From Bad Models to Good Policies: an Intertwined Story about Energy and Reinforcement Learning

2014 NIPS Workshop « From Bad Models to Good Policies Workshop (Sequential Decision Making under Uncertainty)"

Montreal, December 12th, 2014
Raphael Fonteneau, University of Liège, Belgium
@R_Fonteneau
Joint work with Damien Ernst, Susan A. Murphy, Louis Wehenkel, Quentin Louveaux,
Bernard Boigelot - thanks to many other people and to F.R.S.-FNRS

Outline

Intertwined Stories

Deterministic RL

- Dynamics $x_{t+1}=f\left(x_{t}, u_{t}\right) \quad t=0, \ldots, T-1 \quad T \in \mathbb{N} \backslash\{0\}$

$$
\mathcal{X} \subset \mathbb{R}^{d} \quad \mathcal{U}=\left\{u^{(1)}, \ldots, u^{(m)}\right\}
$$

- Reward function $r_{t}=\rho\left(x_{t}, u_{t}\right) \in \mathbb{R}$
- Return

$$
\forall\left(u_{0}, \ldots, u_{T-1}\right) \in \mathcal{U}^{T}, \quad J\left(u_{0}, \ldots, u_{T-1}\right) \triangleq \sum_{t=0}^{T-1} \rho\left(x_{t}, u_{t}\right)
$$

- Optimality $J_{T}^{*} \triangleq \max _{\left(u_{0}, \ldots, u_{T-1}\right) \in \mathcal{U}^{T}} J\left(u_{0}, \ldots, u_{T-1}\right)$

Batch Mode RL

- Dynamics and reward function are unknown
- Instead, we have access to trajectories (« bad model »):

$$
\begin{gathered}
\mathcal{F}^{(u)}=\left\{\left(x^{(u), k}, r^{(u), k}, y^{(u), k}\right)\right\}_{k=1}^{n^{(u)}} \\
y^{(u), k}=f\left(x^{(u), k}, u\right) \quad r^{(u), k}=\rho\left(x^{(u), k}, u\right) \\
\forall u \in \mathcal{U}, n^{(u)}>0 \quad \mathcal{F}=\mathcal{F}^{(1)} \cup \ldots \cup \mathcal{F}^{(m)}
\end{gathered}
$$

Lipschitz Continuity

$$
\begin{aligned}
\forall\left(x, x^{\prime}\right) \in \mathcal{X}^{2}, \forall u \in \mathcal{U}, \quad\left\|f(x, u)-f\left(x^{\prime}, u\right)\right\| & \leq L_{f}\left\|x-x^{\prime}\right\| \\
\left|\rho(x, u)-\rho\left(x^{\prime}, u\right)\right| & \leq L_{\rho}\left\|x-x^{\prime}\right\|
\end{aligned}
$$

$$
L_{f}, L_{\rho} \in \mathbb{R}
$$

Lipschitz Compatibility

$$
\begin{aligned}
& \mathcal{L}_{\mathcal{F}}^{f}=\left\{f^{\prime}: \mathcal{X} \times \mathcal{U} \rightarrow \mathcal{X} \left\lvert\,\left\{\begin{array}{l}
\forall x^{\prime}, x^{\prime \prime} \in \mathcal{X}, \forall u \in \mathcal{U}, \\
\left\|\prime^{\prime}\left(x^{\prime}, u\right)-f^{\prime}\left(x^{\prime \prime}, u\right)\right\| \leq L_{f}\left\|x^{\prime}-x^{\prime \prime}\right\|, \\
\forall k \in\left\{1, \ldots, n^{(u)}\right\}, f^{\prime}\left(x^{(u), k}, u\right)=f\left(x^{(u), k}, u\right)=y^{(u), k}
\end{array}\right\}\right.\right. \\
& \mathcal{L}_{\mathcal{F}}^{\rho}=\left\{\rho^{\prime}: \mathcal{X} \times \mathcal{U} \rightarrow \mathbb{R} \left\lvert\,\left\{\begin{array}{l}
\forall x^{\prime}, x^{\prime \prime} \in \mathcal{X}, \forall u \in \mathcal{U}, \\
\left|\rho^{\prime}\left(x^{\prime}, u\right)-\rho^{\prime}\left(x^{\prime \prime}, u\right)\right| \leq L_{\rho}\left\|x^{\prime}-x^{\prime \prime}\right\|, \\
\forall k \in\left\{1, \ldots, n^{(u)}\right\}, \rho^{\prime}\left(x^{(u), k}, u\right)=\rho\left(x^{(u), k}, u\right)=r^{(u), k}
\end{array}\right\}\right.\right.
\end{aligned}
$$

$$
\forall\left(f^{\prime}, \rho^{\prime}\right) \in \mathcal{L}_{\mathcal{F}}^{f} \times \mathcal{L}_{\mathcal{F}}^{\rho}, J_{\left(f^{\prime}, \rho^{\prime}\right)}\left(u_{0}, \ldots, u_{T-1}\right)=\sum_{t=0}^{T-1} \rho^{\prime}\left(x_{t}^{\prime}, u_{t}\right)
$$

$$
x_{t+1}^{\prime}=f^{\prime}\left(x_{t}^{\prime}, u_{t}\right)
$$

Minmax Generalization

- Define:

$$
B^{*}\left(\mathcal{F}, u 0, \ldots, u_{T-1}\right)=\min _{\left(f^{\prime}, \rho^{\prime}\right) \in \mathcal{L}_{\mathcal{F}}^{f} \times \mathcal{L}_{\mathcal{F}}^{\rho}} J_{\left(f^{\prime}, \rho^{\prime}\right)\left(u_{0}, \ldots, u_{T-1}\right)}
$$

- The minmax generalization solution is defined as:

$$
\left(u_{0}, \ldots, u_{T-1}\right) \in \underset{\left(u_{0}, \ldots, u_{T-1}\right) \in \mathcal{U}^{T}}{\arg \max } B^{*}\left(\mathcal{F}, u 0, \ldots, u_{T-1}\right)
$$

- Here, we focus on the min part

Minmax Generalization

$$
\left(\mathcal{P}\left(\mathcal{F}, L_{f}, L_{\rho}, x_{0}, u_{0}, \ldots, u_{T-1}\right)\right):
$$

$$
\begin{array}{lll}
& & \min _{\hat{r}^{2}} \\
\begin{array}{ccc}
\hat{\mathbf{r}}_{0} & \ldots & \hat{\mathbf{r}}_{T-1} \in \mathbb{R} \\
\hat{\mathbf{x}}_{0} & \ldots & \hat{\mathbf{x}}_{T-1} \in \mathcal{X}
\end{array} & \sum_{t=0}^{T-1} \hat{\mathbf{r}}_{t}, \\
\end{array}
$$

subject to

$$
\begin{align*}
& \left|\hat{\mathbf{r}}_{t}-r^{\left(u_{t}\right), k_{t}}\right|^{2} \leq L_{\rho}^{2}\left\|\hat{\mathbf{x}}_{t}-x^{\left(u_{t}\right), k_{t}}\right\|^{2}, \forall\left(t, k_{t}\right) \in\{0, \ldots, T-1\} \times\left\{1, \ldots, n^{\left(u_{t}\right)}\right\} \\
& \left\|\hat{\mathbf{x}}_{t+1}-y^{\left(u_{t}\right), k_{t}}\right\|^{2} \leq L_{f}^{2}\left\|\hat{\mathbf{x}}_{t}-x^{\left(u_{t}\right), k_{t}}\right\|^{2}, \forall\left(t, k_{t}\right) \in\{0, \ldots, T-1\} \times\left\{1, \ldots, n^{\left(u_{t}\right)}\right\} \tag{3.2}\\
& \left|\hat{\mathbf{r}}_{t}-\hat{\mathbf{r}}_{t^{\prime}}\right|^{2} \leq L_{\rho}^{2}\left\|\hat{\mathbf{x}}_{t}-\hat{\mathbf{x}}_{t^{\prime}}\right\|^{2}, \forall t, t^{\prime} \in\left\{0, \ldots, T-1 \mid u_{t}=u_{t^{\prime}}\right\} \tag{3.3}\\
& \left\|\hat{\mathbf{x}}_{t+1}-\hat{\mathbf{x}}_{t^{\prime}+1}\right\|^{2} \leq L_{f}^{2}\left\|\hat{\mathbf{x}}_{t}-\hat{\mathbf{x}}_{t^{\prime}}\right\|^{2}, \forall t, t^{\prime} \in\left\{0, \ldots, T-2 \mid u_{t}=u_{t^{\prime}}\right\} \tag{3.4}\\
& \hat{\mathbf{x}}_{0}=x_{0} \tag{3.5}
\end{align*}
$$

$)^{3}+\frac{3}{x}+5$

Minmax Generalization

$$
\left(\mathcal{P}\left(\mathcal{F}, L_{f}, L_{\rho}, x_{0}, u_{0}, \ldots, u_{T-1}\right)\right):
$$

$$
\begin{array}{llll}
& & \min _{\hat{\mathbf{r}}_{T-1} \in \mathbb{R}} & \sum_{t=0}^{T-1} \hat{\mathbf{r}}_{t}, \\
\hat{\mathbf{r}}_{0} & \ldots & \hat{\mathbf{x}}_{T-1} \\
\hat{\mathbf{x}}_{0} & \ldots & \hat{\mathbf{x}}_{T-1} \in \mathcal{X}
\end{array}
$$

subject to

$$
\begin{align*}
& \left|\hat{\mathbf{r}}_{t}-r^{\left(u_{t}\right), k_{t}}\right|^{2} \leq L_{\rho}^{2}\left\|\hat{\mathbf{x}}_{t}-x^{\left(u_{t}\right), k_{t}}\right\|^{2}, \forall\left(t, k_{t}\right) \in\{0, \ldots, T-1\} \times\left\{1, \ldots, n^{\left(u_{t}\right)}\right\} \\
& \left\|\hat{\mathbf{x}}_{t+1}-y^{\left(u_{t}\right), k_{t}}\right\|^{2} \leq L_{f}^{2}\left\|\hat{\mathbf{x}}_{t}-x^{\left(u_{t}\right), k_{t}}\right\|^{2}, \forall\left(t, k_{t}\right) \in\{0, \ldots, T-1\} \times\left\{1, \ldots, n^{\left(u_{t}\right)}\right\}, \tag{3.2}\\
& \left|\hat{\mathbf{r}}_{t}-\hat{\mathbf{r}}_{t^{\prime}}\right|^{2} \leq L_{\rho}^{2}\left\|\hat{\mathbf{x}}_{t}-\hat{\mathbf{x}}_{t^{\prime}}\right\|^{2}, \forall t, t^{\prime} \in\left\{0, \ldots, T-1 \mid u_{t}=u_{t^{\prime}}\right\} \tag{3.3}\\
& \left\|\hat{\mathbf{x}}_{t+1}-\hat{\mathbf{x}}_{t^{\prime}+1}\right\|^{2} \leq L_{f}^{2}\left\|\hat{\mathbf{x}}_{t}-\hat{\mathbf{x}}_{t^{\prime}}\right\|^{2}, \forall t, t^{\prime} \in\left\{0, \ldots, T-2 \mid u_{t}=u_{t^{\prime}}\right\} \tag{3.4}\\
& \hat{\mathbf{x}}_{0}=x_{0} \tag{3.5}
\end{align*}
$$

Minmax Generalization

- One can show that constraint (3.3) are redundant

LEMMA 4.1. Consider $\left(\hat{\mathbf{r}}^{*}, \hat{\mathbf{x}}^{*}\right) \in \mathbb{R}^{T} \times \mathcal{X}^{T}$ an optimal solution to $\overline{\mathcal{P}}\left(\mathcal{F}, u_{0}, \ldots, u_{T-1}\right)$. Then, for all t, t^{\prime} such that $u_{t}=u_{t^{\prime}}$,

$$
\left|\hat{\mathbf{r}}_{t}^{*}-\hat{\mathbf{r}}_{t^{\prime}}^{*}\right|^{2} \leq L_{\rho}^{2}\left\|\hat{\mathbf{x}}_{t}^{*}-\hat{\mathbf{x}}_{t^{\prime}}^{*}\right\|^{2}
$$

- In particular, this implies that optimal reward for the first stage ($\mathrm{t}=0$) can also be computed

Lemma 4.2. The solution of the problem $\left(\mathcal{P}^{\prime}\left(\mathcal{F}, u_{0}\right)\right)$ is

$$
\hat{\mathbf{r}}_{0}^{*}=\max _{k_{0} \in\left\{1, \ldots, n^{\left(u_{0}\right)}\right\}} r^{\left(u_{0}\right), k_{0}}-L_{\rho}\left\|x_{0}-x^{\left(u_{0}\right), k_{0}}\right\| .
$$

Minmax Generalization

$\left(\mathcal{P}^{\prime \prime}\left(\mathcal{F}, u_{0}, \ldots, u_{T-1}\right)\right):$

$$
\begin{array}{lll}
& & \min _{\hat{\mathbf{r}}^{2}} \\
\hat{\mathbf{r}}_{1} & \ldots & \sum_{T-1} \in \mathbb{R} \\
\hat{\mathbf{x}}_{0} & \ldots & \hat{\mathbf{x}}_{T-1} \in \mathcal{X}
\end{array} \quad \hat{\mathbf{r}}_{t},
$$

subject to

$$
\begin{align*}
& \left|\hat{\mathbf{r}}_{t}-r^{\left(u_{t}\right), k_{t}}\right|^{2} \leq L_{\rho}^{2}\left\|\hat{\mathbf{x}}_{t}-x^{\left(u_{t}\right), k_{t}}\right\|^{2}, \forall\left(t, k_{t}\right) \in\{1, \ldots, T-1\} \times\left\{1, \ldots, n^{\left(u_{t}\right)}\right\} \\
& \left\|\hat{\mathbf{x}}_{t+1}-y^{\left(u_{t}\right), k_{t}}\right\|^{2} \leq L_{f}^{2}\left\|\hat{\mathbf{x}}_{t}-x^{\left(u_{t}\right), k_{t}}\right\|^{2}, \forall\left(t, k_{t}\right) \in\{0, \ldots, T-1\} \times\left\{1, \ldots, n^{\left(u_{t}\right)}\right\} \tag{5.2}\\
& \left\|\hat{\mathbf{x}}_{t+1}-\hat{\mathbf{x}}_{t^{\prime}+1}\right\|^{2} \leq L_{f}^{2}\left\|\hat{\mathbf{x}}_{t}-\hat{\mathbf{x}}_{t^{\prime}}\right\|^{2}, \forall t, t^{\prime} \in\left\{0, \ldots, T-2 \mid u_{t}=u_{t^{\prime}}\right\} \tag{5.3}\\
& \hat{\mathbf{x}}_{0}=x_{0} \tag{5.4}
\end{align*}
$$

Minmax Generalization

- We show that this problem is NP-hard
- Reduction from $\{0,1\}$-programming feasibility problem
- We then decide to look for relaxation schemes of polynomial complexity
- We want these relaxation schemes to preserve the philosophy of the original problem
- Lower bounds

Relaxation Schemes

- First approach: remove constraints until the problem becomes polynomial

$$
\left(\mathcal{P}^{\prime \prime}\left(\mathcal{F}, u_{0}, \ldots, u_{T-1}\right)\right):
$$

$$
\begin{array}{lll}
& & \\
\hat{r}_{1} & \sum_{t=1} \hat{\mathbf{r}}_{T-1} \in \mathbb{R} \\
\hat{\mathbf{x}}_{1} & \ldots & \hat{\mathbf{x}}_{T-1} \in \mathcal{X}
\end{array}
$$

Only one
subject to

$$
\begin{align*}
& \left|\hat{\mathbf{r}}_{t}-r^{\left(u_{t}\right), k_{t}}\right|^{2} \leq L_{\rho}^{2}\left\|\hat{\mathbf{x}}_{t}-x^{\left(u_{t}\right), k_{t}}\right\|^{2}, \forall\left(t, k_{t}\right) \in\{1, \ldots, T-1\} \times\left\{1, \ldots, n^{\left(u_{t}\right)}\right\} \tag{5.1}\\
& \left\|\hat{\mathbf{x}}_{t+1}-y^{\left(u_{t}\right), k_{t}}\right\|^{2} \leq L_{f}^{2}\left\|\hat{\mathbf{x}}_{t}-x^{\left(u_{t}\right), k_{t}}\right\|^{2}, \forall\left(t, k_{t}\right) \in\{0, \ldots, T-1\} \times\left\{1, \ldots, n^{\left(u_{t}\right)}\right\} \tag{5.2}\\
& \hat{\mathbf{x}}_{0}=x_{0}
\end{align*}
$$

Relaxation Schemes

- We get the «Intertwined Trust-Region» scheme:

$$
\begin{aligned}
& \hline\left(\mathcal{P}_{I T R}^{\prime \prime}\left(\mathcal{F}, u_{0}, \ldots, u_{T-1}, \bar{k}_{0}, \ldots, \bar{k}_{T-1}\right)\right): \\
& \min \\
& \hat{\mathbf{r}}_{1}, \ldots, \hat{\mathbf{r}}_{T-1} \in \mathbb{R} \\
& \hat{\mathbf{x}}_{0}, \ldots, \hat{\mathbf{x}}_{T-1} \in \mathcal{X}
\end{aligned} \quad \sum_{t=1}^{T-1} \hat{\mathbf{r}}_{t},
$$

subject to

$$
\begin{align*}
\left|\hat{\mathbf{r}}_{t}-r^{\left(u_{t}\right), \bar{k}_{t}}\right|^{2} & \leq L_{\rho}^{2}\left\|\hat{\mathbf{x}}_{t}-x^{\left(u_{t}\right), \bar{k}_{t}}\right\|^{2} & & t \in\{1, \ldots, T-1\} \tag{5.5}\\
\left\|\hat{\mathbf{x}}_{t}-y^{\left(u_{t-1}\right), \bar{k}_{t-1}}\right\|^{2} & \leq L_{f}^{2}\left\|\hat{\mathbf{x}}_{t-1}-x^{\left(u_{t-1}\right), \bar{k}_{t-1}}\right\|^{2} & & t \in\{1, \ldots, T-1\} \tag{5.6}\\
\hat{\mathbf{x}}_{0} & =x_{0} & & \tag{5.7}
\end{align*}
$$

Relaxation Schemes

- This problem can be solved by induction. Define:

$$
\begin{aligned}
& \left(\mathcal{Q}_{I T R}^{\prime \prime}\left(\mathcal{F}, u_{0}, \ldots, u_{j}, \bar{k}_{0}, \ldots, \bar{k}_{j}\right)\right): \\
& \max ^{\hat{\mathbf{r}}_{1}, \ldots, \hat{\mathbf{r}}_{j} \in \mathbb{R}} \begin{array}{l}
\hat{\mathbf{x}}_{0}, \ldots, \hat{\mathbf{x}}_{j} \in \mathcal{X}
\end{array} \quad\left\|\hat{\mathbf{x}}_{j}-x^{\left(u_{j}\right), \bar{k}_{j} \|}\right\|
\end{aligned}
$$

subject to

$$
\begin{array}{rlrl}
\left|\hat{\mathbf{r}}_{t}-r^{\left(u_{t}\right), \bar{k}_{t}}\right|^{2} & \leq L_{\rho}^{2}\left\|\hat{\mathbf{x}}_{t}-x^{\left(u_{i}\right), \bar{k}_{t}}\right\|^{2} & & t \in\{1, \ldots, j\} \\
\left\|\hat{\mathbf{x}}_{t}-y^{\left(u_{t-1}\right), \bar{k}_{t-1}}\right\|^{2} & \leq L_{f}^{2}\left\|\hat{\mathbf{x}}_{t-1}-x^{\left(u_{t-1}\right), \bar{k}_{t-1}}\right\|^{2} & t \in\{1, \ldots, j\} \\
\hat{\mathbf{x}}_{0} & =x_{0} & & \tag{5.10}
\end{array}
$$

Relaxation Schemes

LEMMA 5.2. The optimal solution $D_{I T R}^{\prime \prime}\left(u_{0}, u_{1}, \bar{k}_{0}, \bar{k}_{1}\right)$ to $\left(\mathcal{Q}_{I T R}^{\prime \prime}\left(\mathcal{F}, u_{0}, u_{1}, \bar{k}_{0}, \bar{k}_{1}\right)\right)$ is given by

$$
D_{I T R}^{\prime \prime}\left(u_{0}, u_{1}, \bar{k}_{0}, \bar{k}_{1}\right)=\left\|\hat{\mathbf{x}}_{1}^{*}\left(\bar{k}_{0}, \bar{k}_{1}\right)-x^{\left(u_{1}\right), \bar{k}_{1}}\right\|,
$$

where

$$
\hat{\mathbf{x}}_{1}^{*}\left(\bar{k}_{0}, \bar{k}_{1}\right) \doteq y^{\left(u_{0}\right), \bar{k}_{0}}+L_{f} \frac{\left\|x_{0}-x^{\left(u_{0}\right), \bar{k}_{0}}\right\|}{\left\|y^{\left(u_{0}\right), \bar{k}_{0}}-x^{\left(u_{1}\right), \bar{k}_{1}}\right\|}\left(y^{\left(u_{0}\right), \bar{k}_{0}}-x^{\left(u_{1}\right), \bar{k}_{1}}\right) \text { if } y^{\left(u_{0}\right), \bar{k}_{0}} \neq x^{\left(u_{1}\right), \bar{k}_{1}}
$$

and, if $y^{\left(u_{0}\right), \bar{k}_{0}}=x^{\left(u_{1}\right), \bar{k}_{1}}, \hat{\mathbf{x}}_{1}^{*}\left(\bar{k}_{0}, \bar{k}_{1}\right)$ can be any point of the sphere centered in $y^{\left(u_{0}\right), \bar{k}_{0}}=$ $x^{\left(u_{1}\right), \bar{k}_{1}}$ with radius $L_{f}\left\|x_{0}-x^{\left(u_{0}\right), \bar{k}_{0}}\right\|$.

Relaxation Schemes

$$
+x^{\left(u_{1}\right), \bar{k}_{1}}
$$

$$
\begin{gathered}
\vdots y^{\left(u_{0}\right), \bar{k}_{0}} \begin{array}{c}
\vdots \\
L_{f} \| x_{0}-x^{\left(u_{0}\right), \bar{k}_{0}} \\
\ddots
\end{array}+ \\
\hat{\mathbf{x}}_{1}^{*}\left(\bar{k}_{0}, \bar{k}_{1}\right)
\end{gathered}
$$

A simple geometric algorithm to solve $\left(\mathcal{Q}_{I T R}^{\prime \prime}\left(\mathcal{F}, u_{0}, u_{1}, \bar{k}_{0}, \bar{k}_{1}\right)\right)$

Relaxation Schemes

LEMMA 5.3. The optimal solution to $\left(\mathcal{Q}_{I T R}^{\prime \prime}\left(\mathcal{F}, u_{0}, \ldots, u_{j}, \bar{k}_{0}, \ldots, \bar{k}_{j}\right)\right)$ is given by:

$$
\begin{aligned}
\forall t \in\{1, \ldots, j\}, \quad & \hat{\mathbf{x}}_{t}^{*}\left(\bar{k}_{0}, \ldots, \bar{k}_{t}\right) \doteq y^{\left(u_{t-1}\right), \bar{k}_{t-1}} \\
& +L_{f} \frac{\left\|\hat{\mathbf{x}}_{t-1}^{*}\left(\bar{k}_{0}, \ldots, \bar{k}_{t-1}\right)-x^{\left(u_{t-1}\right), \bar{k}_{t-1}}\right\|}{\left\|y^{\left(u_{t-1}\right), \bar{k}_{t-1}}-x^{\left(u_{t}\right), \bar{k}_{t}}\right\|}\left(y^{\left(u_{t-1}\right), \bar{k}_{t-1}}-x^{\left(u_{t}\right), \bar{k}_{t}}\right) \\
& \text { if } y^{\left(u_{t-1}\right), \bar{k}_{t-1}} \neq x^{\left(u_{t}\right), \bar{k}_{t}}
\end{aligned}
$$

and, if $y^{\left(u_{t-1}\right), \bar{k}_{t-1}}=x^{\left(u_{t}\right), \bar{k}_{t}}, \hat{\mathbf{x}}_{t}^{*}\left(\bar{k}_{0}, \ldots, \bar{k}_{t}\right)$ can be any point of the sphere centered in $y^{\left(u_{t-1}\right), \bar{k}_{t-1}}=x^{\left(u_{t}\right), \bar{k}_{t}}$ with radius $L_{f}\left\|\hat{\mathbf{x}}_{t-1}^{*}\left(\bar{k}_{0}, \ldots, \bar{k}_{t-1}\right)-x^{\left(u_{t-1}\right), \bar{k}_{t-1}}\right\|$.

Relaxation Schemes

Theorem 5.4. The solution to $\left(\mathcal{P}_{I T R}^{\prime \prime}\left(\mathcal{F}, u_{0}, \ldots, u_{T-1}, \bar{k}_{0}, \ldots, \bar{k}_{T-1}\right)\right)$ is given by:

$$
B_{I T R}^{\prime \prime}\left(\mathcal{F}, u_{0}, \ldots, u_{T-1}, \bar{k}_{0}, \ldots, \bar{k}_{T-1}\right)=\sum_{t=1}^{T-1} \hat{\mathbf{r}}_{t}^{*}
$$

where

$$
\begin{aligned}
& \hat{\mathbf{r}}_{t}^{*}=r^{\left(u_{t}\right), \bar{k}_{t}}-L_{\rho}\left\|\hat{\mathbf{x}}_{t}^{*}\left(\bar{k}_{0}, \ldots, \bar{k}_{t}\right)-x^{\left(u_{t}\right), \bar{k}_{t}}\right\| \\
& \hat{\mathbf{x}}_{t}^{*}\left(\bar{k}_{0}, \ldots, \bar{k}_{t}\right) \doteq y^{\left(u_{t-1}\right), \bar{k}_{t-1}} \\
& +L_{f} \frac{\left\|\hat{\mathbf{x}}_{t-1}^{*}\left(\bar{k}_{0}, \ldots, \bar{k}_{t-1}\right)-x^{\left(u_{t-1}\right), \bar{k}_{t-1}}\right\|}{\left\|y^{\left(u_{t-1}\right), \bar{k}_{t-1}}-x^{\left(u_{t}\right), \bar{k}_{t}}\right\|}\left(y^{\left(u_{t-1}\right), \bar{k}_{t-1}}-x^{\left(u_{t}\right), \bar{k}_{t}}\right) \\
& \text { if } y^{\left(u_{t-1}\right), \bar{k}_{t-1}} \neq x^{\left(u_{t}\right), \bar{k}_{t}}
\end{aligned}
$$

and, if $y^{\left(u_{t-1}\right), \bar{k}_{t-1}}=x^{\left(u_{t}\right), \bar{k}_{t}}, \hat{\mathbf{x}}_{t}^{*}\left(\bar{k}_{0}, \ldots, \bar{k}_{t}\right)$ can be any point of the sphere centered in $y^{\left(u_{t-1}\right), \bar{k}_{t-1}}=x^{\left(u_{t}\right), \bar{k}_{t}}$ with radius $L_{f}\left\|\hat{\mathbf{x}}_{t-1}^{*}\left(\bar{k}_{0}, \ldots, \bar{k}_{t-1}\right)-x^{\left(u_{t-1}\right), \bar{k}_{t-1}}\right\|$.

Relaxation Schemes

- One can look for the best bound among all possible configurations

Definition 5.5 (Intertwined Trust-region Bound $B_{I T R}\left(\mathcal{F}, u_{0}, \ldots, u_{T-1}\right)$).

$$
\begin{aligned}
& B_{I T R}\left(\mathcal{F}, u_{0}, \ldots, u_{T-1}\right) \triangleq \hat{\mathbf{r}}_{0}^{*} \\
& +\begin{array}{c}
\max \\
\bar{k}_{T-1} \in\left\{1, \ldots, n^{\left(u_{T-1}\right)}\right\} \\
\quad \ldots \\
\quad \bar{k}_{0} \in\left\{1, \ldots, n^{\left(u_{0}\right)}\right\}
\end{array} B_{I T R}^{\prime \prime}\left(\mathcal{F}, u_{0}, \ldots, u_{T-1}, \bar{k}_{0}, \ldots, \bar{k}_{T-1}\right) .
\end{aligned}
$$

Relaxation Schemes

$$
\left(\mathcal{P}_{L D}^{\prime \prime}\left(\mathcal{F}, u_{0}, \ldots, u_{T-1}\right)\right):
$$

\max	\min
$\nu_{t, t^{\prime}} \in \mathbb{R}$	$\hat{\mathbf{r}}_{1}, \ldots, \hat{\mathbf{r}}_{T-1} \in \mathbb{R}$
$\lambda_{t, k_{t}} \in \mathbb{R}$	$\hat{\mathbf{x}}_{1}, \ldots, \hat{\mathbf{x}}_{T-1} \in \mathcal{X}$
$\mu_{t, k_{t}} \in \mathbb{R}$	

$$
\begin{aligned}
& \hat{\mathbf{r}}_{1}+\cdots+\hat{\mathbf{r}}_{T-1}+ \\
+ & \sum_{\left(t, k_{t}\right) \in\{1, \ldots, T-1\} \times\left\{1, \ldots, n^{\left(u_{t}\right)}\right\}} \mu_{t, k_{t}}\left(\left|\hat{\mathbf{r}}_{t}-r^{\left(u_{t}\right), k_{t}}\right|^{2}-L_{\rho}^{2}\left\|\hat{\mathbf{x}}_{t}-x^{\left(u_{t}\right), k_{t}}\right\|^{2}\right)
\end{aligned}
$$

$$
+\sum_{\left(t, k_{t}\right) \in\{1, \ldots, T-1\} \times\left\{1, \ldots, n^{\left(u_{t}\right)}\right\}} \lambda_{t, k_{t}}\left(\left\|\hat{\mathbf{x}}_{t+1}-y^{\left(u_{t}\right), k_{t}}\right\|^{2}-L_{f}^{2}\left\|\hat{\mathbf{x}}_{t}-x^{\left(u_{t}\right), k_{t}}\right\|^{2}\right)
$$

$$
+\sum_{t, t^{\prime} \in\left\{0, \ldots, T-2 \mid u_{t}=u_{t^{\prime}}\right\}} \nu_{t, t^{\prime}}\left(\left\|\hat{\mathbf{x}}_{t+1}-\hat{\mathbf{x}}_{t^{\prime}+1}\right\|^{2}-L_{f}^{2}\left\|\hat{\mathbf{x}}_{t}-\hat{\mathbf{x}}_{t^{\prime}}\right\|^{2}\right)
$$

Relaxation Schemes

- The Lagrangian Relaxation provides a lower bound on the optimal bound, in a polynomial time

DEFINITION 5.7 (Lagrandian Bound $\left.B_{L D}\left(\mathcal{F}, u_{0}, \ldots, u_{T-1}\right)\right)$. Let $B_{L D}^{\prime \prime}\left(\mathcal{F}, u_{0}, \ldots, u_{T-1}\right)$ be the optimal Lagrangian dual of $\left(\mathcal{P}_{L D}^{\prime \prime}\left(\mathcal{F}, u_{0}, \ldots, u_{T-1}\right)\right)$. Then,

$$
B_{L D}\left(\mathcal{F}, u_{0}, \ldots, u_{T-1}\right)=\mathbf{r}_{0}^{*}+B_{L D}^{\prime \prime}\left(\mathcal{F}, u_{0}, \ldots, u_{T-1}\right)
$$

Bounds Tightness \& Convergence

- Tightness

Theorem 5.18. $\forall\left(u_{0}, \ldots, u_{T-1}\right) \in \mathcal{U}^{T}$,

$$
\begin{aligned}
B_{C G R L}\left(\mathcal{F}, u_{0}, \ldots, u_{T-1}\right) & \leq B_{I T R}\left(\mathcal{F}, u_{0}, \ldots, u_{T-1}\right) \\
& \leq B_{L D}\left(\mathcal{F}, u_{0}, \ldots, u_{T-1}\right) \\
& \leq B^{*}\left(\mathcal{F}, u_{0}, \ldots, u_{T-1}\right) \\
& \leq J\left(u_{0}, \ldots, u_{T-1}\right)
\end{aligned}
$$

- Convergence as the sample dispersion of the sample of trajectories goes to 0

THEOREM 5.21. $\forall\left(u_{0}, \ldots, u_{T-1}\right) \in \mathcal{U}^{T}$, $\forall \beta \in\left\{B_{C G R L}\left(\mathcal{F}, u_{0}, \ldots, u_{T-1}\right), B_{I T R}\left(\mathcal{F}, u_{0}, \ldots, u_{T-1}\right), B_{L D}\left(\mathcal{F}, u_{0}, \ldots, u_{T-1}\right)\right\}$,

$$
\lim _{\alpha^{*}(\mathcal{F}) \rightarrow 0} \quad J\left(u_{0}, \ldots, u_{T-1}\right)-\beta=0
$$

sixk

Trajectories of Societies

From Bad Models to Good Policies

The Energy Transition Case

1. World primary energy consumption

Non renewable
$>80 \%-<20 \%$

Renewable

2. Energy <-> Economy

- Recent research in Economics has shown that:
- The empirical elasticity (measured from time series among OECD countries over the last 50 years) of the consumption of primary energy into the GDP is about 60\%, which is 10 times higher that what is predicted by the Cost Share Theorem

Elasticity can be quantified as the ratio of the percentage change in one variable to the percentage change in another variable

- There is a causality link between the consumption of primary energy and the GDP in the direction Energy -> GDP

Variation of the world oil consumption (red) and GDP per inhabitant (blue) - Data from the the World Bank for GDP and BP stat for energy

Source (in French): Jean-Marc Jancovici, « L'économie aurait-elle un vague rapport avec l'énergie? », LH Forum, 27 septembre 2013

3. ERoEI

- ERoEl for « Energy Return over Energy Investment » (also called EROI) is the ratio of the amount of usable energy acquired from a particular energy resource to the amount of energy expended to obtain that energy resource:

$$
E R O I=\frac{\text { Usable Acquired Energy }}{\text { Energy Expended }}
$$

- The highest this ratio, the more energy a technology brings back to society
- Notation : 1:X

$\mathrm{EROI}_{\text {st }}$
\square Energy Used to Procure Energy
Source: EROI of Global Energy Resources - Preliminary Status and Trends - Jessica Lambert, Charles Hall, Steve Balogh, Alex Poisson, and Ajay Gupta State University of New York, College of Environmental Science and Forestry Report 1 - Revised Submitted - 2 November 2012 DFID - 59717

Another Bad Model

- A discrete-time model of the deployment of «renewable energy » production capacities
- Budget of non-renewable energy

$$
\begin{aligned}
& \forall t \in\{0, \ldots, T-1\}, B_{t} \geq 0 \\
& \exists r>0, \exists \tau>0, \exists t_{0} \in \mathbb{R}: \forall t \in\{0, \ldots, T-1\}, \\
& B_{t}=\frac{1}{r} \frac{e^{\frac{-\left(t-t_{0}\right)}{\tau}}}{\left(1+e^{\frac{-\left(t-t_{0}\right)}{\tau}}\right)^{2}}
\end{aligned}
$$

Another Bad Model

- Set of renewable energy production technologies:

$$
\forall n \in\{1, \ldots, N\}, \forall t \in\{0, \ldots, T-1\}, R_{n, t} \geq 0
$$

- Characteristics

$$
\Delta_{n, t} \geq 0
$$

$$
E R o E I_{n, t} \geq 0
$$

- Deployment strategy
$R_{n, t+1}=\left(1+\alpha_{n, t}\right) R_{n, t} \quad \alpha_{n, t} \in[-1, \infty[$

Another Bad Model

- Energy costs for growth and long-term replacement $\forall n \in\{1, \ldots, N\}, \forall t \in\{0, \ldots, T-1\}$,

$$
C_{n, t}\left(R_{n, t}, \alpha_{n, t}\right) \geq 0 \quad M_{n, t} \geq 0
$$

- Total energy and net energy to society

$$
\begin{array}{r}
\forall t \in\{0, \ldots, T-1\}, E_{t}=B_{t}+\sum_{n=1}^{N} R_{n, t} \\
S_{t}=E_{t}-\left(\sum_{n=1}^{N} C_{n, t}\left(R_{n, t}, \alpha_{n, t}\right)+M_{n, t}\right)
\end{array}
$$

Another Bad Model

- Constraint on the quantity of energy invested for energy production

$$
\begin{aligned}
\forall t \in & \{0, \ldots, T-1\} \\
& \exists \sigma_{t}: C_{n, t}\left(R_{n, t}, \alpha_{n, t}\right)+M_{n, t} \leq \frac{1}{\sigma_{t}} E_{t}
\end{aligned}
$$

Another Bad Model

- Further assumptions
- Energy cost for growth is proportional to growth, and done initially:

$$
C_{n, t}\left(R_{n, t}, \alpha_{n, t}\right)=\frac{\Delta_{n, t}}{E R o E I_{n, t}} \alpha_{n, t} R_{n, t} \text { if } \alpha_{n, t} \geq 0
$$

- Long-term replacement cost is (i) proportional and (ii) annualized

$$
M_{n, t}\left(R_{n, t}\right)=\frac{1}{E R o E I_{n, t}} R_{n, t}
$$

$$
\begin{aligned}
& E_{0}=1 \\
& B_{0}=0.85 E_{0} \\
& R_{1,0}=0.01 E_{0}
\end{aligned}
$$

$$
\sum_{n=2}^{N} R_{n, 0}=0.14 E_{0}
$$

$E R o E I_{1, t}=9$
$\Delta_{1, t}=20$
$\sigma_{t}=14$
Constant growth if possible, else max admissible

Fig. 2. Scenario "peak at time $t=0$ "

Fig. 4. Scenario "peak at time $t=20$ "

Fig. 3. Scenario "plateau at time $t=0$ "

Fig. 5. Scenario "plateau at time $t=20$ "

Another Bad Model

- Increasing the ERoEl parameter

$\forall t \in\{0, \ldots, T-1\}, E R o E I_{1, t}=9+\frac{t}{T}(12-9)$

Good Policies?

- What kind of « good policy » can be suggested by such a « bad model»?
- Energy efficiency: « do better with less »
-> Lots of decision making under uncertainty problems to solve here
- For people interested in Smart Grids: below is link toward a simulator for Active Network Management (ANM) developed by my colleagues at the University of Liège:
http://www.montefiore.ulg.ac.be/~anm/

Epilogue

References

[1] Wikipedia, Feu, Domestication par l'Homme
[2] Auzanneau, M. (2011). L'empire romain et la société d'opulence énergétique : un parallèle via lemonde.fr
[3] Tainter, J. (1990). The Collapse of Complex Societies.
[4] Gimel, J. - The Medieval Machine : the industrial Revolution of the Middle Ages, Penguin Books, 1976 (ISBN 978-0-7088-1546-5)
[5] Maddison, A. « When and Why did the West get Richer than the Rest ? »
[6] Wikipedia, Dutch Golden Age, Causes of the Golden Age
[7] Wikipedia, Histoire de la production de l'acier
[8] Wikipedia, Houille
[9] Giraud, G. \& Kahraman, Z. (2014). On the Output Elasticity of Primary Energy in OECD countries (1970-2012). Center for European Studies, Working Paper.
[10] Stern, D.I. (2011). From correlation to Granger causality. Crawford School Research Papers. Crawford School Research Paper No 13.
[11] Stern, D.I. \& Enflo, K. (2013). Causality Between Energy and Output in the Long-Run. Energy Economics, 2013 - Elsevier.
[12] Auzanneau, M. (2014). Gaël Giraud, du CNRS : «Le vrai rôle de l'énergie va obliger les économistes à changer de dogme »via lemonde.fr
[13] Jancovici, J.M. (2013). Transition énergétique pour tous ! ce que les politiques n'osent pas vous dire, Éditions Odile Jacob, avril 2013. See
also J.M. Jancovici's website.
[14] Meilhan, N. (2014). Comprendre ce qui cloche avec l'énergie (et la croissance économique) en 7 slides et 3 minutes.
[15] Wikipedia, Decline of the Roman Empire
[16] Lambert, J., Hall, C., Balogh, S., Poisson, A. and Gupta, A. (2012). EROI of Global Energy Resources - Preliminary Status and Trends - J State University of New York, College of Environmental Science and Forestry Report 1 - Revised Submitted - 2 November 2012 DFID - 59717
[17] Jancovici, J.M. «L'économie aurait-elle un vague rapport avec l'énergie? »(2013), LH Forum, 27 septembre 2013
[18] Fonteneau, R., Murphy, S.A., Wehenkel, L. and Ernst, D. Towards min max generalization in reinforcement learning, in Agents and Artificial Intelligence: International Conference, ICAART 2010, Valencia, Spain, January 2010, Revised Selected Papers. Series: Communications in Computer and Information Science (CCIS), vol. 129, Springer, Heidelberg, 2011, pp. 61-77
[19] Fonteneau, R., Ernst, D., Boigelot, B. and Louveaux, Q. (2013). Min Max Generalization for Deterministic Batch Mode Reinforcement Learning: Relaxation Schemes. SIAM Journal on Control and Optimization
[20] Fonteneau, R. and Ernst, D. On the Dynamics of the Deployment of Renewable Energy Production Capacities. Submitted
[21] Kümmel, R., Ayres, R.U. and Linderberger, D. (2010).Thermodynamic Laws, Economic Methods and the Productive Power of Energy.
Journal of Non-Equilibrium Thermodynamics, in press
[22] Gemine, Q., Ernst, D. and Cornelusse, B. (2015). Active network management for electrical distribution systems: problem formulation and benchmark. In press

