused on the prediction of this model concerning the average nucleon-nueleus
potential, i.e. concorning the shell model potential or, more generaily, the real
part of the optical-model potential. TFor this purpose, we consiructed a
Schriodinger-equivalont potential, The latter is a single-particle potential
which, when intreduced in the nonrelativistic Schrédinger equation, yields
the same bound-state onergies and the same elastic-scattering phase shifts
as the original relativistie single-partiele potential did when used in conjunc-
tion with the Dirac equation. The comparison between this Schrédinger-
equivalent potential and the central and spin-orbit components of the em-
pirical optical-model potential is rather satisfactory, provided that the coupling
consbants between the nucleon and the meson fields are suitably adjusted.
This adjustment corresponds to the use of an effective meson-nucleon inter-

]




526 M. JAMINON, C. MAHAUX and P. ROCHUS

action 1, 11]. One characteristic feature of the calculated Schriddinger-equi-
valent potential is that it has a « wine bottle bottom » shape ab intermediate
energy; in the present approach this shape is due to relativistic effects.

We hope that the relativistic Hartree-Fock model may become a workable
and useful one if the experimental data are invoked to constrain the choice
of the various meson-nucleon coupling constants. Here we have put emphasis
on the single-particle potential at low and intormediate energy. Other data
should, of course, be considered. Tho most stringent restrietions will probably
arise from those observables which invelve the small components of the rel-
ativistic single-particle spinors [21, 22]. We beliove that a relalivistie ap-
proach will become not only of theoretical but also of practical interest if it is
eventually confirmed that the relativistic single-particle potential involves
several components which are compdrable in magnitude to the nucleon rest
mass.
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