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Deterministic RL
• Dynamics 

• Reward function 

• Return 

• Optimality
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Finally, there is a broad stream of works in the field of Stochastic Programming [4] that
have addressed the problem of safely planning under uncertainties, mainly known as “robust
stochastic programming” or “risk-averse stochastic programming” [11, 44, 45, 33].

3. Problem Formalization. We first formalize the BMRL setting in Section 3.1, and
we state the minmax generalization problem in Section 3.2.

3.1. Batch Mode Reinforcement Learning. We consider a deterministic discrete-time
system whose dynamics over T stages is described by a time-invariant equation
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that we abusively identify with {1, . . . ,m}. We assume that the
(finite) optimization horizon T 2 N \ {0} is a given (fixed) parameter of the problem. An
instantaneous reward

r

t

= ⇢ (x

t

, u

t

) 2 R

is associated with the action u
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and for every sequence of actions (u0, . . . , uT�1) 2 UT , the cumulated reward over T stages
(also named T�stage return) is defined as follows:
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An optimal sequence of actions is a sequence that leads to the maximization of the T�stage
return:

DEFINITION 3.2 (Optimal T�stage Return).
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J(u0, . . . , uT�1) .

We further make the following assumptions that characterize the batch mode setting:
1. The system dynamics f and the reward function ⇢ are unknown;
2. For each action u 2 U , a set of n(u) 2 N one-step system transitions
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3. We assume that every set F (u) contains at least one element: 8u 2 U , n(u)
> 0.

In the following, we denote by F the collection of all system transitions:

F = F (1) [ . . . [ F (m)
.

Under those assumptions, batch mode reinforcement learning (BMRL) techniques propose
to infer from the sample of one-step system transitions F a high-performance sequence of
actions, i.e. a sequence of actions
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.
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⇤
T�1

�

2 UT such that J(ũ⇤
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3.2. Min max Generalization under Lipschitz Continuity Assumptions. In this sec-
tion, we state the minmax generalization problem that we study in this paper. The formal-
ization was originally proposed in [20].

In all this paper, we assume that the system dynamics f and the reward function ⇢ are
Lipschitz continuous, i.e. there exist finite constants L
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, L

⇢
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where k.k denotes the Euclidean norm over the space X . We also assume that two constants
L

f

and L

⇢

satisfying the above-written inequalities are known. Such Lipschitz continuity
assumptions are very standard in the field of batch mode reinforcement learning in continuous
state spaces.

For a given sequence of actions, one can define the worst possible return that can be ob-
tained by any system whose dynamics f 0 and ⇢

0 would satisfy the Lipschitz inequalities and
that would coincide with the values of the functions f and ⇢ given by the sample of system
transitions F . As shown in [20], this worst possible return can be computed by solving a
finite-dimensional optimization problem over X T�1 ⇥ RT . Intuitively, solving such an op-
timization problem amounts to determining a most pessimistic trajectory of the system that
is still compliant with the sample of data and the Lipschitz continuity assumptions. More
specifically, for a given sequence of actions (u0, . . . , uT�1) 2 UT , some given constants L

f

and L
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, a given initial state x0 2 X and a given sample of transitions F , this optimization
problem writes:
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x̂0 = x0. (3.5)

For short, we refer to this problem as (P(F , u0, . . . , uT�1)). Intuitively, the objective of the
optimization problem modelizes the sum of rewards gathered along a trajectory x̂0, . . . , x̂T�1.
The idea of minimizing this objective comes from the fact that we want to find a most pes-
simistic trajectory. The constraints ensure that Lipschitz inequalities hold (i) between states
/ rewards from the pessimistic trajectory and states / rewards from the sample of data F and
(ii) between states / rewards from different time-steps within the pessimistic trajectory. We
also define the “optimal lower bound” B

⇤
(F , u0, . . . , uT�1):
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of the finite (discrete) action space U . T 2 N0 is referred to as the optimization
horizon. An instantaneous reward r

t

= ⇢(x
t

, u
t

) 2 R is associated with the
action u

t

taken while being in state x
t

. For every initial state x 2 X and for
every sequence of actions (u0, . . . , uT�1) 2 UT , the cumulated reward over T
stages (also named return over T stages) is defined as

Ju0,...,uT�1(x) =
T�1X

t=0

⇢(x
t

, u
t

) ,

where x
t+1 = f(x

t

, u
t

) , 8t 2 {0, . . . , T � 1} and x0 = x . We assume that the
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where k.kX denotes the Euclidian norm over the space X . We further suppose
that: (i) the system dynamics f and the reward function ⇢ are unknown, (ii) a
set of one-step transitions F

n

= {(xl, ul, rl, yl)}n
l=1 is known where each one-step

transition is such that yl = f(xl, ul) and rl = ⇢(xl, ul), (iii) 8a 2 U , 9(x, u, r, y) 2
F

n

: u = a (each action a 2 U appears at least once in F
n

) and (iv) two constants
L
f

and L
⇢

satisfying the above-written inequalities are known.4 We define the

set of functions Lf

F
n

(resp. L⇢

F
n

) from X ⇥ U into X (resp. into R) as follows :

Lf

F =

8
<

:f 0 : X ⇥ U ! X
�����

8
<
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8x0, x00 2 X , 8u 2 U ,
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In the following, we call a “compatible environment” any pair (f 0, ⇢0) 2 Lf
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F
n

. Given a compatible environment (f 0, ⇢0), a sequence of actions (u0, . . . , uT�1)
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when starting from x 2 X :

J
(u0,...,uT�1)
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T�1X
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⇢0(x0
t

, u
t
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0 = x0 and x0
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L
u0,...,uT�1
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(u0,...,uT�1)
T,(f 0
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4 These constants do not necessarily have to be the smallest ones satisfying these
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8(f 0
, ⇢

0) 2 Lf
F ⇥ L⇢

F , J(f 0,⇢0)(u0, . . . , uT�1) =
T�1X

t=0

⇢

0(x0
t, ut)
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l=1 is known where each one-step
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: u = a (each action a 2 U appears at least once in F
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) and (iv) two constants
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and L
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set of functions Lf
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) from X ⇥ U into X (resp. into R) as follows :
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F =

8
<
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=
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In the following, we call a “compatible environment” any pair (f 0, ⇢0) 2 Lf

F
n

⇥
L⇢

F
n

. Given a compatible environment (f 0, ⇢0), a sequence of actions (u0, . . . , uT�1)

2 UT and an initial state x 2 X , we introduce the (f 0, ⇢0)�return over T stages
when starting from x 2 X :

J
(u0,...,uT�1)
T,(f 0
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0) =
T�1X
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⇢0(x0
t
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) ,

where x0
0 = x0 and x0

t+1 = f 0(x0
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), 8t 2 {0, . . . , T � 1} . We introduce
L
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(x) such that

L
(u0,...,uT�1)
T
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• Define: 

• The minmax generalization solution is defined as: 

• Here, we focus on the min part

B⇤ (F , u0, . . . , uT�1) = min
(f 0,⇢0)2Lf

F⇥L⇢
F

J(f 0,⇢0)(u0,...,uT�1)

(u0, . . . , uT�1) 2 argmax

(u0,...,uT�1)2UT

B⇤
(F , u0, . . . , uT�1)
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3.2. Min max Generalization under Lipschitz Continuity Assumptions. In this sec-
tion, we state the minmax generalization problem that we study in this paper. The formal-
ization was originally proposed in [20].

In all this paper, we assume that the system dynamics f and the reward function ⇢ are
Lipschitz continuous, i.e. there exist finite constants L

f

, L

⇢

2 R such that:

8(x, x0
) 2 X 2

, 8u 2 U , kf (x, u)� f (x

0
, u)k  L

f

kx� x

0k ,
|⇢ (x, u)� ⇢ (x

0
, u)|  L

⇢

kx� x

0k ,

where k.k denotes the Euclidean norm over the space X . We also assume that two constants
L

f

and L

⇢

satisfying the above-written inequalities are known. Such Lipschitz continuity
assumptions are very standard in the field of batch mode reinforcement learning in continuous
state spaces.

For a given sequence of actions, one can define the worst possible return that can be ob-
tained by any system whose dynamics f 0 and ⇢

0 would satisfy the Lipschitz inequalities and
that would coincide with the values of the functions f and ⇢ given by the sample of system
transitions F . As shown in [20], this worst possible return can be computed by solving a
finite-dimensional optimization problem over X T�1 ⇥ RT . Intuitively, solving such an op-
timization problem amounts to determining a most pessimistic trajectory of the system that
is still compliant with the sample of data and the Lipschitz continuity assumptions. More
specifically, for a given sequence of actions (u0, . . . , uT�1) 2 UT , some given constants L

f

and L

⇢

, a given initial state x0 2 X and a given sample of transitions F , this optimization
problem writes:

(P(F , L

f

, L

⇢

, x0, u0, . . . , uT�1)) :

min

r̂0 . . . r̂

T�1 2 R
x̂0 . . . x̂

T�1 2 X

T�1
X

t=0

r̂

t

,

subject to
�

�

�

r̂

t

� r

(ut),kt

�

�

�

2
 L

2
⇢

�

�

�

x̂

t

� x

(ut),kt

�

�

�

2
, 8(t, k

t

) 2 {0, . . . , T � 1}⇥
n

1, . . . , n

(ut)
o

,

(3.1)
�

�

�

x̂

t+1 � y

(ut),kt

�

�

�

2
 L

2
f

�

�

�

x̂

t

� x

(ut),kt

�

�

�

2
, 8(t, k

t

) 2 {0, . . . , T � 1}⇥
n

1, . . . , n

(ut)
o

,

(3.2)

|̂r
t

� r̂

t

0 |2  L

2
⇢

kx̂
t

� x̂

t

0k2 , 8t, t0 2 {0, . . . , T � 1|u
t

= u

t

0} , (3.3)

kx̂
t+1 � x̂

t

0+1k2  L

2
f

kx̂
t

� x̂

t

0k2 , 8t, t0 2 {0, . . . , T � 2|u
t

= u

t

0} , (3.4)

x̂0 = x0. (3.5)

For short, we refer to this problem as (P(F , u0, . . . , uT�1)). Intuitively, the objective of the
optimization problem modelizes the sum of rewards gathered along a trajectory x̂0, . . . , x̂T�1.
The idea of minimizing this objective comes from the fact that we want to find a most pes-
simistic trajectory. The constraints ensure that Lipschitz inequalities hold (i) between states
/ rewards from the pessimistic trajectory and states / rewards from the sample of data F and
(ii) between states / rewards from different time-steps within the pessimistic trajectory. We
also define the “optimal lower bound” B

⇤
(F , u0, . . . , uT�1):
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3.2. Min max Generalization under Lipschitz Continuity Assumptions. In this sec-
tion, we state the minmax generalization problem that we study in this paper. The formal-
ization was originally proposed in [20].

In all this paper, we assume that the system dynamics f and the reward function ⇢ are
Lipschitz continuous, i.e. there exist finite constants L

f

, L

⇢

2 R such that:

8(x, x0
) 2 X 2

, 8u 2 U , kf (x, u)� f (x

0
, u)k  L

f

kx� x

0k ,
|⇢ (x, u)� ⇢ (x

0
, u)|  L

⇢

kx� x

0k ,

where k.k denotes the Euclidean norm over the space X . We also assume that two constants
L

f

and L

⇢

satisfying the above-written inequalities are known. Such Lipschitz continuity
assumptions are very standard in the field of batch mode reinforcement learning in continuous
state spaces.

For a given sequence of actions, one can define the worst possible return that can be ob-
tained by any system whose dynamics f 0 and ⇢

0 would satisfy the Lipschitz inequalities and
that would coincide with the values of the functions f and ⇢ given by the sample of system
transitions F . As shown in [20], this worst possible return can be computed by solving a
finite-dimensional optimization problem over X T�1 ⇥ RT . Intuitively, solving such an op-
timization problem amounts to determining a most pessimistic trajectory of the system that
is still compliant with the sample of data and the Lipschitz continuity assumptions. More
specifically, for a given sequence of actions (u0, . . . , uT�1) 2 UT , some given constants L

f

and L

⇢

, a given initial state x0 2 X and a given sample of transitions F , this optimization
problem writes:

(P(F , L

f

, L

⇢

, x0, u0, . . . , uT�1)) :

min

r̂0 . . . r̂

T�1 2 R
x̂0 . . . x̂

T�1 2 X

T�1
X

t=0

r̂

t

,

subject to
�

�

�

r̂

t

� r

(ut),kt

�

�

�

2
 L

2
⇢

�

�

�

x̂

t

� x

(ut),kt

�

�

�

2
, 8(t, k

t

) 2 {0, . . . , T � 1}⇥
n

1, . . . , n

(ut)
o

,

(3.1)
�

�

�

x̂

t+1 � y

(ut),kt

�

�

�

2
 L

2
f

�

�

�

x̂

t

� x

(ut),kt

�

�

�

2
, 8(t, k

t

) 2 {0, . . . , T � 1}⇥
n

1, . . . , n

(ut)
o

,

(3.2)

|̂r
t

� r̂

t

0 |2  L

2
⇢

kx̂
t

� x̂

t

0k2 , 8t, t0 2 {0, . . . , T � 1|u
t

= u

t

0} , (3.3)

kx̂
t+1 � x̂

t

0+1k2  L

2
f

kx̂
t

� x̂

t

0k2 , 8t, t0 2 {0, . . . , T � 2|u
t

= u

t

0} , (3.4)

x̂0 = x0. (3.5)

For short, we refer to this problem as (P(F , u0, . . . , uT�1)). Intuitively, the objective of the
optimization problem modelizes the sum of rewards gathered along a trajectory x̂0, . . . , x̂T�1.
The idea of minimizing this objective comes from the fact that we want to find a most pes-
simistic trajectory. The constraints ensure that Lipschitz inequalities hold (i) between states
/ rewards from the pessimistic trajectory and states / rewards from the sample of data F and
(ii) between states / rewards from different time-steps within the pessimistic trajectory. We
also define the “optimal lower bound” B

⇤
(F , u0, . . . , uT�1):
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DEFINITION 3.3 (Optimal lower bound B

⇤
(F , u0, . . . , uT�1)). Let x̂⇤

0, . . . , x̂
⇤
T�1 and

r̂

⇤
0, . . . , r̂

⇤
T�1 be an optimal solution to (P(F , u0, . . . , uT�1)). We define the optimal lower

bound B

⇤
(F , u0, . . . , uT�1) as follows:

B

⇤
(F , u0, . . . , uT�1) =

T�1
X

t=0

r̂

⇤
t

.

Note that, throughout the paper, optimization variables will be written in bold. The objective
function represents the search for the most pessimistic trajectory. The constraints (3.1) and
(3.3) (resp. (3.2) and (3.4) ) express the fact that the reward function (resp. the system
dynamics) must satisfy the Lipschitz inequalities for every pair of points from both the sample
of data F and the pessimistic trajectory (x̂0, r̂0, . . . , x̂T�1, r̂T�1). Constraint 3.5 ensures that
the pessimistic trajectory starts in x0.

The min max approach to generalization aims at identifying which sequence of actions
maximizes its worst possible return, that is which sequence of actions leads to the highest
value of (P(F , u0, . . . , uT�1)).

We focus in this paper on the design of resolution schemes for solving the program
(P(F , u0, . . . , uT�1)). These schemes can afterwards be used for solving the minmax prob-
lem through exhaustive search over the set of all sequences of actions.

Later in this paper, we will also analyze the computational complexity of this min max
generalization problem. When carrying out this analysis, we will assume that all the data of
the problem (i.e., T,F , L

f

, L

⇢

, x0, u0, . . . , uT�1) are given in the form of rational numbers.

4. Analysis of the complexity. In this section, we prove that solving the min problem
(P(F , u0, . . . , uT�1)) is NP-hard. More precisely, we will prove that, in the case where
T = 2, the problems of stage 0 and stage 1 are decoupled, and that the second stage problem
is NP-hard.

4.1. Redundancy of constraint (3.3). We first want to show that the constraints (3.3)
are not needed. Indeed, in any optimal solution, they are always satisfied. Let ¯P (F , u0, . . . , uT�1)

be the relaxation of P (F , u0, . . . , uT�1) where all constraints of type (3.3) are relaxed.
LEMMA 4.1. Consider (r̂⇤, x̂⇤

) 2 RT⇥X T an optimal solution to ¯P (F , u0, . . . , uT�1).
Then, for all t, t0 such that u

t

= u

t

0 ,

|̂r⇤
t

� r̂

⇤
t

0 |2  L

2
⇢

kx̂⇤
t

� x̂

⇤
t

0k2 .

Proof. Consider an optimal solution to ¯P (F , u0, . . . , uT�1). Observe that any variable
r̂

t

only appears in constraints (3.1) in a series of interval constraints of the type
�

�

�

r̂

t

� r

(ut),kt

�

�

�

2
 L

2
⇢

�

�

�

x̂

t

� x

(ut),kt

�

�

�

2
, 8(t, k

t

) 2 {0, . . . , T � 1}⇥
n

1, . . . , n

(ut)
o

(4.1)

Since the objective function is min

P

T�1
t=0 r̂

t

, we claim that, for each t, there exists at least
one constraint (4.1) that is tight. Indeed, assume by contradiction that it is not the case, by
considering r̂

t

� ✏ , ✏ > 0, we obtain a trivially better feasible solution, a contradiction.
Therefore, for each t, there exists ¯k

t

such that

r̂

⇤
t

= r

(ut),k̄t � L

⇢

�

�

�

x̂

⇤
t

� x

(ut),k̄t

�

�

�

. (4.2)

Consider now a pair (t, t0) such that u
t

= u

t

0
= u. We now discuss two cases depending

on the sign of r̂⇤
t

� r̂

⇤
t

0 .
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LEMMA 4.2. The solution of the problem (P 0
(F , u0)) is

r̂

⇤
0 = max

k02{1,...,n(u0)}
r

(u0),k0 � L

⇢

�

�

�

x0 � x

(u0),k0

�

�

�

.

Proof. This follows directly from the fact that we minimize r̂0 2 R under interval
constraints.

In the particular case T = 2, Lemma 4.1 implies that the two stages are decoupled. In
particular, the problem P(F , u0, u1) can be decomposed in two subproblems (P 0

(F , u0))

and (P 00
(F , u0, u1)):

(P 00
(F , u0, u1)) :

min

r̂1 2 R
x̂1 2 X

r̂1 (4.8)

subject to
�

�

�

r̂1 � r

(u1),k1

�

�

�

2
 L

2
⇢

�

�

�

x̂1 � x

(u1),k1

�

�

�

2
, 8k1 2

n

1, . . . , n

(u1)
o

, (4.9)
�

�

�

x̂1 � y

(u0),k0

�

�

�

2
 L

2
f

�

�

�

x0 � x

(u0),k0

�

�

�

2
, 8k0 2

n

1, . . . , n

(u0)
o

. (4.10)

4.2. Complexity of (P 00
(F , u0, u1)). The problem (P 0

(F , u0)) being solved, we now
focus in this section on the resolution of (P 00

(F , u0, u1)). In particular, we show that it is
NP-hard, even in the particular case where there is only one element in the sample F (u1)

=

��

x

(u1),1
, r

(u1),1
, y

(u1),1
� 

. In this particular case, the problem (P 00
(F , u0, u1)) amounts

to maximizing the distance
�

�

x̂1 � x

(u1),1
�

� under an intersection of balls as we show in the
following lemma.

LEMMA 4.3. If the cardinality of F (u1) is equal to 1:

F (u1)
=

n⇣

x

(u1),1
, r

(u1),1
, y

(u1),1
⌘o

,

then the optimal solution to (P 00
(F , u0, u1)) satisfies

r̂

⇤
1 = r

(u1),1 � L

⇢

�

�

�

x̂

⇤
1 � x

(u1),1
�

�

�

where x̂

⇤
1 maximizes

�

�

x̂1 � x

(u1),1
�

� subject to

�

�

�

x̂1 � y

(u0),k0

�

�

�

2
 L

2
f

�

�

�

x0 � x

(u0),k0

�

�

�

2
, 8

⇣

x

(u0),k0
, r

(u0),k0
, y

(u0),k0

⌘

2 F (u0)
.

Proof. The unique constraint concerning r̂1 is an interval. Therefore r̂⇤1 takes the value of
the lower bound of the interval. In order to obtain the lowest such value, the right-hand-side
of (4.9) must be maximized under the other constraints.

Note that if the cardinality n

(u0) of F (u0) is also equal to 1, then (P(F , u0, u1)) can be
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of tractable non-convex quadratically constrained quadratic programs (QCQP) is where there
is only one quadratic constraint. The idea here is to relax many constraints in order to obtain
a tractable problem for each stage.

For all t 2 {0, . . . , T � 1}, we select ¯k
t

in {1, . . . , n(ut)}. The relaxation is obtained by
dropping all constraints of type (3.4) and keeping one constraint by stage and by type. We
therefore obtain a relaxed problem of the form:
�

P 00
ITR

(F , u0, . . . , uT�1,
¯

k0, . . . ,
¯

k

T�1)
�

:

min

r̂1, . . . , r̂T�1 2 R
x̂0, . . . , x̂T�1 2 X

T�1
X

t=1

r̂

t

subject to
�

�

�

r̂

t

� r

(ut),k̄t

�

�

�

2
 L

2
⇢

�

�

�

x̂

t

� x

(ut),k̄t

�

�

�

2
t 2 {1, . . . , T � 1} (5.5)

�

�

�

x̂

t

� y

(ut�1),k̄t�1

�

�

�

2
 L

2
f

�

�

�

x̂

t�1 � x

(ut�1),k̄t�1

�

�

�

2
t 2 {1, . . . , T � 1} (5.6)

x̂0 = x0 (5.7)

In the following, we provide the optimal solution of
�

P 00
ITR

(F , u0, . . . , uT�1,
¯

k0, . . . ,
¯

k

T�1)
�

in closed-form. Such a solution is obtained by induction. It is more practical to work with the
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problem 

• We then decide to look for relaxation schemes of 
polynomial complexity 

• We want these relaxation schemes to preserve the 
philosophy of the original problem 

• Lower bounds
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referred to in the literature as the trust-region subproblem [9]. In our case, the optimal value
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FIG. 5.1. A simple geometric algorithm to solve (Q00
ITR(F , u0, u1,

¯

k0,
¯

k1)).
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constraints. Taking the maximum out of these lower bounds yields the best possible bound
out of this family of relaxations. Finally, if we denote by B
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(F , u0, . . . , uT�1) the bound
made of the sum of the solution of the first stage problem and the maximal ITR relaxation of
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the problem (P 00
ITR

(F , u0, . . . , uT�1,
¯

k0, . . . ,
¯

k

T�1)) over all possible couples of constraints,
we have:

DEFINITION 5.5 (Intertwined Trust-region Bound B

ITR

(F , u0, . . . , uT�1)).

B

ITR

(F , u0, . . . , uT�1) , r̂

⇤
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. . .
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k0 2 {1, . . . , n(u0)}
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00
ITR

(F , u0, . . . , uT�1,
¯

k0, . . . ,
¯

k

T�1).

Notice that in the case where all n(ut)
t = 0 . . . T � 1 are equal to 1, then the ITR

relaxation scheme provides an exact solution of the original problem (P(F , u0, . . . , uT�1)):
COROLLARY 5.6.

⇣

8t 2 {0, . . . , T � 1}, n(ut)
= 1

⌘

=) B

ITR

(F , u0, . . . , uT�1) = B

⇤
(F , u0, . . . , uT�1).

5.2. The Lagrangian Relaxation. Another way to obtain a lower bound on the value of
a minimization problem is to consider a Lagrangian relaxation. Consider again the optimiza-
tion problem (P 00

(F , u0, . . . , uT�1)). If we multiply the constraints (5.1) by dual variables
µ

t,kt � 0, the constraints (5.2) by dual variables �
t,kt � 0 and the constraints (5.3) by dual

variables ⌫
t,t

0 � 0, we get the Lagrangian dual problem (P 00
LD

(F , u0, . . . , uT�1)):
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⇣
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t+1 � x̂
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0+1k2 � L

2
f

kx̂
t

� x̂

t

0k2
⌘

Observe that the optimal value of (P 00
LD

(F , u0, . . . , uT�1)) is known to provide a lower
bound on the optimal value of (P 00

(F , u0, . . . , uT�1)) [24]. Note that the above Lagrangian
relaxation can be solved in polynomial time and is equivalent to another standard relaxation
of quadratically constrained quadratic programs known as the SDP relaxation. It turns out
that one relaxation is the dual of the other [48, 10, 34].

DEFINITION 5.7 (Lagrandian Bound B

LD

(F , u0, . . . , uT�1)). Let B00
LD

(F , u0, . . . , uT�1)

be the optimal Lagrangian dual of (P 00
LD

(F , u0, . . . , uT�1)). Then,

B

LD

(F , u0, . . . , uT�1) = r

⇤
0 +B

00
LD

(F , u0, . . . , uT�1) .
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5.4.1. Bounds. We analyze in this subsection the tightness of the Intertwined Trust-
region and the Lagrangian relaxation lower bounds as a function of the sample dispersion.

LEMMA 5.20.
9 C > 0 : 8(u0, u1) 2 U2

,

8� 2 {B
CGRL

(F , u0, . . . , uT�1), BITR

(F , u0, . . . , uT�1), BLD

(F , u0, . . . , uT�1)} ,

J(u0, . . . , uT�1)� �  C↵

⇤
(F).

Proof. The proof for the case where � = B

CGRL

(F , u0, . . . , uT�1) is given in [18],
and the remaining of the proof directly follows from Theorem 5.18. We therefore have the
following theorem:

THEOREM 5.21. 8(u0, . . . , uT�1) 2 UT

,

8� 2 {B
CGRL

(F , u0, . . . , uT�1), BITR

(F , u0, . . . , uT�1), BLD

(F , u0, . . . , uT�1)} ,

lim

↵

⇤(F)!0
J(u0, . . . , uT�1)� � = 0 .

5.4.2. Bound-optimal Sequences of Actions. In the following, we denote by B

(⇤)
CGRL

(F)

(resp. B(⇤)
ITR

(F) and B

(⇤)
LD

(F) ) the maximal CGRL bound (resp. the maximal ITR bound
and maximal Lagrangian bound) over the set of all possible sequences of actions, i.e.,

DEFINITION 5.22 (Maximal Bounds).
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DEFINITION 5.23 (Bound-optimal Sequences of Actions).
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We finally give in this section a last theorem that shows the convergence of the sequences
of actions (u0, . . . , uT�1)
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F towards optimal
sequences of actions - i.e. sequences of actions that lead to an optimal return J

⇤
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- when the
sample dispersion ↵
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(F) decreases towards zero.
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be the set of optimal sequences of actions:
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,

and let us suppose that J⇤
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the problem (P 00
LD

(F , u0, . . . , uT�1) for which all the dual variables corresponding to con-
straints that are not related with the sequence of transitions
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would be forced to zero. We therefore have:
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By definition of the Lagrangian relaxation bound B
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(F , u0, . . . , uT�1), we have:
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Equations (5.17), (5.18) and (5.19) finally give:
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5.3.3. Bounds Inequalities: Summary. We summarize in the following theorem all the
results that were obtained in the previous sections.
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Proof. The inequality
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is a straightforward consequence of Theorems 5.9 and 5.17. The inequality
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5.4. Convergence Properties. We finally propose to analyze the convergence of the
bounds, as well as the sequences of actions that lead to the maximization of the bounds, when
the sample dispersion decreases towards zero. We assume in this section that the state space
X is bounded:
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) 2 X 2

, kx� x
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Let us now introduce the sample dispersion:
DEFINITION 5.19 (Sample Dispersion). Since X is bounded, one has:

9 ↵ > 0 : 8u 2 U , sup

x2X
min

k2{1,...,n(u)}

�

�

�

x

(u),k � x

�

�

�

 ↵. (5.20)

The smallest ↵ which satisfies equation (5.20) is named the sample dispersion and is denoted
by ↵

⇤
(F). Intuitively, the sample dispersion ↵

⇤
(F) can be seen as the radius of the largest

non-visited state space area.
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2. Energy <-> Economy
• Recent research in Economics has shown that: 

• The empirical elasticity (measured from time series among 
OECD countries over the last 50 years) of the consumption of 
primary energy into the GDP is about 60%, which is 10 times 
higher that what is predicted by the Cost Share Theorem 

Elasticity can be quantified as the ratio of the percentage change 
in one variable to the percentage change in another variable 

• There is a causality link between the consumption of primary 
energy and the GDP in the direction Energy -> GDP 

$ €



Variation lissée de la consommation mondiale de pétrole (rouge) et du PIB par 
personne (bleu). Source World Bank 2013 pour le PIB, BP Stat 2013 pour le pétrole 

PIB et barils sont dans un bateau… 

Variation of the world oil consumption (red) and GDP per inhabitant (blue) - Data from the the 
World Bank for GDP and BP stat for energy

Source (in French): Jean-Marc Jancovici, « L’économie aurait-elle un vague rapport avec l’énergie? », LH Forum, 
27 septembre 2013



3. ERoEI
• ERoEI for « Energy Return over Energy Investment » (also 

called EROI) is the ratio of the amount of usable energy 
acquired from a particular energy resource to the amount of 
energy expended to obtain that energy resource: 

• The highest this ratio, the more energy a technology brings 
back to society 

• Notation : 1:X

EROI =
Usable Acquired Energy

Energy Expended
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Importance of EROI
“The utility of a fuel depends upon not only its qual-
ity but also how much of it there is that is, its quan-
tity.” - Murphy et. al, 2010 [71]

For example, wind power may have a 
moderately high EROI, especially at very 
favorable locations. Nevertheless, the total 
quantity of electricity that is produced and 
delivered is typically small in comparison 
with energetic needs. This is slightly less 
true for some low population mountain-
ous or coastal regions where wind power 
is prolific (e.g. Denmark). But, even there, 
fossil fuels remain dominant in the re-
gion’s total energy profile, and current 
technology demands very expensive and 
energy-intensive backup systems [6]. 

Other non-traditional energy sources such 
as biodiesel and photovoltaics tend to 
have relatively low EROIs when compared 

to those of traditional fossil fuels (e.g. 
coal). To date, these alternative fuels claim 
an insubstantial portion of the total energy 
consumed by the majority of nations [6]. 
The total magnitude of alternative energy 
produced remains so very small that it is 
not likely to be a significant contributor to 
total global energy production for many 
years or even decades. Murphy et al., 2010 
report that just prior to the financial col-
lapse of 2008 [71], the annual global in-
crease of each conventional fossil fuel (oil, 
gas, and coal) was greater than the total 
annual production of all non-conventional, 
solar-based (i.e., wind turbines and photo-
voltaics) energy [71]. What this means is 
that energy derived from non-
conventional, solar-based, energy sources 
is not displacing fossil fuel use. Instead, it 
is merely contributing to the annual global 
energy growth. 

Figure 7: The “Net Energy Cliff” (figure adapted from Lambert and Lambert, in preparation [3] and 
Murphy et al. 2010 [71]) As EROI approaches 1:1 the ratio of the energy gained (dark gray) to the en-
ergy used (light gray) from various energy sources decreases exponentially [71]. High EROI fuels al-
low a greater proportion of that fuel’s energy to be delivered to society (e.g. a fuel with an EROI of 
100:1 (horizontal axis) will delivers 99% of the useful energy (vertical axis) from that fuel to society 
[71]. Conversely, lower EROI fuel delivers substantially less useful energy to society (e.g. a fuel with 
an EROI of 2:1 will deliver 50% of the energy from that fuel to society). Therefore, large shifts in high 
EROI values (e.g. from 100 to 50:1) may have little or no impact on society while small variations in 
low EROI values (e.g. from 5 to 2.5:1) may have a far greater and potentially more “negative” impact 
on society [71] (concept courtesy of Euan Mearns). 

st

Source: EROI of Global Energy Resources - Preliminary Status and Trends - Jessica Lambert, Charles Hall, Steve Balogh, Alex 
Poisson, and Ajay Gupta State University of New York, College of Environmental Science and Forestry Report 1 - Revised 
Submitted - 2 November 2012 DFID - 59717
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pared to other renewable energy such as hydroelectricity (more than 100) or wind 
turbines (around 18). Observe however that the photovoltaic panels technology is 
progressing, and that it may not be impossible that its ERoEI increases significant-
ly in the coming years. Finally, even if nuclear energy is reported to have an 
ERoEI of about 16, it is important to notice that this technology is among those for 
which the ERoEI computation is the most uncertain [Lambert et al. (2010)]. 

3. MODERN: a discrete-time model of the deployment of 
renewable energy production capacities 

This section introduces MODERN, the first version of our discrete-time model of 
the deployment of energy production capacities from renewable sources and the 
multiple assumptions upon which it is built. For clarity, we assume that all varia-
bles considered in this paper are deterministic (i.e., we consider only expected 
values). 

3.1 Time 

We consider a discrete-time system, where each time-step corresponds to one 
year: 

 
 
The time horizon is in the order of hundreds of years: 
 

 

3.2 Assumption regarding the energy produced from non-renewable sources 

We assume that each year, a quantity of non-renewable energy is available: 

 
 

 
For simplicity, we assume that such a quantity of energy is net (this assumption is 
discussed later in the chapter). By renewable energy, we mean fossil energy (coal, 
oil and gas), but also nuclear energy (Uranium fission). For clarity here, we 
choose not to separate the different types of energy production technologies from 
non-renewable sources. The evolution of the quantity of available non-renewable 
energy is modeled using Hubbert curves [Hubbert (1956)]: 
 

t = 0 . . . T � 1

T ⇠ 100� 500

8t 2 {0, . . . , T � 1}, Bt � 0. 5 

 
 

Graphs of Hubbert curves can be found later in the chapter. We assume that this 
energy is “net”, i.e. we assume that the energy required to get that energy is al-
ready subtracted for it. Recent papers have shown that the ERoEI related to pro-
cesses producing energy from non-renewable resources tend to decline over time 
[Murphy et al. (2010)]. The intuition behind this is the fact that spots for which re-
sources are easily extracted are exploited first. The Hubbert curve, which models 
the extraction of non-renewable resources, reflects to a certain extend that energy 
is increasingly more expensive to get (in terms of energy investment, but also 
cost). 

3.3 Energy from renewable origin 

We assume that a set of N different technologies for producing energy from re-
newable sources is available. To each technology is associated a production capac-
ity yearly producing a quantity of energy Rn,t: 
 

 
 
Among these technologies, let us (non-comprehensively) mention biomass, hydro-
electricity, wind turbines or photovoltaic panels. Two main parameters, the ex-
pected lifetime and ERoEI characterize each of these technologies: 
 

 
 
Description of ERoEI is provided in section 2. The expected lifetime parameter 
describes the average lifetime of equipment allowing energy production. Note that 
in this model, we do not consider fluctuation and storage issues associated with 
each of these technologies. In practice, providing storage capacities or technolo-
gies that allow modulating the consumption so that it matches the production 
(such as energy demand side management in the context of electricity grids) in-
duces a decrease of the ERoEI parameters (e.g., building batteries to assist photo-
voltaic panels is an additional expanse of energy). 

3.4 Dynamics of deployment of energy production means 

9r > 0, 9⌧ > 0, 9t0 2 R : 8t 2 {0, . . . , T � 1},
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8n 2 {1, . . . , N}, 8t 2 {0, . . . , T � 1}, �n,t � 0.

ERoEIn,t � 0.
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The dynamics of the deployment of energy production means is modeled using a 
growth parameter: 
 

 
 

Note that the growth parameter may be negative: 
 

 

3.5 Energy costs for growth and long-term replacement 

We introduce the energy cost associated with the growth of the production capaci-
ties of renewable technologies: 
 

 
 

We assume that this cost also incorporates the energy required for maintenance 
during the lifetime of the equipment. We also introduce the energy cost associated 
to the long-term replacement of the production means: 
 

 
 
The role of this quantity of energy is to formalize the energy cost that has to be 
paid when equipment becomes obsolete and has to be replaced (see later in the 
chapter a few assumptions regarding this energy cost). 

3.6 Total energy and net energy to society 

Using the previous notations, we define the total energy produced at year t: 
 

 
 
We also define the net energy available to society:  
 

 
 
This corresponds to the amount of energy that can by used after energy investment 
for increasing the production capacities from renewable resources and their long-
term replacement. 
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Graphs of Hubbert curves can be found later in the chapter. We assume that this 
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Description of ERoEI is provided in section 2. The expected lifetime parameter 
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gies that allow modulating the consumption so that it matches the production 
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The dynamics of the deployment of energy production means is modeled using a 
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3.7 Constraints on the quantity of energy invested for energy production 

We assume that the energy investment for developing, maintaining and replacing 
the production means from renewable sources cannot exceeds a given fraction of 
the total energy. In other words, this assumption means that the ratio net energy to 
society over total energy has to remain above a given threshold. Formally, we as-
sume that: 

 

 
 
In the following, we denote by “energy threshold” such a parameter. This con-
straint is motivated by research investigation showing that, if a society invests a 
too high proportion of its energy for producing energy, then less energy is dedicat-
ed to other society needs, which may result into a decrease of the global society 
welfare [Lambert et al. (2012)]. 

3.8 Assumptions on growth and replacement energy costs 

In order to relate the energy costs associated with the deployment and the long-
term replacement of the renewable energy production capacities, we make the 
three following assumptions: 
 

1. The energy cost associated with the installation of new production means 
of technologies is proportional to the corresponding growth: 
 

 
 

2. The energy costs allowing a given production capacity producing energy 
during its lifetime is done initially. This results into the following equa-
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Using the ERoEI parameter, we get the following equations: 
 

 

4. Simulation results: case study for photovoltaic panels 

We propose to simulate MODERN in the context of the deployment of photovol-
taic panels. For simplicity, we denote by one the index related to photovoltaic 
technology. Formally, this means that growth parameters associated to other tech-
nologies are kept constant to zero: 

 
 

4.1 Variable initialization 

We choose to consider normalized variables with respect to the total energy at 
time 0: 

 
 

The Hubbert curve modeling the depletion of non-renewable energy is initially 
scaled so that the proportion between renewable and non-renewable energy pro-
duction approximately matches the current situation of 2014 [British Petroleum 
(2014)]: 
 

 
 
The quantity of energy produced by photovoltaic panels is initially assumed to be 
around 1% of the world total energy mix: 

 
 

 
This value (1%) also approximately corresponds to the current proportion of ener-
gy produced from photovoltaic panels plus wind turbines in the world total energy 
mix. All remaining technologies producing energy from renewable sources are 
kept constant at there initial level, i.e.: 
 

8n 2 {1, . . . , N}, 8t 2 {0, . . . , T � 1}, 9µn,t > 0 : Mn,t(Rn,t) = µn,tRn,t

8n 2 {1, . . . , N}, 8t 2 {0, . . . , T � 1}, µn,t =
1

ERoEIn,t

Mn,t (Rn,t) =
1

ERoEIn,t
Rn,t

8n 2 {2, . . . , N}, 8t 2 {0, . . . , T � 1},↵n,t = 0

E0 = 1

B0 = 0.85E0

R1,0 = 0.01E0



11 

4.5 Typical runs 

We provide in this section simulation results obtained by our discrete-time 
models in the different configurations described above. Each graph shows, for 
every year, the evolution of the total energy (yearly) produced (top blue curve) 
which is made of two parts: energy dedicated to the production of energy (“energy 
for energy”, red part) and energy dedicated to other needs of society (“energy to 
society”, yellow part). We also report the levels of non-renewable energy produc-
tion (black dotted curve) and renewable energy production (green curve).  

Note that the results presented in the following subsections should definitely 
not be considered as predictions. Their role is just to illustrate the behavior of the 
model in theoretical configurations. 

 
Fig. 2. Scenario “peak at time t=0”  Fig. 3. Scenario “plateau at time t=0” 

 
Fig. 4. Scenario “peak at time t=20”  Fig. 5. Scenario “plateau at time t=20” 

As a first observation, remark that the production of energy from renewable re-
sources as well as the net energy to society both increase to a maximum before 
decreasing to a steady-state value. This decrease is a consequence of the “energy 
threshold” constraint: if the energy required for the long-term replacement of the 
current production capacity is larger than what the energy threshold constrain al-
lows to invest, then the growth parameter becomes negative. In other words, the 
bubble that can be observed on the graphs illustrates the fact that the deployment 
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4.3 Depletion of non-renewable resources scenario 

We consider several scenarios for the depletion of non-renewable resources. We 
arbitrarily define four scenarios, and provide below the corresponding values of 
the parameters of the Hubbert curve: 
 

– Peak at time 0: 

 
– Plateau at time 0: 

 
– Peak at time t = 20 years:  

 
– Plateau at time t = 20 years: 

 
 

Graph of resulting Hubbert curves can be found later in the chapter. 

4.4 Values of ERoEI and lifetime 

We use the ERoEI values provided in [Lambert et al. (2010)] which provides two 
values for photovoltaic panels: 
 

– ERoEI corresponding to photovoltaic panels in the worst case configura-
tion according to [Lambert et al. (2012)]: 

 
 

– ERoEI corresponding to photovoltaic panels in the best case configuration 
according to [Lambert et al. (2012)]: 

 
 
In the following experiments, we consider the average of these two values, i.e.: 
 

 
 

Note that (i) the computation of ERoEI values of PV panels is still discussed in the 
literature (see for instance [Raugei et al. (2012)]), and that (ii) it is very likely that 
such values will evolve significantly in the future. In all configurations considered 
in the following experiments, we consider a lifetime parameter equal to 20: 
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The constraint of the total amount of energy that may be dedicated to growing en-
ergy production means is chosen as follows: 

 
 

 
The choice of this value for the energy threshold is motivated by results reported 
in the literature [Lambert et al. (2012)]. As shown by Lambert et al., this value 
appears to be the smallest so that society may develop and sustain social amenities 
that are considered to be at the top of the “society Maslow pyramid”, such as 
health care systems and arts (see the Figure “Pyramid of Energetic Needs” in 
[Lambert et al. (2010)]. 

4.2 Growth scenario 

MODERN can be controlled through the growth scenario. By growth scenario, we 
mean sequence of predefined growth parameters. Formally, a scenario growth is a 
T-tuple of real numbers: 

 
 

When simulated, such scenarios may not satisfy the energy threshold constraint. If 
so, the growth parameter is reduced to the maximal value that does not violate the 
constraint. In the case where the constraint is violated, then the growth parameter 
is set to the maximal value that still satisfies the energy threshold constraint de-
fined as follows: 
 

 
 
This formula can be straightforwardly derived from the equation given in Section 
3.7. In the following simulation of MODERN, we consider simple, constant over 
time scenario growth: 
 

 
 
Observe that, in practice, gowth scenario may be constrained by the availability of 
resource for building capacities, as well as the availability of spots to install 
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Using the ERoEI parameter, we get the following equations: 
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ergy production means is chosen as follows: 

 
 

 
The choice of this value for the energy threshold is motivated by results reported 
in the literature [Lambert et al. (2012)]. As shown by Lambert et al., this value 
appears to be the smallest so that society may develop and sustain social amenities 
that are considered to be at the top of the “society Maslow pyramid”, such as 
health care systems and arts (see the Figure “Pyramid of Energetic Needs” in 
[Lambert et al. (2010)]. 

4.2 Growth scenario 

MODERN can be controlled through the growth scenario. By growth scenario, we 
mean sequence of predefined growth parameters. Formally, a scenario growth is a 
T-tuple of real numbers: 

 
 

When simulated, such scenarios may not satisfy the energy threshold constraint. If 
so, the growth parameter is reduced to the maximal value that does not violate the 
constraint. In the case where the constraint is violated, then the growth parameter 
is set to the maximal value that still satisfies the energy threshold constraint de-
fined as follows: 
 

 
 
This formula can be straightforwardly derived from the equation given in Section 
3.7. In the following simulation of MODERN, we consider simple, constant over 
time scenario growth: 
 

 
 
Observe that, in practice, gowth scenario may be constrained by the availability of 
resource for building capacities, as well as the availability of spots to install 
capacities (sunny places in the case of photovoltaic panels). 
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Another Bad Model
• Increasing the ERoEI parameter 
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of the renewable energy production capacities is boosted by the availability of 
non-renewable resources. 

As a second observation, we notice that the depletion scenario has an influence 
on the maximal level of production that can be reached during the transition phase. 
However, one can compute that it does not affect the steady-state production level, 
which is exactly the same in the four scenarios, and function of the ERoEI of the 
photovoltaic panels. 
To illustrate the influence of the ERoEI parameter on the levels of energy produc-
tion, we give in Figure 8 a last run of MODERN for which we consider a linear 
increase of the ERoEI parameter from 9 to 12 between time 0 and the time horizon 
(the growth scenario is the same as before, 10% annual growth): 

 

 
 

 
Fig. 8. Simulation result with an increase of the ERoEI parameter 

5 On the potential benefits of using optimal control 

MODERN can be controlled through the growth scenario (which may be con-
strained by the system itself). This section discusses the potential benefits of using 
optimal control techniques for designing growth scenarios. 

5.1 An example: vanishing the variations of the net energy available to society 

We have seen in Section 4 that growth scenarios may induce that the quantity 
of net energy available to society may reach a maximum level before decreasing 
to a steady-state level. We may assume such a bubble effect can have destabilizing 
effects on the society that one may want to avoid, and that one should look for a 
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Good Policies?
• What kind of « good policy » can be suggested by such a 

« bad model »? 

• Energy efficiency: « do better with less » 

-> Lots of decision making under uncertainty problems to 
solve here 

• For people interested in Smart Grids: below is link toward 
a simulator for Active Network Management (ANM) 
developed by my colleagues at the University of Liège: 

http://www.montefiore.ulg.ac.be/~anm/

http://www.montefiore.ulg.ac.be/~anm/


Epilogue



PhR61via Wikipedia

http://commons.wikimedia.org/wiki/File:Timgad_Trajan.jpg
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