

# Chaotic Bohmian trajectories for the hydrogen atom

A. Cesa, W. Struyve and J. Martin

Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège, 4000 Liège, Belgium



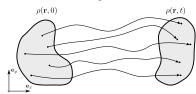
# Introduction

In 1952, David Bohm proposed an alternative formulation of quantum mechanics which is deterministic and non local. More precisely, a single-particle quantum system is described in part by its wave function  $\psi(\mathbf{r},t)$  and in part by the actual position  $\mathbf{r}$  of the particle [1]

- Wave function evolves according to usual Schrödinger equation
- Deterministic trajectories satisfy the guiding equation

$$\frac{d\mathbf{r}}{dt} = \mathbf{v}_B(\mathbf{r}, t) \equiv \frac{\hbar}{m} \operatorname{Im} \left( \frac{\mathbf{\nabla} \psi(\mathbf{r}, t)}{\psi(\mathbf{r}, t)} \right)$$

• Unknown initial position  $\Leftrightarrow$  probabilistic behaviour Initial positions distributed according to  $\rho(\mathbf{r},0) = |\psi(\mathbf{r},0)|^2$  $\Rightarrow$  Same results as standard quantum mechanics



#### Chaos and Bohmian mechanics

Relaxation [2]:  $\rho(\mathbf{r},0) \neq |\psi(\mathbf{r},0)|^2 + \text{chaos} \Rightarrow \rho(\mathbf{r},t) \rightarrow |\psi(\mathbf{r},t)|^2$ Node of the wave function:  $\psi(\mathbf{r}_{\text{node}},t) = 0$ 

$$\mathbf{v}_B(\mathbf{r},t) \to \infty$$
 if  $\mathbf{r} = \mathbf{r}_{\text{node}}$ 

#### Questions addressed in this work

Moving nodes ⇔ chaotic Bohmian trajectories [3]

Particle in 2d Coulomb potential  $\stackrel{?}{\Rightarrow}$  chaotic Bohmian trajectories

## Probing chaotic behaviour

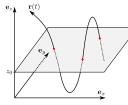
Trajectories in n-dimensional space

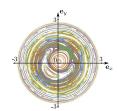
Explicit time dependence of  $\mathbf{v}_B \Rightarrow n+1$  effective degrees of freedom

Chaos  $\Rightarrow$  exponential sensitivity to initial conditions

 $\Rightarrow n-c \geq 3$  with c the number of constants of motion

# Poincaré section

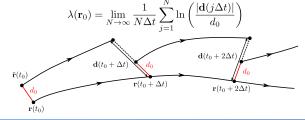




Periodicity :  $\mathbf{v}_B(\mathbf{r}, t + \tau) = \mathbf{v}_B(\mathbf{r}, t) \Rightarrow$  stroboscopic view

#### Maximum Lyapunov exponent

Quantifying exponential divergence of nearby trajectories [4]



# 2d hydrogen atom

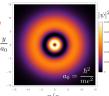
#### 2d Coulomb potential $V(\mathbf{r}) = -e^2/r$

Eigenstates of  $\hat{H}$  and  $\hat{L}_z$ 

$$\phi_{n,l}(r,\varphi) = \mathcal{N}_{n,l}(\beta_n r)^{|l|} e^{-\frac{\beta_n r}{2}} L_{n-|l|-1}^{2|l|}(\beta_n r) e^{il\varphi}$$
 with  $\beta_n = (2me^2)/[\hbar^2(n-1/2)]$  and energy



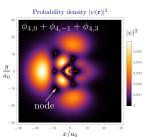
 $n = 1, 2, \dots$  and  $|l| = 0, 1, \dots, n-1$ 

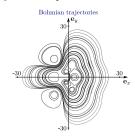


# Results for 2d hydrogen atom

#### Stationary states

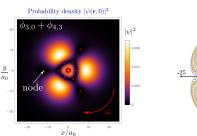
Wave function and Bohmian velocity field independent of time

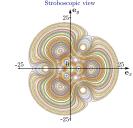




• Two degrees of freedom  $\Rightarrow$  regular trajectories  $(\lambda(\mathbf{r_0}) \leq 0)$ 

Two eigenstates of  $\neq$  E :  $\psi(\mathbf{r},t)=c_1\phi_{n_1,l_1}(\mathbf{r},t)+c_2\phi_{n_2,l_2}(\mathbf{r},t)$ 

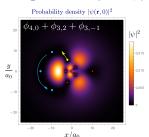


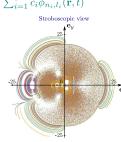


- Regular trajectories even with large number of moving nodes!
- Rigid rotation of  $|\psi(\mathbf{r},t)|^2$  and  $\mathbf{v}_B(\mathbf{r},t)$  with angular velocity  $\omega = (E_a E_b)/(\hbar(l_a l_b))$

Velocity field  $\mathbf{v}_B(\mathbf{r})$  independent of time in a frame rotating at  $\omega \Rightarrow$  only two degrees of freedom and thus no chaos  $(\lambda(\mathbf{r_0}) \leq 0)$ 

Three eigenstates of  $\neq \mathbf{E}$ :  $\psi(\mathbf{r},t) = \sum_{i=1}^{3} c_i \phi_{n_i,l_i}(\mathbf{r},t)$ 





- Nodes of  $\psi$  move with  $\neq$  velocities but  $\mathbf{v}_B$  periodic in time
- Both chaotic and regular trajectories
- Chaotic region :  $\lambda(\mathbf{r_0}) \approx 0.1 > 0$

## Conclusion and outlook

#### Particle in a 2d Coulomb potential

- Stationary states and superpositions of two eigenstates of ≠ E
   ⇒ regular trajectories even with many (moving) nodes
- More than two eigenstates of  $\neq$  energies  $\Rightarrow$  chaotic trajectories

Preliminary results: Particle in a 3d Coulomb potential
Stationary states ⇒ chaotic Bohmian trajectories

Motion and number of nodes of the wave function  $\neq$  sufficient condition for emergence of chaos in Bohmian mechanics

To do: Relaxation computation

Bohmian trajectories for entangled states

# References

- [1] D. Bohm, Phys. Rev. **85**, 166 (1952).
- A. Valentini, and H. Westman, Proc. R. Soc. A **461**, 253 (2004).
- [3] D. A. Wisniacki, and E. R. Pujals, Europhys. Lett. 7, 159 (2005).
- [4] G. Benettin, et. al., Phys. Rev. A 14, 2338 (1976).