Does the cover crop residue management affect the soil water availability for plants?

<u>Marie Chélin¹, Nargish Parvin¹, Marie-Pierre Hiel¹, Aurore Degré², Gilles Colinet², Bernard Bodson³, Sarah Garré²</u>

mchelin@ulg.ac.be; sarah.garre@ulg.ac.be

¹AgriculturelsLife, Université de Liège, Gembloux Agro BioTech, Passage des Déportés 2, B-5030 Gembloux, Belgique ²Département BIOSE, Université de Liège, Gembloux Agro BioTech, Passage des Déportés, 2, B-5030 Gembloux, Belgique ³Unité de Phytotechnie des Régions Tempérées et Ferme Expérimentale, Université de Liège, Gembloux Agro BioTech, Passage des Déportés, 2, B-5030 Gembloux, Belgique

Context

Hypothesis:

The late cover crop residue management:

- Limits the formation of crusts at the soil surface (\downarrow raindrop energy)
- Improves the pore network by the root development
- Limits the evaporation during winter

The use of strip-tillage to manage the cover crop residues:

- Limits the formation of crusts at the soil surface during the growing season (\downarrow raindrop energy)
- Limits the creation of a ploughpan in depth

Four modalities studied (Pictures: M.-P Hiel, 2013)

Electrical resistivity tomography (ERT):

- <u>Advantages</u>: few invasive, measurements at a greater scale than traditional methods, adapted to monitor the evolution of soil water content over time
- Principle: injection of current between two electrodes and measurement of the difference of potential between two other electrodes
- <u>Measurement</u>: timelapse bulk electrical resistivity

Determination of the petrophysical relationship:

- Calibration pit: at four different depths, setup of four stainless steel electrodes, a time domain reflectometry (TDR) probe and a temperature sensor
- 4x2 suction cups close to each plot

Experimental setup for each of the treatment:

- At the surface: stainless steel electrodes supported by a plastic grid
- Under ground: electrode sticks with electrode rings

design

plant

Soil water content

Porosity: one of the main factors affecting electrical resisitivity

Validation:

Experimental setup

AgriculturelsLife: an interdisciplinary project

Two TDR probes lacksquareMeteorological data

Space and time consideration:

- Location: Gembloux (Belgium), Cutanic Siltic Luvisol (WRB) \bullet
- Surface: 2x1m, including three rows of maize
- Maximal depth of investigation: ±1.50m
- Resolution: ± 0.15 m
- Interval: from April (maize sowing) to October 2015 (harvesting)
- Frequency: every week

Atmosphere

Collaboration with:

- **N.Parvin**, A.Degré: Evolution of the soil structure
 - Soil hydraulic properties
 - Detailed soil structure thanks to X-ray tomography
- **M.-P Hiel**, B.Bodson: Maize development
 - Number of emerged plants
 - Biomass
 - Leaf Area Index (LAI)
 - Evolution of weed population \bullet
 - Yields and quality of the harvested products lacksquare
 - Presence of diseases and pests
 - Nitrogen uptake by the plants

Soil-water-plant continuum (after Zhuang et al., 2014)

Green T.R., Ahuja L.R. & Benjamin J.G., 2003. Advances and challenges in predicting agricultural management effects on soil hydraulic properties. Geoderma, 116(1–2), pp.3–27. Zhuang J., Yu G.-R. & Nakayama K., 2014. A Series RCL Circuit Theory for Analyzing Non-Steady-State Water Uptake of Maize Plants. Scientific Reports, 4.

Available at: http://www.nature.com/srep/2014/141022/srep06720/full/srep06720.html [Accessed December 1, 2014].