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Batch Mode Reinforcement Learning



  

Reinforcement Learning

Agent Environment

Actions

Observations, Rewards

Examples of rewards:

● Reinforcement Learning (RL) aims at finding a policy maximizing received 
rewards by interacting with the environment



  

Batch Mode Reinforcement Learning

● All the available information is contained in a batch collection of data

● Batch mode RL aims at computing a (near-)optimal policy from this collection of data

Agent Environment

Actions

Observations,
Rewards

Batch mode RL

(near-)optimal policy

Finite collection of trajectories of the agent



  

Formalization

● System dynamics:

● Reward function:

● Performance of a policy

– Expected T-stage return:

– Value-at-risk:



  

Formalization

● The system dynamics, reward function and disturbance probability distribution are 
unknown

● Instead, we have access to a sample of one-step system transitions:



  

Objectives

● Main goal: Finding a "good" policy

● Many associated subproblems:

– Evaluating the performance of a given policy

– Computing performance guarantees and safe policies

– Generating additional sample transitions

– ...



  

Main Difficulties & Usual Approach
Main Difficulties

● Functions are unknown (and not accessible to simulation)

● The state-space and/or the action space are large or continuous

● Highly stochastic environments

Usual Approach

● To combine dynamic programming with function approximators (neural 
networks, regression trees, SVM, linear regression over basis functions, etc)

● Function approximators have two main roles:

– To offer a concise representation of state-action value function for deriving 
value / policy iteration algorithms

– To generalize information contained in the finite sample

Remaining Challenges

● The black box nature of function approximators may have some unwanted 
effects: hazardous generalization, difficulties to compute performance guarantees, 
unefficient use of optimal trajectories, no straightforward sampling strategies,...



  

A New Approach: Synthesizing Artificial 
Trajectories



  

Artificial Trajectories

● Artificial trajectories are (ordered) sequences of elementary pieces of 
trajectories:



  

Estimating the Performances of Policies

● If the system dynamics and the reward function were accessible to simulation, then 

Monte Carlo estimation would allow estimating the performance of h

● We propose an approach that mimics Monte Carlo (MC) estimation by rebuilding p  
artificial trajectories from one-step system transitions

● These artificial trajectories are built so as to minimize the discrepancy (using a 

distance metric ∆) with a classical MC sample that could be obtained by 

simulating the system with the policy h; each one step transition is used at most once

● We average the cumulated returns over the p artificial trajectories to obtain the 

Model-free Monte Carlo estimator (MFMC) of the expected return of h:

Expected Return



  

● Illustration with p=3, T=4

Estimating the Performances of Policies
Monte Carlo Estimator

MODEL OR SIMULATOR 
REQUIRED !



  

Estimating the Performances of Policies

● Illustration with p=3, T=4

Model-free Monte Carlo Estimator



  

Estimating the Performances of Policies
Additionnal Assumptions



  

Estimating the Performances of Policies
Theoretical Results



  

Estimating the Performances of Policies
Experimental Results



  

Estimating the Performances of Policies

● Consider again the p artificial trajectories that were rebuilt by the MFMC estimator

● The Value-at-Risk of the policy h can be straightforwardly estimated as follows: 

Value-at-Risk



  

Deterministic Case: Computing Bounds
Lower Bound from a Single Trajectory



  

Deterministic Case: Computing Bounds
Maximal Bounds



  

Deterministic Case: Computing Bounds
Tightness of Maximal Bounds



  

Inferring Safe Policies
From Lower Bounds to Cautious Policies

● Consider the set of open-loop policies:

● For such policies, bounds can be computed in a similar way

● We can then search for a specific policy for which the associated lower bound is 
maximized:

● A O( T n ² ) algorithm for doing this: the CGRL algorithm (Cautious approach to 
Generalization in RL)



  

Inferring Safe Policies
Convergence



  

Inferring Safe Policies
Experimental Results

● The puddle world benchmark



  

 CGRL     FQI (Fitted Q Iteration)

     

The state space is 

uniformly covered by

the  sample

Information about the

Puddle area is

removed

Inferring Safe Policies
Experimental Results



  

Inferring Safe Policies
Bonus



  

Sampling Strategies

●  Given a sample of system transitions

 How can we determine where to sample additional transitions ?

● We define the set of candidate optimal policies:

● A transition is said compatible with if

 and we denote by the set of all such compatible transitions.

An Artificial Trajectories Viewpoint



  

Sampling Strategies

● Iterative scheme:

with

● Conjecture:

An Artificial Trajectories Viewpoint



  

Connexion to Classic Batch Mode RL
Towards a New Paradigm for Batch Mode RL
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● FQI (evaluation mode) with k-NN:



  

Connexion to Classic Batch Mode RL
Towards a New Paradigm for Batch Mode RL



  

Conclusions

● Rebuilding artificial trajectories: a new approach for batch mode RL

● Several types of problems can be addressed

● Towards a new paradigm for developing new algorithms ?
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