Chaotic Bohmian trajectories
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Introduction

In 1952, David Bohm proposed an alternative formulation of quantum
mechanics which is deterministic and non local. More precisely, a single-
particle quantum system is described in part by its wave function v (r, t)

and in part by the actual position r of the particle [1]
e Wave function evolves according to usual Schrédinger equation

e Deterministic trajectories satisfy the guiding equation

dr h Vi(r,t)
— =vg(r,t) = —Im | ——~=
dt B(r,1) m < Y(r,t)
e Unknown initial position < probabilistic behaviour
Initial positions distributed according to p(r,0) = |¢(r,0)|?
= Same results as standard quantum mechanics

p(r,0) p(r,t)
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Chaos and Bohmian mechanics
Relaxation [2] : p(r,0) # |¢(r,0)|> + chaos = p(r,t) — [¢(r,t)|?
Node of the wave function : ¥ (rpede,t) =0

vp(r,t) > 00 if r=rpde

Questions addressed in this work

?
Moving nodes < chaotic Bohmian trajectories [3]

Particle in 2d Coulomb potential = chaotic Bohmian trajectories

Probing chaotic behaviour

Trajectories in n-dimensional space
Explicit time dependence of v = n + 1 effective degrees of freedom

Chaos = exponential sensitivity to initial conditions
= n — ¢ > 3 with ¢ the number of constants of motion

Poincaré section
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Periodicity : vp(r,t+ 7) = vg(r,t) = stroboscopic view

Maximum Lyapunov exponent
Quantifying exponential divergence of nearby trajectories [4]
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2d hydrogen atom

2d Coulomb potential V(r) = —e?/r
Eigenstates of Hand L.
Bnr ;
Ona(r0) = Noa (Bur) e L2 (Bur)elte
with B, = (2me?)/[R%(n — 1/2)] and energy 170

me
Bp= e

212(n — 1/2)?

n=1,2,... and |I|=0,1,...,n—1

Results for 2d hydrogen atom

Stationary states
Wave function and Bohmian velocity field independent of time
Probability density [¢(x)|*

Bohmian trajectories
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e Two degrees of freedom = regular trajectories (A(rg) < 0)

Two eigenstates of # E : ¢(r,t) = c1¢n, 1, (r,1) + caPny 1, (1, 1)

Probability density [1(r, 0)? Stroboscopic view

@ /ao
e Regular trajectories even with large number of moving nodes!
¢ Rigid rotation of |1(r,t)|? and vg(r,t) with angular velocity
w=(Eq — Ep)/(Wla — b))

Velocity field vg(r) independent of time in a frame rotating at w
= only two degrees of freedom and thus no chaos (A(rg) < 0)

Three eigenstates of # E : ¢(r,t) = ijl CiPn, 1, (r,t)

Probability density [ (r, 0)[? Stroboscopic view
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Nodes of ¥ move with # velocities but vp periodic in time
Both chaotic and regular trajectories
Chaotic region : A(rg) = 0.1 >0

Conclusion and outlook

Particle in a 2d Coulomb potential
e Stationary states and superpositions of two eigenstates of # E
= regular trajectories even with many (moving) nodes
e More than two eigenstates of # energies = chaotic trajectories

Preliminary results : Particle in a 3d Coulomb potential
Stationary states = chaotic Bohmian trajectories

Motion and number of nodes of the wave function
# sufficient condition for emergence of chaos in Bohmian mechanics

To do : Relaxation computation
Bohmian trajectories for entangled states
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