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Abstract: A relativistic Hartree-Fock mean field approximation is investigated in a model in which the
nucleon field interacts with scalar and vector meson fields. The Hartree—Fock potential felt by
individual nucleons enters in a relativistic Dirac single-particle equation, It is shown that in the case
of symmetric nuclear matter one can always find a potential which is fully equivalent to the most
general mean field and which is only the sum of a Lorentz scalar, of one component of a Lorentz
tensor and of the fourth component of a Lorentz vector. A non-relativistic potential is derived which
yields exactly the same single-particle energies and elastic scattering phase shifts as the relativistic
Hartree-Fock potential. Analytical results are presented in the case of nuclear matter. A local
density approximation is constructed which enables one to consider finite nuclei. The input
parameters of the model can be chosen in such a way that the empirical saturation properties of
nuclear matter are well reproduced. Good agreement is obtained between the calculated non-
relativistic potential and the empirical value of the real part of the optical-model potential at low and
atintermediate energy. Atintermediate energy, the wine-bottle bottom shape which had previously
been found for the potential in the framework of the relativistic Hartree approximation is
maintained when the Fock contribution is included.

1. Introduction

Relativistic quantum field models of finite nuclei and of nuclear matter are
presently receiving considerable attention, see e.g. refs. '), In these models, the
nucleon field is coupled to massive meson fields. Most calculations only include two
types of mesons, namely a neutral scalar meson (er) and a neutral vector meson (),
and are limited to one or another version of a mean field approximation. Despite
these drastic simplifications, these models yield fair agreement with quite a number
of experimental data provided that the few input parameters (masses and coupling
constants) are suitably chosen. These simple models provide a fruitful testing ground
for investigating relativistic effects. These effects appear to be quite large, essentially
because the familiar shallow non-relativistic shell-model potential results from a
cancellation between strong components with well-defined Lorentz tensorial
character. This characteristic feature is shared by the available more complicated
versions of the model, in which other meson fields are taken into account 15‘”) orin
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which ladder summations of Brueckner type are performed 15, It is the existence of
these strong components which call for the use of a relativistic approach despite the
fact that the nucleon velocity is much smaller than the velocity of light, In particular,
these strong components inhibit the derivation of a reliable non-relativistic limit .
It therefore appears of real interest to investigate in some detail the typically
relativistic aspects of the model. These aspects can best be studied in a simple version
of the model: here, we investigate the case of nuclear matter and only include the o-
and w-mesons.

Ref. **) deals with the approximation that Miller and Green "Yand Brockmann and
Weise ) call the relativistic Hartree model and which turns out (subsect. 2.2) to be
identical to Walecka’s mean field approximation %) in the case.of nuclear matter.
In the present work, we extend this previous study to include Pauli exchange, i.e.
we analyze the relativistic Hartree—-Fock approximation. We mainly investigate
the predictions of the model concerning the familiar local non-relativistic
nucleon-nucleus potential, which is well-known empirically from many success-
ful applications of the shell model and of the optical model. Here, we define this
non-relativistic potential by the requirements that it be local and “equivalent” to the
relativistic Hartree—-Fock potential, equivalent in the sense that it yields the same
bound state energies and elastic scattering phase shifts. This had previously been
performed in the case of the Hartree approximation %1%y but we shall see that new
features arise from the inclusion of the non-local Fock contribution. The existence of
non-local components appears to be required on purely phenomenological
grounds '®) and the present investigation of the Fock contribution is thus of
real interest. The Fock contribution has been considered by Miller %) and by
Brockmann and Weise '’) in the case of finite nuclei. Here, we mainly discuss
nuclear matter where many properties become simpler and thus more transparent.
Our work differs from those of Chin ?) and of Bolsterli %) by the nature of
the self-consistency requirements that we impose on the fields. By analogy with
Walecka’s terminology, we call our approximation the Hartree-Fock mean field
approximation.

The present paper is organized as follows. Sect. 2 is devoted to the definition and to
the investigation of the relativistic Hartree-Fock mean field approximation, with
emphasis on the self-consistency requireménts and on the decomposition of the
relativistic single-particle potential into components which have well-defined
Lorentz-transformation properties. We show that this decomposition is not unique,
but that this ambiguity does not affect the observable quantities. Sect. 3 deals with
the derivation of the Schrodinger-equivalent potential in finite nuclei and in nuclear
matter, and with the construction of a suitable local density approximation. Sect. 4
contains numerical results concerning the relativistic mass operator, the
Schrodinger-equivalent potential and the average binding energy per nucleon; some
preliminary results have been presented in ref. 19). Sect. 5 contains a brief summary
and draws some conclusions.
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2. Relativistic Hartree-Fock mean field approximation

2.1. THE MODEL

We adopt here the model studied by Brockmann %), whose notation we closely
follow. In this mode], the nucleon-nucleon interaction is mediated by the exchange of
only two types of mesons, namely the scalar meson o and the vector meson w. One
furthermore drops all terms with annihilation or creation operators for antinucleons.
This leads to the following nuclear hamiltonian %)

H=3 [ dnk 0y =iy V4 m)f(rblb

+% > J‘d3f1Id3r2f;;'(rl)f:,'(fz)ykk'(lrl—rzl)

k.k'.q.q’

X fo(r2)fe(r)b b brbaby .1y

where {fi(r)} denotes a complete set of Dirac spinors with the corresponding
creation (annihilation) operators 5% (b); the index k generically refers to the
quantum numbers of the single-particle state. The nucleon-nucleon interaction reads
(i=0,w)

V¥ (r—r) =% L, 2V (r ), 2.2)
with '
I,(1,2)=v(1)y’@)y. ()y*(2) ,* (2.4)
2 2
Ve (= Bl A e [ — (B B
4 Ai —m;

—r Vexp [{A? — (Ex —Ex)} %] 2.5)

The input parameters of the model are the coupling constants g7, the meson masses
m; and the cut-off energies A;. These energies A; represent phenomenologically the
effect of vertex corrections which actually go beyond the Hartree—Fock approach.
The derivation of the Hartree-Fock approximation for doubly magic nuclei is
described in refs. '°). It leads to the following single-particle wave equation

(o p+y°m)ilr) +v° J &Er UM (r1, r)bi(r2) = Exdic(r1) (2.6a)
or, more explicitly

(@ p+v°m)de(r) +y U (r1) i (r) + y° J &r,U"(r1, 1) (r2) = Exdbi(ry)
(2.6b)
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where the local Hartree potential is given by

U=y 3 [l Vin-rhe e, @.7)
while the non-local Fock component reads

Ui r) = =" ¥ 61V (r=rahas(ry) . (2.8)

In egs. (2.7) and (2.8) the sum over j runs over all occupied orbitals. Note that eqs.
(2.6a)~(2.8) are formally identical to those encountered in the non-relativistic
Hartree-Fock approximation.

2.2. HARTREE-FOCK MEAN FIELD APPROXIMATION IN NUCLEAR MATTER

Most of the present paper is devoted to the case of nuclear matter, in which eqgs.
(2.6a)—(2.8) constderably simplify. Indeed, all spinors then are normalized plane
waves:

éu(ry=u(k)exp (ik - r), (2.9)

where we for simplicity drop explicit reference to the spin and isospin variables. The
sum over j in egs. (2.7) and (2.8) runs over values j = | j| < kg; the Fermi momentum
kg is related to the baryon density by the familiar equation

2
p=3 k3. (2.10)
T
The Hartree component is given by
Utro=v" ¥ f &rau' DV = rau(j), (2.11)
J<kr

while one has

J. &Er,U (ry, 1) (r)=—y" ¥ _[ &r, u'(j) Ve (|r —ra))

j<kg
xe T () (r) (2.12)
= U (k)u(ry) . (2.13)

Eq. (2.13) reflects the fact that in a uniform medium the non-local potential
US(ry, 12) only depends on r; —r,. We have for simplicity used the notation U¥ (k)
to denote the Fourier transform of US(r - r2|). The quantity U (k) is represented
by a 4 X 4 matrix in spinor space. Note the intimate relationship between momentum
(k) dependence and non-locality.
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2.3. SELF-CONSISTENT REQUIREMENTS

In order to calculate the Hartree-Fock potential we still need to specify the nature
of the spinors u(j). In the spirit of the mean field approximation, it appears most
natura] to take into account the fact that each nucleon feels a self-consistent average

potential, i.e. to adopt for u () a spinor which is the normalized solution of the Dirac
equation

{o k+y°Im+ UM+ UN ) Buk) = Eu(k) . (2.14)
Let us first consider the Hartree mean field approximation. Then, a few elementary
manipulations lead to
(k> +mi)' "+ my

0 (2.15
ki 15)

ki+ ik, a

u(k)= Oy

in the case of a spin-up nucleon. Here, Qy is a normalization factor chosen such that
u+(k)u(k) =1, and the effective mass my is given by my=m+UE, with

U =—p.g2/mZ, (2.16)

4 kF 3 mH
- e )
Ps Q) L k(k2+mf[)1/2' (2.17)

The Hartree potential is given by ‘
Ut=1U7 +4°U}, (2.18)
where I is the 4 X 4 unit matrix and where
Us =pgl/ms,. | (2.19)
The following dispersion relation connects k and E,
(Ee~UG Y =k>+(m+UMY. (2.20)
The kinetic + rest mass energy of nucleon k reads
Hk) = (¢l k+y°mldp) = (mmyu+ k) (m +k2) V2, (2.21)
while its potential energy is given by

UK) = (S TUT + v UL |y = UN + Ulmyg(k>+ m2) V2 . (2.22)

The average energy per nucleon is equal to

kF
m +B_ 3k:3 J' k* dk[9 (k) +3u (k)]. (2.23)
A o
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If one had calculated the nuclear field by using first-order perturbation theory in
the coupling constants g7 while neglecting the exchange (Fock) term, one would have
obtained egs. (2.16)-(2.23) for the direct term with, however, my everywhere
replaced by the bare nucleon mass m [ref. ®)]. This first-order approximation could
also be called the “Hartree” approximation. Here, however, we have assumed in eq.
(2.15) that each nucleon feels the average potential. The corresponding average
energy (2.23) is identical to that obtained by Walecka ) in his “mean field”
approximation. That is why we call the present approximation the Hartree mean field
approximation.

We now introduce the Hartree—Fock mean field approximation for the average
nucleon-nucleus potential. It can be written as the sum of a Hartree and of a Fock
component. The Hartree component U still has the form (2.18); a few manipula-
tions based on egs. (2.2)~(2.5) and (2.12), (2.13) show that the Fock (exchange)
component U¥ (k) has the form

~

UTk)=TUS (k) +y°Ug (k) + - % Ut k), (2.24)

where U (k), U§ (k) and U¥ (k) are scalar functions of k. For instance, U< (k) reads
(i=0,0)

U (k)= =" g A ["F 3.[ ¥, u " (N ()
® Y P (2m)’ Ai—mi o J (k_]')2+m?”‘(Ek_Ej)

5~ (m; (_)Ai):l »
(2.25)

where we wrote explicitly the sum over the spin degrees of freedom (s). Note that
w-exchange also yields a contribution to UT (k). We still have to specify the spinor
u®(j). In keeping with the spirit of the mean field approximation, we take for u®(j)
the solution of the Dirac equation

(@ k+y [m+ U+ U ()} k) = Exu® (k) . (2.26)
In the case of a spin-up nucleon, for instance, this yields

[k3 + m}zw(k)]uz + mur(k)

u(k) = Qnr ko , (2.27)
.
where
Que={20 +mb) (kS +me) "+ el (2.28)
The “effective mass” myg(k) reads
mur(k)=m+ Uyk), (2.29)
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with
Uilk)= U +U; (k) ; (2.30)

the vector k, is given by

k
kV:k+Uf(k)~k-. (2.31)

The following dispersion relation connects Ey and k:
[Ex — Uo(k)F = k3 +miw (k) , (2.32)
with
Uok)=Ug + Ug (k) . (2.33)

The explicit expressions of the potentials are the following. The Hartree potential

is still given by eqgs. (2.16), (2.18) and (2.19), where the scalar density p; is now given
by

4 J’kF 3. mHF(]')
0

s =TT T3 — 75 - 2.34
=G’ e Yt min ()T (2:34)
The Fock potential is given by eq. (2.24) with
g A2 Ky
UL = {555 5 | @i (D e 2
167~ A,—m, Jo
x([mi—u«~m<k—f)“]—[m(,eAc,D}w{a«m}, (2.35)
g 42 ke
F _ o o 3. 2 _ i Y -1 _ —1
U500 = {1525 22 [ @md = o=l =T Do 4,17
+2{o > w}, (2.36)
gz A2 ke
Ut (0 ={- 525 otk [t e
167 Ag-*‘m(,- 0

X ([t = (k= (k=] Img e AT ]+ 2lo o).
2.37)

Bolsterli *) and Chin ©) performed a calculation of the average potential by using
perturbation theory limited to first-order in the coupling constants g:. They obtained
the same results as above (with however A; - o since they did not introduce cut-off
factors), with the difference that everywhere the effective mass myg was replaced by
the bare nucleon mass m and that moreover the vector j, is replaced by j. As we
described, this difference originates from our use of the self-consistent equation
(2.27) for the spinors, while Bolsterli and Chin used free plane waves in keeping with

L
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a first-order calculation. That is why we refer to the present approximation as the

Hartree~-Fock mean field approximation. The quantitative importance of the self-
consistency will be illustrated in sect. 4.

2.4. LORENTZ COMPONENTS OF THE RELATIVISTIC POTENTIAL

In the present sectlon we show that there exist several ways of writing the
relativistic field U™ as a sum of terms which have well-defined Lorentz trans-
formation properties. Egs. (2.18) and (2.24) yield U™ in the form

U™ k) =TUM (k) ++° U”F(k)+'y-£UvF(k). (2.38)

This potential is applied to the spinor u(k), eq. (2.27). The Dirac equation (2.26)
gives

2

Y= UN) = o ()Tu k) (2.39)

k
. k =
- ku(k) X

Using this result in eq (2 38) we obtain the following relativistic potential which is

fully equivalent to U" (k) and which is the sum of only a scalar and the fourth
component of a vector:

kmyr(k)

_ pyHF
UHF(k):I{USHF(k)__ s UVF(k)}-FyO{UyF(kH—k[Ek Uy (k)]

k- k, *U”‘(k)}'
(2.40)

Conversely, some treatments lead to an expression for the relativistic single-
particle field which is the sum of four terms with well-defined Lorentz transformation
properties. This would for instance result from the application of Miller’s
transformation *°), as we now show. One can use the identity

u ) u k) 1S k) = 8,51 (k) (2.41)

to define a potential U”F(k) which is fully equivalent to U™ (k), in the sense that
U™ u® k)= 0" )u® k) , (2.42)
U (k)= U™ k) Y u® ) u® k)" . (2.43)

One can then use the following relation ')

1

uP)u k) =5 T [ k) yau® k)", (2.44)

A=1

[+

I

where the matrices y* are the standard linearly independent products of Dirac
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matrices, namely y* = I, v*, v, ¥’v*, **. One finds that U7 does not have the
form (2.38). One has

(2.45)

Zu(s)( ) (i)(k) - { mHF(k) 0 a-k, }

K+ mZ Y T mae

Eqs. (2.44) and (2.45) give U"Fin the form

e

~ HF k
U™ (k)= U (k) +y U () +y - OV (k) + vy - —

~HF
X kUt (k). (2.46)

By using a procedure analogous to the one which leads from eq. (2.38) to eq. (2.40),
one can show that in the case of symmetric nuclear matter it is possible to find a
potential which is fully equivalent to the most general form (2.46) and which has
either one of the simple forms Ia(k)+y°b(k)+yoy - kc(k), or Id(k)+~ - ke(k)+
yoy - kf(k), or y°g(k)++y - kh(k)+voy - ki (k). ,

The existence of various equivalent values of the relativistic Hartree—Fock ﬁeld is
not surprising since there exists an infinite number of 4 X4 matrices U which are
solutions of the equation

Uu (k)= U™k = u k), (2.47)

where 1® (k) and ¢ ®' (k) are given spinors. Indeed, eq. (2.47) represents a set of only
four equations for the 16 unknown components of U. We emphasize that all these
relativistic (matrix) potentials are fully equivalent in the sense that they yield the
same values for all physical observables. The flexibility of the choice of the single-
particle potential may be of practical interest. Indeed, it might be possible that one
form of the potential exists in which the Lorentz components are all small. This
would greatly facilitate the derivation of a non-relativistic limit. In the following, we
shall for definiteness adopt the representation specified by eqgs. (2.30)-(2.38).

2.5. AVERAGE ENERGY PER NUCLEON

In the Hartree—Fock mean field approximation, the potential energy of a nucleon
with momentum k reads

UM (K)mue+ UL Kk, - k/k
[k;li m?IF]I/Z ' (248)

UKk =ulk) U uk)= U (k)+

The kinetic +rest mass energy of nucleon k is given by

H (k) =ulk) (- k+y°m)uk)= (mmue+ky - )k +mue) V2. (2.49)

The average energy per nucleon is obtained by substituting these expressions in eq.
(2.23).
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3. Schrodinger-equivalent potential

3.1. INTRODUCTION

The Dirac equation (2.6a) can be solved to find the single-particle bound state
energies E; and wave functions ¢ (r), from which the ground state properties of
nuclei can be investigated 1917 'In the case of positive energies, one can also solve
the four-component Dirac equation (2.6a) in order to obtain the scattering spinor
&r(r) at energy E, from which elastic scattering phasc shifts can be obtained and
compared with experimental values %), However, the comparison between a
theoretical approach and nuclear reaction data usually proceeds via an intermediate
quantity, namely the average nucleon-nucleus potential. The latter is determined
empirically from the analysis of the data with a non-relativistic two-component
Schrddinger equation. The purpose of the present section is to construct a non-
relativistic 2 X 2 potential, which can thus be used in conjunction with a Schrodinger
equation, and which yields exactly the same bound state energies and elastic
scattering phase shifts as the relativistic 4x 4 single-particle potential U™, This
“Schrddinger-equivalent potential” can be compared with the real part of the
empirical optical-model potential at positive energy, or with the empirical shell-
model potential at negative energy. It has been constructed in refs. ') in the case
of the Hartree approximation. We shall see that the non-locality which is charac-
teristic of the Hartree—Fock potential introduces some new features.

3.2. FINITE NUCLEI

It has been shown by Miller 2%) that one can replace the non-local potential
U (r, r') by alocal but state-dependent potential U ™(r). For simplicity we drop the
upper index (k) which refers to the state dependence. In the case of doubly closed
shell nuclei, the Dirac-Hartree-Fock equation then reads b

{a- p+vy°[m+Ud)+y°Uo(r) +v - Ulr)}p =Ed, 3.1)

with U,(r)= U,(r)r/r. Let us write

& =(‘§:) . (3.2)

where d;> and ¢ < denote the large and the small components of ¢, respectively. The
Dirac equation (3.1) yields the following two coupled equations

o [p+UNd+lm+ U+ Us(r)—Eld-=0, (3.3a)
o [p+ UMb +[Us(r)—Ur)~E-mld=0, (3.3b)

One can eliminate the small components ¢ by applying the operafor o [p+ U]
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from the left to eq. (3.3b). After a few manipulations one obtains

o .

rL+ Crs e)”dL =ki%b-, (3.4)

{tp+ Uv<r>]2+2m[ue<r; e)+ Usol(rs €)

with &€ = E —m while k2 = 2me + ¢~ is the momentum of the incident nucleon and

U U

Ud(r; €)= Ud(r)+ Up(r) + + Us(r) % (3.5)

En* 2m
1 0
Usolrs €)= =@m)™" —[In (=Us(r) + Us(n) + E+m)], (3.6)
é(r; g)= —ir YU o (r; )r - p+rU(0)]. ’ 3.7
Eq. (3.4) can be written in the form
2 2
p ~ o L) ~ ks - :
~—+ + >=1 P> .
<2m Uet Use. ¢ 2m ¢ (3.8)
where
U.=U.+C+@2m) [UZ+{p, U}]. (3.9)

Eq. (3.8) formally resembles the Schrodinger equation. However, we point out that
U. involves the operator p = —iV. Hence, U. is not a local operator and is therefore
not comparable with the phenomenological local nucleon-nucleus potential.

In order to obtain a Schrodinger-type equation with a local potential, let us
introduce the function

¢=(r)= {exp iLr U.(1) dt}d;>(r). (3.10)
One can easily check that ¢-. fulfills the equation
(ﬁZ—+ Udlrs )+ Usors ) 54 COrs ) )b = K- (3.11)
2m r ’ ’
where
C(rie)=—ir 'Uso(r;e)r-p. (3.12)

We note that the derivative (and thus non-local) term C(r; &) is present even in the
Hartree approximation. Another transformation than (3.10) exists which yields a
local potential. We do not give it here since C(r; £) is in practice negligible. We
henceforth omit it. Eq. (3.11) is now a Schrodinger-type equation which involves the
local potential U.(r; &). It is thus the latter quantity that we should compare with the
real part of the phenomenological nucleon-nucleus potential. Indeed, we emphasize
that the wave functions ¢-(r; ) and ¢-(r; €) have the same asymptotic behaviour
for large r, and therefore the same elastic scattering phase shifts. Moreover, the
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" negative (bound) eigenvalues of eqs. (3.4) and (3.11) are equal. Finally we no.te that,
in contradistinction with U., the local potential U.(r; &) [eq. (?8.5)] does not involve
the quantity U,(r). This is in keeping with the finding of Miller **) that Uv(r) does not
influence the single-particle energies.

3.3. NUCLEAR MATTER

In nuclear matter, the Dirac~Hartree-Fock equation (3.1) reduces to eq. (2.26),
that we write in the more explicit form

{a : k+y°[m+U§F(k)+7°U?F(k)+v'EUf(k)]}u(k):Ek”(k)-

(3.13)

In analogy with the procedure used in subsect. 3.2, let us search for an equation for
the large components of the spinor

«

u(k):<“>) . (3.14)

U
One obtains after a few manipulations
(m+ U — (B = U ¥+ ki u==0, (3.15)

i.e. the energy-momentum relation (2.32). This can be written in the Schrodinger-
type form
Koo k& (3.16)
2_m+ Ue(ek)—2m , _

where ko is the momentum of a free nucleon with energy E; = &, + m, while

Ue(Ek)_ Ue(gk)+m U, +2m (Uv) »

Uder)= U (k) + Ug" (k) +Qm) {LUT ()P -[UG" (k)F} + % Us* (k).
(3.18)

This notation is consistent with the one used in eqgs. (3.5)-(3.9) in the case of'ﬁnite
nuclei. In particular, we note that U, as defined by eq. (3.9) reduces to U.(g,) in the
case of a uniform medium. Qur discussion in subsect. 3.2 indicates that it would be
inappropriate to identify the quantity U.(ex) with the depth of the potential felt by a
nucleon with energy E; = e, + m. Indeed, we argued in connection with eq. (3.9) that
U. is not a local operator. This is reflected in eq. (3.17) by the appearance in front of
U, of the factor k/m which corresponds to a derivative [of exp (ikr)] term in the
potential field. Our derivation of the Schrddinger-type equation (3.11) demonstrates
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that the quantity. which should be identified with the depth of the local non-
relativistic potential felt by a nucleon with energy Ey is the Schridinger-equivalent
potential Uc(e,) defined by eq. (3.18). We note that the quantity U.(e;) does not
explicitly involve the component UF (k) of the relativistic potential, although the

latter slightly influences U.,(e,) via the energy-momentum relation (3.15) which
connects k and g,.

3.4. LOCAL DENSITY APPROXIMATION

We now briefly indicate one simple way of constructing a local nucleon-nucleus
potential from the nuclear matter results. The quantity U.(e.) defined in eq. (3.18)
depends on the nucleon energy E; = g, +m and on the Fermi momentum ke Letus
explicitly indicate the latter dependence by writing

Ue(s) = Ue(kF’ 6) H (319)

where for simplicity we dropped the index k on ex. The simplest local density

approximation consists in relating ky to the radial distance r from the nuclear centre
by the equation

()= kR0, (3.20)
w

where p(r) is the empirical matter distribution in the target nucleus. This yields the

following approximation for the local Schrédinger-equivalent potential in- a finite
nucleus

Ucr; €)= Udkg(r); &) . (3.21)

Other local density approximations could be used. For instance, one could fold the
contribution U{ of the o-meson to U'T according to the recipe

Ui ()= C?J & U7 (ke(rDlr =] {exp (—|r—r'm,) —exp (=lr=rla,)},

(3.22)

where C¢ is a normalization constant, and correspondingly with the other
contributions **). This folding recipe is an improvement over the simple Jocal-density
approximation (3.21) because it includes the effect of the range of the effective

nucleon-nucleon interaction *?).
4. Numerical results

4.1. INPUT PARAMETERS

In ref. ') we presented some numerical results obtained in the framework of the
relativistic Hartree mean field approximation. In order to illustrate the modifications
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introduced by the Fock contribution, we shall below usually adopt the same input
parameters as in ref. 14), namely

m,=550MeV,  g2/4wr=6.57, A,=1530MeV,
m,=782.8MeV, g2/4m=925, A,=1530MeV . S (4.1)

This parameter set is identical to the one used by Brockmann °) in his investigation of
%0 and of *°Ca. In subsects. 4.3-4.5, we shall use another set of parameters, chosen
insuch a way that the empirical saturation point of nuclear matter coincides with that
calculated from the relativistic Hartree~Fock mean field approximation.

4.2. RELATIVISTIC SINGLE-PARTICLE POTENTIAL

The relativistic Hartree-Fock mean field U™ is a 4 x4 matrix which can be
written in the form (2.38). The direct part U™ has been calculated in ref. Y in the
framework of the Hartree mean field approximation. Its scalar component UL is
now slightly modified because it involves the Hartree-Fock effective mass my [eq.
(2.29)]instead of the Hartree effective mass my. At kg=1.35fm ' for instance, U
is found equal to —325.6 MeV in the case of the relativistic Hartree-Fock mean field
approximation, while in ref. '*) we had found U} = ~329 MeV in the framework
of the relativistic Hartree mean field approximation. Note that the first-order
relativistic Hartree approximation, which consists in setting my =m in eq. (2.17),
would yield U =-338.8 MeV. This illustrates the role of the self-consistent
requirements.

We now focus on the Fock components. In fig. 1, we show the value of the scalar
component U} (k). It is the sum of two contributions due to o~ and to w-exchange,
respectively. Note that the vector meson w yiclds a contribution to the scalar
component of the Fock potential, while in the case of the relativistic Hartree mean

50 = T T T T
= — kg = 1.35fm™!

{MeV)

U

-0 .

k {(fm™)
Fig. 1. The full curve represents the dependence upon k of the scalar component UF (k) of the Fock
contribution, for kg = 1.35 fm™" and for the input parameters (4.1). The long dashes and the short dashes
show the contributions to UsF(k) of o-exchange and of w-exchange, respectively.
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field approximation the vector meson only contributes to the quantity U,. The
quantity U! (k) tends towards zero as k - o0, as expected from a Fock {exchange)
contribution,

Fig. 2 shows the value of the Fock contribution to the fourth component U§ (k) of
the vector field. It is the sum of two contributions respectively associated with

——
= -1
100} kg =1.35 fm

{MeV)

F
UO

k (tm™)

Fig. 2. Sameasfig. 1, in the case of the quantity U§ (k) which is the fourth component of the vector part of
the relativistic Fock potential.

w-exchange and with o-exchange. The quantity U¥ (k) shown in fig. 3 corresponds
to the spatial components of the vector part of the relativistic mean field. These
components vanish in the case of the Hartree mean field approximation which has
been considered in ref. '*). The value of U\ (k) is much smaller than those of Ut (k)
and of U§ (k). We moreover recall [see eq. (3.11)] that in the case of a finite nucleus
U does not affect at all the value of the single-particle bound state energies nor of
the elastic scattering phase shifts, no matter how large Ut is. We note, however, that
U influences the value of the single-particle wave function at finite distance.

0 - T T T T T T
% kg =1.35fm”" -
N J—
R St
QL T
e~ s \\."\‘____’,,// _________________ i
> | \ =TT
K N —
LLD> 2 N 2)4(» 1
——0
| | I 1 1 |
0 2 4 6

kK (tm™)

Fig. 3. Same as fig. 1, in the case of the quantity U¥ (k) which corresponds to the spatial components of
the vector pért of the relativistic Fock potential.
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B/A {Mev)

0.8 1.2 1.6

Fig. 4. Average binding energy per nucleon as calculated from the relativistic Hartree mean field

approximation (full curve) and from the relativistic Hartree~Fock mean field approximation (long dashes),

for the input parameters (4.1). The short dashes correspond to the Hartree-Fock results derived from the
input parameters (4.2). The empirical saturation point is represented by an open square.

4.3. BINDING ENERGY

In the case of the relativistic Hartree mean field approximation, the average
binding energy per nucleon has been calculated in ref. ) with the input parameters
(4.1); its dependence upon the Fermi momentum is represented by the full curve in
fig. 4. There, the long dashes show the average binding energy per nucleon as
calculated from the relativistic Hartree-Fock mean field approximation, again for
the input parameters (4.1). We note that the Fock contribution yields a significant
contribution to B/ A.

The input parameters are fitted to some observables and depend upon the
approximation (e.g. Hartree or Hartree—Fock) which is used. They moreover contain
renormalization corrections. Hence, they should not be directly identified with the
parameters encountered in one-boson exchanged potentials. They should rather be
considered as effective coupling constants and masses. It is possible to choose the
input parameters in such a way that the empirical saturation point (B/A =
—15.6 MeV, kg=1.36fm ') is exactly reproduced by the relativistic Hartree—Fock
mean field approximation. Note that in the latter B/A depends upon all six input
parameters, while it only depends upon the two quantities g+/m, and g,,/m,, in the
Hartree mean field approximation®). Here, we choose to adjust the coupling
constants g, and g,,. The short dashes in fig. 4 correspond to the Hartree—Fock mean
field approximation with the following values for the input parameters

ms, =550 MeV , g2/4m =747, A, =1530MeV ,

(4.2)

m, =782.8 MeV , ga/4m=10.15, A, =1530MeV .,

We note that the parameter sets (4.1) and (4.2) are not very different. It is also
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striking that these values are close to those which appear in one-boson exchange
potentials for free nucleon-nucleon scattering °). These effective meson parameters
will of course change if one considers the exchange of other mesons or if one
considers some effects of the nucleon-nucleon correlations '>7), However, their
order of magnitude is unlikely to be affected. Hence, we expect that relatjvistic
effects, such as those considered in the present paper, will remain quite sizeable.

In the relativistic Hartree-Fock approximation, each nucleon with momentum
k <kg can be ascribed a kinetic energy % (k) and a potential energy U (k) [eqs.
(2.49), (2.48)]. The single-particle potential energy % (k) should not be confused
with the Hartree-Fock approximation to the self-energy as defined in many-body
theory %), i.e. with the 4 X4 matrix U™ or with the Schrédingef—equivalent

potential U.. The nucleon potential energy % (k) as calculated from eq. (2.48) is

represented by the full curve in fig. 5. There, the importance of the self-consistent
requirements characteristic of a mean field approximation is illustrated by the
difference between the full curve and the dashed curve. The latter is obtained by
dropping all the self-consistent requirements, i.e. by performing a lowest-order
calculation in the coupling constants.

T T T

50F kg =1.35 fm’! i

(MeV)

Ulk)

k {(tm™h

Fig. 5. The full curve shows the potential energy of a nucleon with momentum k as calculated from the
input parameters (4.1) in the framework of the relativistic Hartree~Fock mean field approximation. The
long dashes are obtained by dropping all the self-consistent requirements,

4.4. SCHRODINGER-EQUIVALENT POTENTIAL

We showed in subsect. 3.3 that U.(e) can be identified with the depth of the
standard (non-relativistic) average potential felt by a nucleon with energy e.
The expression (3.18) of U.(s) is formally identical to the one encountered
in the framework of the relativistic Hartree approximation '*). In particular, it does
not explicitly depend on the spatial components of the vector part of the relativistic
potential. Fig. 6 gives the value of U,(e) as obtained from the parameter set (4.1) in
the framework of the relativistic Hartree—Fock mean field approximation. A

e g
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Fig. 6. Dependence upon ¢ of the Schrédinger-equivalent potential U.(¢) as calculated from the
relativistic Hartree-Fock approximation (3.18) with the input parameters (4.1), for the Fermi momenta
kp=1.35fm™" (full curve) and kp=1.10fm™* (dashed curve), respectively.

comparison wit}; fig. 2 of ref. '*) shows that the present results are less attractive than
those derived from the relativistic Hartree mean field approximation with the same
input parameters (4.1). This is mainly due to the fact that the attractive Fock
component U is smaller in absolute magnitude than the repulsive Fock component
Us. The ¢-dependence of U, is usually characterized by the quantity

dU.(e)

=127 4.3
m de “.3)

m

For kx=1.35fm " and for the input parameters (4.1), one finds #1/m = 0.73 for the
Hartree-Fock as well as for the Hartree approximation. This may appear somewhat
surprising in view of eq. (3.18) and of the fact that Uyt is sizeably larger than U,
However, one must keep in mind that in the Hartree~Fock approximation all the

-50 T ]
>
Q
=
QL
o
-1 \
— kF =1.35fm \‘
-~~~ kg =110 fm™! \
25‘ 1 ! ] 1 \l
1 5 10 50 100 500 1000
£ (MeV)

Fig. 7. Same as fig. 6, for the input parameters (4.2).
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terms on the r.h.s. of eq. (3.18) depend upon &, Note that the Schrodinger-
equivalent potential U, is quite different from the potential energy 4 of a nucleon
with the same momentum k. This is exhibited by the comparison between figs. 5 and
6.

In the case of the relativistic Hartree—Fock mean field approximation, the
parameter set (4.2) may be considered as somewhat more realistic than (4.1) since it
reproduces the empirical saturation point of nuclear matter. Fig. 7 shows the
corresponding value of U,(e); in this case, one finds m/m =0.70 for kp=1.35fm '
This result is in very good agreement with the energy dependence of the depth of the
real part of the empirical optical-model potential.

4.5. WINE-BOTTLE BOTTOM SHAPE

Fig. 7 shows that the Schrédinger-equivalent potential changes sign at a lower
energy (g0= 162 MeV) for kp=1.35 fm™! (which corresponds to the density in the
nuclear interior) than for kp=1.10fm™! (€0 =280 MeV) (which corresponds to the
density at the nuclear surface). Like in the case of the Hartree mean field
approximation %), the average nucleon-nucleus potential U,(r; ¢) as constructed
from the local density approximation (3.21) will therefore display an attractive
pocket at the nuclear surface in the intermediate energy range. This “wine-bottle
bottom shape” is exhibited by the full curve in fig. 8, which has been obtained from
the parameter set (4.2), and by taking for p(r) in eq. (3.20) the nuclear density
distribution as parametrized by Negele *°). The origin of the wine-bottle bottom
shape is the same as that described in ref. ') in the case of the Hartree mean field
approximation. It lies in the quadratic terms contained inside the curly brackets on
the r.h.s. of eq. (3.18), which are typical of a relativistic approach. More specifically,
the wine-bottle bottom shape is due to the fact that the content of the curly brackets

10

€ =180 MeV

Ue [MeV)

-~ — Elton

~—— RHF

t 1 ] 1 1 I

0 2 4 6
r {fm)
Fig. 8. The full curve represents the Schrodinger-equivalent potential in the case of *°Fe at e=180MeV,
as calculated from the local density approximation (3.21) in the framework of the relativistic Hartree—
Fock mean field approximation with the input parameters (4.2); the dashes show the potential well
empirically determined by Elton 2“) from the analysis of proton scattering data.
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ineq. (3.18) is positive and approximately increases like p’, while the other terms are
proportional to p. For values of kg larger than 1.35 fm™’, the content of the curly
brackets becomes so important that |U.(¢ = 0)| then decreases with increasing k.
For instance, U.(e =0) is found equal to —32.8 MeV for kr=1.50fm™" and to
~34.5MeV for kg=1.35 fm"l, for the Hartree—-Fock mean field approximation with
the input parameters (4.1).

The wine-bottle bottom shape which had been found at intermediate energy in the
framework of the relativistic Hartree mean field approximation is thus maintained in
the relativistic Hartree-Fock mean field approximation. It is even slightly more
pronounced in the latter case because the quadratic terms in eq. (3.18) are relatively
more important. If the difference between the masses m, and m,, of the two mesons
would be taken into account, for instance by using the folding prescription (3.22)
[ref. )], the attractive surface pocket would become somewhat wider and would be
slightly shifted towards the nuclear exterior '%).

5. Summary and conclusions

In sect. 2, we extended Walecka’s Hartree mean field approximation in nuclear
matter °) in order to include the Fock contribution. This was performed in close
analogy with the relativistic Hartree-Fock approximation for finite nuclei studied by
Miller and Green ') and by Brockmann and Weise *'"). The nature of the self-
consistency requirements characteristic of a mean field approach to nuclear matter
theory were stressed and their quantitative importance has been illustrated in sect. 4.

The structure of the relativistic single-particle potential is qualitatively different in
the case of the Hartree-Fock than in the case of the Hartree mean field approxima-
tion. The main differences consist in the fact that all the components of the relativistic
single-particle potential are non-local, and in the appearance of non-vanishing
spatial components for the vector part of the potential; the latter statement must be
taken with some caution because in nuclear matter there exist several ways of writing
the Hartree-Fock potential as a sum of terms which have well-defined Lorentz-
transformation properties (subsect. 2.4). These differences have been taken into
account in sect. 3 where we constructed a non-relativistic potential which is local and
equivalent to the relativistic Hartree~Fock field, equivalent in the sense that it yields
exactly the same bound state energies and elastic scattering phase shifts.

Sect. 4 presents some numerical results. We used two sets of input parameters. The
first one is identical to that used in refs. 9’14) in connection with the Hartree mean
field approximation. The second one is such that the calculated saturation point of
nuclear matter coincides with the empirical value. Our numerical results indicate that
the inclusion of the Fock contribution does not affect the semi-quantitative success of
the relativistic Hartree approximation >'*) in accounting for the single-particle
properties of nuclear matter and of finite nuclei. Some of our conclusions will
admittedly have to be adapted when the model will be progressively improved for
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nstance by considering the effect of the exchange of mesons other than ¢ and w, or
he effect of nucleon-nucleon correlations '>'”). Nevertheless, the main charac-
eristics of the present relativistic models, namely the appearance of strong fields
vith definite Lorentz-transformation properties, is likely to subsist. The existence of
hese strong fields seems to imply sizeable relativistic effects, which in the present

“ontext mainly concern the spin-orbit component of the Schrodinger-equivalent

otential, and the existence of a wine-bottle bottom shape for the Schrodinger-
:quivalent potential at intermediate energy. We believe that a gradual understand-
ng of such relativistic effects may best be achieved by the study of simple models like
he one studied in the present work.
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