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Abstract The microbial community composition in
meromictic Lake Kivu, with one of the largest CH4 reservoirs,
was studied using 16S rDNA and ribosomal RNA (rRNA)
pyrosequencing during the dry and rainy seasons. Highly
abundant taxa were shared in a high percentage between bulk
(DNA-based) and active (RNA-based) bacterial communities,
whereas a high proportion of rare species was detected only in
either an active or bulk community, indicating the existence of
a potentially active rare biosphere and the possible underesti-
mation of diversity detected when using only one nucleic acid
pool. Most taxa identified as generalists were abundant, and
those identified as specialists were more likely to be rare in the
bulk community. The overall number of environmental pa-
rameters that could explain the variation was higher for abun-
dant taxa in comparison to rare taxa. Clustering analysis based

on operational taxonomic units (OTUs at 0.03 cutoff) level
revealed significant and systematic microbial community
composition shifts with depth. In the oxic zone,
Actinobacteria were found highly dominant in the bulk com-
munity but not in the metabolically active community. In the
oxic–anoxic transition zone, highly abundant potentially ac-
tive Nitrospira and Methylococcales were observed. The co-
occurrence of potentially active sulfur-oxidizing and sulfate-
reducing bacteria in the anoxic zone may suggest the presence
of an active yet cryptic sulfur cycle.
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Introduction

Meromictic lakes are good model systems for microbial ecol-
ogy research due to the high vertical stability of the water
masses and physicochemical gradients (in particular oxygen)
that lead to relatively constant stratification of microbial pop-
ulations [1–3]. Sincemicrobes are key players in biogeochem-
ical cycles, investigations on microbial diversity and commu-
nity composition are important to understand the ecological
functioning of lakes. Environmental heterogeneity was shown
to produce community differences in lakes [4, 5]. According
to Lennon and Jones [6], core community shifts, including
active, dormant, and dead cells, may vary widely along verti-
cal gradients, contributing to the community dynamics as well
as to the maintenance of ecosystem biodiversity and ecosys-
tem stability. Currently, high-throughput sequencing technol-
ogy provides an opportunity to detect greater microbial diver-
sity than the one detected by previous techniques [7–9]. It has
revealed that the core community is composed of abundant
and rare taxa that are in continuous exchange based on the
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environmental gradients [10]. However, most recent studies
were based on bulk community composition (i.e., DNA-based
16S ribosomal RNA (rRNA) genes) and did not distinguish
between functionally active (i.e., RNA-based 16S rRNA
genes) or dormant populations [11]. Even though potential
biases can be introduced during DNA and RNA extraction,
complementary DNA (cDNA) synthesis, and PCR amplification
[12], parallel comparisons of DNA- and RNA-based pyrose-
quencing approaches can help differentiate whether abundant
taxa are active or whether rare but active taxa exist. In addition,
stronger evidence on the links between biogeochemical process-
es and microbial communities might be obtained if active com-
munities are monitored rather than bulk communities [13–16].

Lake Kivu in East Africa is a meromictic lake with a per-
manent density stratification separating the oxicmixolimnion
from a deep anoxic monolimnion rich in dissolved salts, car-
bon dioxide (CO2), and methane (CH4) [17]. In spite of the
presence of high amounts of CH4 at the bottom of Lake Kivu,
the CH4 concentration in the oxic zone is surprisingly low
compared to other lakes globally, due to intense microbial
methane oxidation [18, 19]. The vertical stratification of mi-
crobial taxa and their potential role in biogeochemical cycles
in Lake Kivu were recently studied for both archaeal and
bacterial counterparts using DNA-based analysis, and impor-
tant key players of carbon, nitrogen, and sulfur cycles were
identified [20, 21]. Furthermore, evaluation of the effect of
temporal variations on abundant versus rare taxa in different
layers revealed that abundant taxa were more stable between
two sampling times than rare ones, indicating a potentially
higher contribution of rare taxa to biogeochemical processes
[20]. Therefore, in the present study, Lake Kivu was investi-
gated as a model ecosystem by comparative DNA- and RNA-
based pyrosequencing of bacterial and archaeal communities
in two different seasons (i) to check if bulk (DNA) and poten-
tially active (RNA) microbial communities have the same
composition through the water column and (ii) to explore if
rare bulk and potentially active taxa respond to environmental
changes as abundant taxa do in Lake Kivu. Furthermore, the
abundance of key genes related to the carbon (particulate
methane monooxygenase gene (pmoA) and methyl
coenzyme-M reductase gene (mcrA)) and nitrogen (ammonia
monooxygenase gene (amoA), nitrite reductase gene (nirK)
and nitrous oxide reductase (nosZ)) biogeochemical cycles
was measured to evaluate the functional potential and their
response to environmental changes.

Materials and Methods

Study Site and Sampling Meromictic and oligotrophic Lake
Kivu is located between Rwanda and the Democratic Repub-
lic of the Congo at 1463 m above sea level. It has a surface
area of 2370 km2, a total volume of 580 km3, and a maximum

depth of 485 m. Surface waters are considered to be oligotro-
phic with moderate primary production compared to other
African lakes [22, 23]. Further details on the hydrology,
physicochemistry, and biology of the lake are published else-
where [22–25]. In order to study the microbial communities in
the water column of Lake Kivu, water samples were collected
from the upper 100 m of the water column in the North basin
(off Gisenyi; 29.24° E, −1.72° N). Water samples were col-
lected during two sampling campaigns during both rainy (RS,
February 2012) and dry seasons (DS, September 2012). Up to
20 discrete depths were sampled along a vertical profile be-
tween 1 and 100 m to cover the whole gradient of oxygen
concentrations (from oxic to anoxic waters). Water samples
for chemical and microbiological analyses were collected
using a 7.5-L Niskin bottle and stored in 4-L plastic containers
for chemical analyses (except for CH4 and HS−) and 2-L
Nalgene plastic bottles for biological analyses. Water samples
for DNA and RNA extractions were immediately passed
through 5.0-μm pore size filters (ISOPORE, Millipore, MA)
to remove particulate debris as well as large protozoa. Eluents
were then passed through 0.22-μm pore size filters
(ISOPORE, Millipore, MA) to retain free-living prokaryotes.
Filters for DNA extraction were preserved in Lysis Buffer as
previously described [21], whereas filters for RNA extraction
were preserved in 300 μL of RNAlater (Ambion) and all
stored frozen until further analyses.

Chemical Analyses Temperature, conductivity, pH, and dis-
solved oxygen (DO) vertical depth profiles were measured in
situ with a YSI 6600 V2 (Yellow Spring Instruments, USA)
multiparametric probe. According to Wright et al. [26], the
upper 100 m of the water column of Lake Kivu was split into
three distinct vertical layers: an oxic surface layer (DO>
90 μM), a transition zone (DO between 1 and 90 μM), and
a deep anoxic zone (DO<1 μM; Fig. 1). The concentration of
methane (CH4) was measured using the headspace technique
with a gas chromatograph with a flame ionization detector as
previously described [18]. Samples for NOx and SO4

2− were
filtered directly through 0.2-μm pore size cellulose acetate
syringe filters. NH4

+ concentrations were determined using
the dichloroisocyanurate-salicylate-nitroprussiate colorimetric
method [27]. NO2

− concentrations were determined by the
sulfanilamide coloration method [28]. NO3

− concentrations
were determined after vanadium reduction to nitrite and quan-
tified in this form following the nitrite determination proce-
dure [28, 29]. SO4

2− concentrations were measured using ion
chromatography. Samples for HS−determination were not fil-
tered but preserved instead with zinc acetate and stored frozen.
HS−concentrations were measured spectrophotometrically
[30]. The detection limits for these methods were 0.5 nM for
CH4 and 0.3, 0.03, 0.1, 2, and 0.5 μM for NH4

+, NO2
−, NO3

−,
SO4

2−, and HS−, respectively. Samples for particulate organic
carbon concentration (POC) were filtered on precombusted
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(overnight at 450 °C) 25-mm glass fiber filters (Advantec GF-
75; 0.3 μm) and dried. These filters were later decarbonated
with HCl fumes for 4 h and then dried and packed in silver
cups. POCwas determined by elemental analysis-isotope ratio
mass spectrometry (EA-IRMS, ThermoFlashHTwith Thermo
Delta V Advantage). POC was calibrated with International
Atomic Energy Agency (IAEA-C6) and acetanilide.

Chlorophyll a (Chla) concentrations were determined
using high-performance liquid chromatography (HPLC). At
each sampling depth, 3 L of water were filtered on a
Macherey–Nägel GF-5 filter (nominal porosity, 0.4 μm). Pig-
ment extraction was carried out in 10mL of 90%HPLC grade
acetone (Fisher Scientific). After two 15-min sonication steps
separated by an overnight period at 4 °C, the extracts were
stored in 2-mL amber vials at −25 °C. HPLC analysis was
performed following the method described in Sarmento et al.
[23]. Commercial external standards (DHI Lab Products) were
used for calibration.

Nucleic Acid Extraction DNAwas extracted using a combi-
nation of enzymatic cell lysis and the cetyltrimethyl ammoni-
um bromide (CTAB) extraction protocol as previously de-
scribed [20, 31]. Dry DNA pellets were finally rehydrated in
50 μL of 10 mM Tris–HCl buffer (pH 7.4).

Total RNA was extracted using a mirVana RNA isolation
kit (Ambion, Austin, TX, USA; [32]). RNA samples were
treated with the Turbo DNA-free kit (Ambion, Austin, TX,
USA), and cDNA synthesis was performed with the iScript
reverse transcription supermix (Bio-Rad) in a MasterCycler

5331 Gradient (Eppendorf, Hamburg, Germany). Possible
DNA contamination of RNA templates was routinely moni-
tored by PCR amplification of RNA aliquots that were not
reverse transcribed. No contaminating DNA was detected in
any of these reactions.

Real-Time Quantitative PCR qPCR was used to quantify
the presence of distinct functional genes. The following genes
were used as proxies for quantification of DNA: the bacterial
alpha subunit of the particulate methane monooxygenase en-
zyme (pmoA) for methanotrophs, the archaeal alpha subunit of
methyl-coenzyme M reductase enzyme gene (mcrA) for
methanogens, the alpha subunit of the archaeal ammonia
monooxygenase enzyme gene (amoA) for archaeal ammonia
oxidation, the bacterial copper-containing nitrite reductase
gene (nirK), and the cytochrome cd1-containing nitrite reduc-
tase gene (nosZ) for bacterial denitrification. All qPCR assays
were performed in a StepOne Real-Time PCR system (Ap-
plied Biosystems, Foster City, CA, USA) using the primers
and thermal conditions described in Table 1. All reactions
were performed in triplicate for both serial dilutions of titrated
standards and unknown templates using a 20 μL reaction
mixture consisting of the 1× PowerSYBR green PCR master
mix (Applied Biosystems), each primer (Table 1), and DNA
templates of known concentrations of standards or 20 ngDNA
extracted from water samples. The specificity of the amplifi-
cation products was further confirmed by melting curve anal-
yses, and the expected sizes of the amplified fragments were
checked on a 1% agarose gel. Overall, average efficiencies for

February (RS) September (DS)

Fig. 1 Depth profiles of temperature, conductivity and dissolved oxygen (DO), nitrite and nitrite (NOx), CH4, and HS
− concentrations during the two

sampling campaigns (February (RS) and September (DS)). The transition zones were indicated with a gray bar

Bulk and Active Microbial Communities in Lake Kivu
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all quantification reactions ranged from 0.88 to 0.97 with R2

values >0.99. Standard curves were generated from serial di-
lutions of previously titrated suspensions of the desired genes
from isolates or environmental clones, purified (QIAquick;
Qiagen), and quantified. Statistical analyses (ANOVA and
Tukey’s HSD) were performed to compare differences be-
tween water zones (oxic, transition, anoxic) [36].

16S Tag -Enc od ed FLX-T i t an i um Amp l i c on
Pyrosequencing Bacterial and archaeal tag-encoded FLX
amplicon pyrosequencing (bTEFAP and aTEFAP, respective-
ly), analyses by means of a Roche 454 FLX instrument with
titanium reagents, were performed at the Research and Testing
Laboratory (Lubbock, TX, USA) as described previously [37,
38]. The PCR primers for FLX amplicon pyrosequencing were
chosen to span the variable V1–V3 regions in the 16S rRNA
gene: 27 F (5′-GAGTTTGATCNTGGCTCAG-3′) and 519R
(5′-GWNTTACNGCGGCKGCTG-3′) for bacteria and V3–
V4 regions ARCH 349 F (5′-GYGCASCAGKCGMGAAW-
3′) and ARCH 806R (5′-GGACTACVSGGGTATCTAAT-3′)
for archaea. These primers cover about 78 and 70% of publicly
available 16S rRNA for bacteria and archaea, respectively
(check using TestPrime tool available at SILVA webpage
(http://www.arb-silva.de/search/testprime/)).

Pyrosequencing Data Analyses All sequences generated in
this study can be downloaded from the National Center for
Biotechnology Information (NCBI) Short Read Archive, ac-
cession number: SRP021176. Pyrosequencing data were proc-
essed using Mothur [40]. To minimize the effects of random
sequencing errors, a denoising algorithm (shhh.flows) included
in the pipeline is used and low-quality sequences were re-
moved by eliminating those without an exact match to the
forward primer, without a recognizable reverse primer, with a
length shorter than 200 nucleotides, and those containing any
ambiguous base calls. We trimmed the barcodes and primers
from the resulting sequences. Chimeric sequences were re-
moved using the Uchime software [39] implemented in
Mothur [40]. The latest Greengenes and SILVA databases were
used for classification of bacterial and archaeal 16S rRNAgene
sequences, respectively, at a 80 % confidence threshold using
Mothur. After taxonomic assignment of the sequences to the
phylum, class, and genus level, relative abundance of a given
phylogenetic group was set as the number of sequences affil-
iated with that group divided by the total number of sequences
per sample. The sequences retrieved were grouped based on
oxygen stratification as oxic, transition, and anoxic zones.

Sequences were clustered into operational taxonomic units
(OTUs) by setting a 0.03 distance limit (equivalent to 97 %
similarity). A data matrix was created based on the relative
abundance of genus and OTU. The relative abundances were
square root transformed. Dendrograms were generated based
on the Bray–Curtis similarity index using complete linkage

clustering. Furthermore, the scatterplot depicted the relation-
ship between the depths and observed species-based Bray–
Curtis similarity. The discrimination of microbial assemblages
based on time and stratification was tested with one-way anal-
ysis of similarities (ANOSIM). Unless otherwise stated, all the
analyses were performed using PRIMER 6 [41].

To measure habitat specialization, the niche breadth ap-
proach was used, as described previously [42, 43]. The niche
breadth (Bj) was calculated using the following equation:

Bj ¼ 1
XN

i¼1

P2
i j

in which Pij is the proportion of individuals belonging to spe-
cies j present in a given habitat i. OTUs with a high Bj value
indicate a wide range of habitats, which can be considered as
habitat generalists. Similarly, OTUs with a low value can be
assigned as habitat specialists.

Furthermore, the data sets were split into two groups: Taxa
represented by more than 15 sequences per sample were de-
fined as abundant taxa, and taxa that had fewer than 15 se-
quences were considered rare. Venn diagrams of OTUs were
constructed to illustrate the number of shared OTUs (both
subsampled and not subsampled) for the two sampling cam-
paigns based on DNA and RNA. A relative abundance matrix
for OTUs was created for sampling times and points pooled,
and those OTUs that appeared less than five times were re-
moved from the matrix. For network inference, Pearson’s rank
correlations were calculated between OTUs with CoNet [44],
when coefficient (r) was both above 0.8 and statistically sig-
nificant (adjusted p value <0.01 with Benjamini–Hochberg).
The data matrix was translated into an association network
using Cytoscape 2.6.3 [44, 45]. Cytoscape depicts data sets
as nodes (tribes) connected by lines that denote the positive
correlation. In the network, the size of each node is propor-
tional to the number of connections (degree) and the node
border color indicates if the OTU is either abundant or rare.

We further quantified the influences of environmental var-
iables (pH+DO+NOx+POC+CH4+Chl-a), depth, and sea-
son on bacterial community variation using variation
partitioning analyses [46], with the varpart function of the
vegan package [47, 36]. If any colinearity was present, it
would be revealed by the analysis.

Results

Environmental Parameters

Lake Kivu is characterized by vertical gradients in tempera-
ture, pH, conductivity, DO, CH4, and HS− (Fig. 1). Surface
waters were characterized by high DO content and low NOX

Bulk and Active Microbial Communities in Lake Kivu
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and CH4 concentrations, whereas the anoxic deep waters were
characterized by high concentrations of NH4

+ and dissolved
CO2 and CH4 [18]. NOx

− showed maximum values in the
oxic–anoxic transition zone, whereas increasing concentra-
tions with depth of HS− (>50 μM) and CH4 (>100 μM) were
only observed in the anoxic zone (Fig. 1). The mixed oxic
zone was deeper during the DS than during the RS with a
more gradual decrease in DOwith depth and a steady increase
in NOx values toward the chemocline (Fig. 1). The pH de-
creased with depth over the first 100-m depth (data not
shown). POC concentration was higher in the oxic water than
in the anoxic zones during both sampling campaigns and was
slightly higher in the oxic water compartments in DS than in
RS (data not shown).

qPCR In the current study, functional genes involved in key
processes of carbon and nitrogen cycles were measured by
genomic DNA qPCR. In relation to the carbon cycle, the
pmoA gene was used to quantify the bacterial methanotrophs
and the mcrA gene to quantify archaeal methanogens and

methanotrophs. Concerning the N cycle, the amoA gene was
used to quantify archaeal ammonia oxidizers (AOA) while the
nirK and nosZ genes were used to quantify bacterial
denitrifiers.

In RS, pmoA gene copies ranged between 1.13×103 and
2.92×104 gene copies mL−1, whereas in DS, the values varied
between 4.19×102 and 9.63×104 gene copies mL−1

throughthe water column. In DS, more pmoA gene copies
were measured in the transition zone (p<0.05, Fig. 2) than
in RS. Concerning archaeal methanogens and methanotrophs,
mcrA gene copies were only detected in the anoxic zone with
abundance ranging between 8.00×102 and 3.53×103 gene
copies mL−1 in RS (Fig. 2), whereas lower values were recov-
ered in DS (4.15×102 to 2.21×103 gene copies mL−1). The
difference between sampling dates was not statistically
significant.

The numbers of archaeal amoA gene copies were used to
investigate the vertical distribution and abundance of AOA in
relation to the NOx profile available for both sampling cam-
paigns. The quantitative distribution varied with depth, and
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the highest copy numbers were mainly observed in the oxic
and transition zones (from 30.0 to 42.5 m in RS and from 40.0
to 57.5 m in DS). The maximum values were 4.2×105 and
2.5×104 gene copies mL−1 in RS and DS, respectively
(Fig. 2). Furthermore, functional genes involved in bacterial
denitrification (i.e., nirK and nosZ genes) showed similar
depth patterns during both seasons with rather low values
(never exceeding 1×103 gene copies mL−1; Fig. 2). Oxic wa-
ters had significantly higher densities of nirK than in transition
zone (p<0.05) and higher densities of nosZ than anoxic water
in September (p<0.05). During the RS, no clear pattern with
depth was observed, but higher values were observed at 27.5
and 45 m, whereas during the DS, maximum values were
observed at 10 m and decreased regularly with depth, with a
slight increase at the oxic–anoxic transition zone.

Pyrosequencing Overview and Community β-Diversity
After removing the noise and poor-quality reads with Mothur,
about 34,097 bacterial DNA reads and 27,095 bacterial RNA
reads were used for subsequent analyses. Rarefaction analysis
indicated that most of the bacterial libraries may require
deeper sequencing to avoid underestimation of microbial di-
versity in the samples (Table S1). Samples were randomly
subsampled to the smallest sampling size using Mothur in
order to reduce bias in species richness due to the differences
in the number of sequences. The number of bacterial OTUs
increased with depth for both DNA and RNA-based bacterial
communities (Table S1). Richness estimates of the RNA-
based bacterial community in the deepest anoxic waters were
slightly higher than the DNA-based community in RS, where-
as richness estimates of the DNA-based bacterial community
in anoxic waters were higher than the estimates of the poten-
tially active bacterial community in DS. The number of ob-
served bacterial species per depth ranged from 127 to 240 in
RS and 237 to 603 in DS for bulk and active bacterial com-
munities, respectively (Table S1). The Chao1 estimator pre-
dicted richness values in the range of 324–988 in RS and 492–
2234 in DS. Moreover, rank-abundance curves of DNA- and
RNA-based bacterial communities showed a power-law dis-
tribution, which had a few abundant OTUs and a long tail of
low-abundant species (Fig. S1). Venn diagrams also suggested
that highly abundant taxa were common in a high percentage
between DNA- and RNA-based communities. In contrast, a
high proportion of rare species was determined to be specific
to either DNA- and RNA-based community (Fig. 3).

In turn, 16,700 archaeal DNA reads and 2573 archaeal
RNA reads were recovered for subsequent analyses. No
high-quality sequences were retrieved from 15, 25, 35, and
50 m RNA samples in RS and from 10, 25, 40, 50, and
53 m DNA and RNA samples in DS. Rarefaction analysis
based on OTUs indicated that most of the archaeal libraries
reached the plateau level with the exception of the 40 m RNA
sample in RS and the 80 m RNA sample in DS. In general

terms, richness was higher in the anoxic zone than in the oxic
zone during both sampling times. During both seasons, ar-
chaeal richness estimates (i.e., Chao1 estimator) predicted
lower richness values in the oxic and oxic–anoxic transition
zone than in the anoxic waters (Table S2). No clear richness
differences were observed between DNA- and RNA-based
archaeal communities in oxic and oxic–anoxic transition
zones, whereas richness estimates were higher for DNA sam-
ples than RNA samples in the anoxic zone (Table S1).

Bacterial Community Composition Analysis Between 7
and 42 % of the bacterial sequences analyzed were unclassi-
fied, with an increasing proportion toward the anoxic zone.
Altogether, 34 distinct bacterial phyla were recovered from
DNA samples and 29 phyla from RNA samples in RS, while
43 phyla were recovered from DNA samples and 29 phyla
from RNA samples in DS. Actinobacteria, Proteobacteria
( A l p h a p ro t e o b a c t e r i a , B e t a p ro t e o b a c t e r i a ,
Epsilonproteobacteria, and Gammaproteobacteria),
Cyanobacteria, Planctomycetes, Bacteroidetes, Chlorobi,
Chloroflexi, and Nitrospirae were detected both in the DNA-
and RNA-based bacterial communities (Fig. 4, S2A-I). In
DNA- and RNA-based communities, candidate bacterial phy-
la such as GN02, OP3, OP8, NC10, NKB19, TM6, and WS1
were mostly detected in the anoxic zone but never exceeding
relative abundance of 1 %. The comparison of the DNA- and
RNA-based bacterial communities revealed similar relative
abundance of the numerically dominant taxa with the excep-
tion of a lower relative abundance of Actinobacteria (Fig. 4,
S2B) and a higher abundance of Planctomycetes (Fig. 4, S2C)
and Bacteroidetes (Fig. 4) in the potentially active bacterial
community composition (BCC) with respect to DNA-based
bacterial community in the oxic zone. The BCC is further
described in the co-occurrence patterns of the bacterial taxa
section.

Bray–Curtis similarity trees were constructed based on to-
tal OTU composition of the 47 bacterial RNA and DNA sam-
ples to determine the associations among the communities.
Clustering and ANOSIM analyses revealed the stratification
(three zones based on DO concentrations) as the most impor-
tant factor in structuring both DNA- and RNA-based BCC
(Fig. 5). Although the clustering showed the grouping of the
samples by DO zones, no similarity higher than 60 % was
observed between samples. When the DNA- and RNA-
based bacterial communities were compared based on Bray–
Curtis distances against depth, significant negative correla-
tions were observed (Fig. 6), with higher slopes (m) and linear
correlation coefficients (R) for DNA- than RNA-based BCC
(m=−6.48, R=0.77 for the bulk community and m=−3.58,
R=0.47 for the potentially active community), suggesting
more rapid changes in the DNA-based BCC with depth than
in the RNA-based community. Moreover, the BCC differed
significantly and systematically depending on whether DNA
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or RNAwas analyzed (Fig. 4). Based on clustering at the OTU
level and ANOSIM analysis of the bulk community, a signif-
icant temporal effect (DS vs. RS) was also observed (Table 2).

Archaeal Community Composition Analysis At an 80 %
confidence threshold, all of the reads could be assigned to
the Archaea using the SILVA database classifier. Most of all,
the nonchimeric and good-quality archaeal amplicons re-
trieved were affiliated with archaeal phyla, and only two sam-
ples from the deepest depths had 7 % unclassified Archaea.
All archaeal amplicons retrieved spanned over archaeal line-
ages covering Thaumarchaeota, Crenarchaeota, and
Euryarcheota within both cultured (e.g. , marine
Crenarchaeota group, Methanosaeta, or Candidatus
Methanoregula) and uncultured (e.g., Miscellaneous
Crenarchaeotic Group (MCG) and GOM-Arc-I) groups.

At both sampling times, one OTU dominated the DNA-
and RNA-based communities of the oxic zone, which
belonged to the marine group I, tentative ammonia-oxidizing
archaea (AOA). AOA were also dominant in the bulk com-
munities in the transition zone, whereas the potentially active
archaeal community composition (ACC) was mainly

composed of AOA, Methanomicrobia, and Methanobacteria
in the transition zone (Fig. S2J). The DNA- and RNA-based
communities thriving in the anoxic zone were dominated by
the twomethanogens mentioned above and bymembers of the
MCG group.

A Bray–Curtis similarity tree was constructed based on
total OTU composition of the 40 archaeal RNA and DNA
samples to determine the associations among the communi-
ties. Clustering and ANOSIM analyses revealed sampling
date as the main grouping factor in structuring the ACC
(Fig. S3, Table 2) and nucleic acid type as the second grouping
factor. Oxygen had the lowest global structuring effect on
ACC, butoxic, and transition water samples clearly segregated
from anoxic samples (Fig. S3).

Bacterial Abundance Classification and Overlap
Estimates Bulk and potentially active bacterial taxa from
oxic, transition, and anoxic zones were grouped per season
(Fig. 3). Venn diagrams of OTUs were constructed to illustrate
the number of shared OTUs for the two sampling campaigns
based on DNA and RNA. The DNA and RNA samples over
the two seasons shared less than 1 % of OTUs in the rare
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community. Forty-six, 19, and 35 % of the abundant OTUs
were shared in the oxic, transition, and anoxic zone, respec-
tively. Rare species were also found to be specific to the sam-
pling season and nucleic acid-type pool for both subsampled
and not-subsampled data (i.e., DNA or RNA).

Co-occurrence Patterns of Bacteria Co-occurrence patterns
of the microbes present in Lake Kivu were only analyzed with
the bacterial data set due to the lack of archaeal information at
some depths. The co-occurrence patterns for the potentially
active core microbiome detected by Venn diagrams were
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further assessed using network inference based on strong and
significant Pearson correlations (r>0.8, p<0.01). The most
complex interaction was found between potentially active
bacteria in the anoxic zone. The microbial network for both
the oxic and transition zones was composed of 66 nodes
(OTUs) with moderate interconnection (2.3 edges per node
on average), whereas in the network of the anoxic zone, there
were ca. three times more nodes with a higher degree of con-
nection (5.6 edges per node on average; Fig. 3). Aside from
many unclassified bacteria, interactions between different
known taxa were observed. For instance, in the oxic zone,
there was a fairly complex subnetwork including
Actinobacteria, Bacteroidetes, Alphaproteobacteria,
Betaproteobacteria, Gammaproteobacteria, Cyanobacteria,
and OPB56. In the transition zone, a subnetwork was ob-
served between OTUs affiliated with N-fixing methane-oxi-
d i z i n g Me t h y l o c a l d um , h y d r o g e n - o x i d i z i n g
Hydrogenophaga, and nitrifying bacteria Nitrospira with
members of the unclassified proteobacterial class (Fig. 3a).
In the anoxic zone, a co-occurrence pattern was observed be-
tween sulfate reducers (Desulfobacca, Desulfocapsa, and
Desulfobacterium), sulfur oxidizers (Sulfurimonas), and hy-
drogen oxidizers (Dehalococcoidetes).

Co-occurrence Patterns of Potentially Active Bacteria
and Archaea in the Anoxic Zone Diverse and complex
interactions between potentially active bacteria were found in
the anoxic zone; therefore, their correlations with archaea
were further investigated. The co-occurrence patterns of the
potentially active microbiome with a relative abundance
higher than 0.5 %were defined using network inference based
on strong and significant Pearson correlations (r>0.8,
p<0.001). Themicrobial network in the anoxic zone consisted
of 31 moderately interconnected nodes (2.9 edges per node on
average; Fig. S4). A clear interaction between bacterial sulfate
reducers, sulfur oxidizers, nitrogen-fixing methanotrophs, ar-
chaeal methanogens, and anaerobic methane oxidizers was
observed. In addition, another interaction between members
of Methanomicrobia, Chlorobicaea, and Syntrophaceae was
also observed.

Niche Breadth Comparison Levins’ niche breadth was cal-
culated as a proxy to understand how particular taxa relate to
their environment. The bulk bacterial community had a strong
linear relationship between niche breadth and their relative
abundance, while generalist and specialist OTUs in the poten-
tially active bacterial community were more equally distribut-
ed within rare and abundant taxa. In addition, niche breadth in
the DNA-based bacterial community was higher than in the
RNA-based community. Potentially active bacterial OTUs
able to develop in either the oxic or anoxic zone were mainly
assigned at different taxonomic levels to Burkholderiales,
Pseudanabaenaceae, Acidobacteria, and Methylocaldum. In
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Table 2 ANOSIM test on bacterial and archaeal community
composition at the OTU level between the three analyzed water
compartments

Test for differences between DNA/RNA across all water compartments

Bacteria Archaea

R p R p

Global test 0.53 0.002 0.493 0.001

Test for differences between water compartments across all DNA/RNA

Bacteria Archaea

R p R p

Global test 0.537 0.001 0.355 0.001

Pairwise test

Oxic–transition 0.370 0.03 0.016 0.34

Oxic–anoxic 0.735 0.001 0.553 0.001

Transition–anoxic 0.454 0.03 0.474 0.001

Test for differences between sampling dates across all DNA/RNA

Bacteria Archaea

R p R p

Global test 0.145 0.009 0.503 0.001

Significant values were indicated in bold
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contrast, no significant relationship was observed between
niche breadth and DNA- and/or RNA-based archaeal relative
abundance. Archaeal OTUs detected in both the oxic and an-
oxic zones were assigned to MGI and Miscellaneous
Crenarchaeotic Group. The niche breadth observed for the
RNA-based bacterial and archaeal community was narrower
than for the DNA-based bacterial and archaeal community
(Fig. S5).

Linking Bacterial Communities to Environmental
Parameters Variance partitioning analysis (VPA) was per-
formed to quantify the relative contribution of season, depth,
and environmental parameters to the taxonomic structure of
the bacterial and archaeal communities. The analysis of envi-
ronmental variables was restricted to a subset of all variables
acquired during the field cruises including: DO, pH, NOx,
POC, CH4, and Chl-a. Clear differences were observed in
variance partitioning patterns, if all bacterial OTUs or both
abundance categories (abundant/rare) were considered. In all
cases, the impact of the environmental parameters was found
to be the highest, followed by either season or depth (Fig. 7).
The parameters analyzed (depth, season, and environmental
variables) in total explained 50% of the variation observed for
the bulk bacterial community, and they explained only 30 %
of the variation observed for the potentially active bacterial
community. Furthermore, the total relative contributions of
variables increased when VPAwas performed for only abun-
dant bacterial species, whereas it clearly decreased for rare

species. The sum of the parameters analyzed (depth, season,
environmental variables) explained 73 % of the variation ob-
served for the bulk archaeal community and only 18 % for the
potentially active archaeal community (data not shown).

Discussion

In the present study, DNA- and RNA-based amplicon pyrose-
quencing was performed to further investigate the temporal
and vertical effects on the bulk and potentially active micro-
bial biosphere of Lake Kivu and to gain a more complete view
of the microbial dynamics in Lake Kivu than the one afforded
by analyzing either nucleic acid pool alone.

Community Composition at a High Taxonomic Level Due
to the strong vertical chemical gradients and zonation of redox
reactions with depth, a clear vertical stratification of microbial
communities is usually observed for meromictic lakes
[48–51]. In spite of the different extraction protocols used,
the relative abundances of potentially active and bulk bacterial
and archaeal communities were mostly similar at the phylum
level, with some notable exceptions. These differences were
mostly observed in the oxic zone. For instance, Actinobacteria
were highly dominant in the bulk bacterial community of sur-
face waters (around 30%); however, this dominance was low-
er in the potentially active community, as previously shown in
a eutrophic lake [52]. Actinobacteria might experience lower
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mortality rates than other bacterial lineages due to the resis-
tance to protozoan grazing [53] and small cell size [54]. There-
fore, Actinobacteria might not require rapid growth to main-
tain high cell densities in the water column [55]. This might be
also due to the difference in lysis methods used for DNA and
RNA extraction. Bacteroidetes (CFB) and Planctomycetes
were substantial components of potentially active BCC in
the oxic waters of Lake Kivu in the rainy and dry season,
respectively (Fig. 4). Many studies have reported high relative
abundance of Bacteroidetes or Planctomycetes following al-
gal blooms [56–60]. Both phyla are known to be present and
attached to aggregates, and they have various extracellular
enzymes that can degrade complex organic molecules and
give a competitive advantage with regards to other microbial
groups [61–63]. Presence of a high percentage of these two
phyla in different seasons might be due to the competition
between these two phyla for organic matter or dominance of
different phytoplankton species in two seasons, as mainly a
higher dominance of diatoms was observed in the DS and
Cyanobacteria were more dominant in the RS (Fig. 4; [23]).
Besides, Cyanobacteria represent a big fraction of the active
microbial community in oxic and illuminated waters (Fig. 4
and Fig. S2) due to their oxic photoautotrophic metabolism. A
recent study done in Lake Kivu suggested that a variety of
ecological niches of heterotrophic bacteria can be supported
by the diversity of molecules excreted by the phytoplankton
community [64]. Detection of a low abundance of potentially
active Planctomycetes-affiliated sequences in the anoxic zone
supported the idea that members of this group have anaerobic
metabolic abilities, as suggested by previous studies showing
that they rely on carbohydrate fermentation and sulfur reduc-
tion for growth and survival under anaerobic conditions [65].
Furthermore, sequences affiliated to Chlorobi phylum were
recovered from both nucleic acid pools of either oxic or anoxic
waters and sampling campaigns. Their recovery from oxic
waters is an interesting feature and deserves further investiga-
tions, but recent evidences pointed toward new Chlorobi rep-
resentatives able to develop under aerobic conditions
performing photoheterotrophic metabolisms [66, 67].

Furthermore, higher abundance of AOAwas shown in the
bulk community in comparison to the potentially active com-
munity. Such discrepancy between DNA- and RNA-based
studies of surface waters has also been observed in freshwater
ecosystems [4, 68]. The denitrification genes nirK and nosZ
were slightly higher in the oxic zone than in the anoxic zone
(Fig. 2). Previously, growth of facultative anaerobic denitrifiers
in aerobic environments was demonstrated, which suggests a
wider distribution of potential denitrifiers in the aerobic growth
conditions of this lake [69, 70]. The good correlation found
between nirK and nosZ genes might be due to the fact that
these genes are usually located in the same operon [71, 72].

Detection of highly abundant potentially active Nitrospira
in the transition zone confirmed a previous study of the nitrite-

oxidizing community in the transition zone of Lake Kivu
(Figs. 4 and S2D; [20]). The CH4 oxidation peak in the transi-
tion zone was also strongly correlated with the relative abun-
dance of active methanotrophs and abundance of pmoA gene
(p<0.05; data not shown). Detection of potentially active
Methylococcales and Methyloversatilis indicates aerobic CH4

oxidation as the main process preventing CH4 from escaping to
the atmosphere (Fig. S2E). The co-occurrence of CH4 oxidiz-
ingMethylocaldum and hydrogen-oxidizingHydrogenophaga
supports recent findings of CH4 consumption in O2-limiting
conditions byMethylocaldum, leading to the release of several
organic molecules (e.g., acetate, lactate, succinate, and hydro-
gen) that can be used by Hydrogenophaga [73].

Several archaeal groups able to produce CH4 have also been
detected in both DNA and RNA-based communities mainly in
the anoxic waters. Indeed, their presence even in the transition
zone is consistent with recent studies that showed the presence
of potentially active methanogens in the oxygenated water col-
umn of an oligotrophic lake attached to photoautotrophic mi-
crobes that might be enabling aerobic growth and supply of
methanogenic substrates [74, 75]. However, the presence of
acetoclastic methanogens (Methanosarcinales) in the oxic–an-
oxic transition zone might also indicate the presence of
syntrophy between methanogenic and fermentative microbes,
through the occurrence of a coupled mutualistic interaction
between hydrogen-/formate-producing and hydrogen-/for-
mate-using microorganisms [76]. A consistent relationship be-
tween uncultured OTUs ofMethanomicrobia, Chlorobicaeae,
and Syntrophaceae was also observed in the anoxic zone
(Fig. S3), which could indicate the presence of syntrophic re-
lationships between thesemicrobes in hydrocarbon or complex
high molecular weight compound degradation, as previously
shown in the sediments of the River Tyne [77].

Network analysis revealed a complex interaction between
active Dehalococcoidetes, sulfate-reducing bacteria (SRB;
Desulfucapsa, Desulfobacca), and sulfur-oxidizing bacteria
(SOB; Sulfurimonas, Sulfuricurvum) in the anoxic zone
(Fig. 3c). The co-occurrence of active SOB and SRB in the
anoxic zone may further suggest the presence of an active yet
cryptic sulfur cycle [20]. It has been evidenced that
Dehalococcoidetesmay have a nutritional dependence on other
organisms [78, 79]; the co-occurrence of this active but rare
bacterial class with SRB might thus be linked to its role in
hydrocarbon degradation (Fig. 3c). Recent investigations have
described complex interactions between Dehalococcoides,
SRB, and methanogens depending on their metabolic activities
and nutrient (e.g., hydrogen, acetate) or vitamin (e.g., B12) con-
centrations [80], suggesting their multiplemetabolic capabilities.

Bulk Versus Potentially Active Community Structure
Although the samples analyzed had mostly similar taxonomic
characterization at the phylum level, clustering analysis at the
OTU level highlighted the importance of which nucleic acid
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pool (i.e., DNA or RNA) was analyzed. The presence of se-
quences exclusively found in one of the two nucleic acid pools
suggests that using both nucleic acids provides a more com-
plete overview of the microbial diversity present in a given
environment since on average, only 20 % of the OTUs (18–
22%) were shared per DO zone and per season. As previously
suggested [81], sequences found only in the DNA pool might
be related to metabolically less active, yet abundant popula-
tions, whereas sequences detected only in RNA are associated
with active members of the community but may be present in
relatively low numbers. The type of populations associated
with shared and unshared sequences could be the result of
differences in their respective overall abundance and/or a re-
flection on the overall metabolic status of a population within
a given OTU. The detection of taxa in only one pool and not in
the other can also be due to insufficient pyrosequencing in the
effort to reveal complete diversity, and this had obviously
more effect on the rare community.

Inactive cells are seen as a potential seed bank, which en-
ables a rapid community adaptation to changing environ-
ments, so that the overall community always prevails [82,
83]. DNA and RNA profiles were found to be more similar
in the anoxic zone than in the oxic or transition zones. The
results agree with the fact that anaerobic processes are less
energetic than aerobic respiration, thus suggesting slow
growth rates in the anoxic water compartment of Lake Kivu.
Besides, the anoxic water compartment of Lake Kivu was also
more diverse in types as pointed out by the richness estima-
tions (p<0.02). It was previously suggested that anoxic envi-
ronments maintain a higher diversity of energetic pathways
and that this complexity permits the retention of higher meta-
bolic and thus ecological diversity [3, 84].

Abundant and Rare Taxa Both bulk and potentially active
microbial communities present in the water column of Lake
Kivu comprised few very abundant OTUs and a huge number
of low-abundant and rare OTUs (data not shown). The fact of
even recovering a long tail of rare low-abundant OTUs within
the potentially active members of the microbial community
evidenced the existence of an active rare biosphere in Lake
Kivu or a pool of dormant microbes with enough RNA pool to
recover from this situation when necessary [6]. Venn diagrams
revealed that bulk and potentially active bacterial communi-
ties shared a high fraction of those highly abundant taxa. In
contrast, rare OTUs were detected in a high proportion exclu-
sively in either bulk or potentially active bacterial communi-
ties. As suggested for estuarine and coastal ocean waters, the
metabolically active rare biosphere of Lake Kivu might be
potentially important for the functioning and the temporal dy-
namics of microbial communities as they shift between sea-
sons [13–15].

Levins’ niche width was used to classify the taxa retrieved
in Lake Kivu as generalists or specialists based on the

environmental conditions in which they developed but not
directly on their intrinsic biological properties [85]. Most bac-
terial taxa identified as generalists were abundant, whereas
those identified as specialists were more likely to be rare
(mainly in the bulk community), and this pattern was less
evident for the potentially active community. Such a signifi-
cant relationship could not be observed for archaeal taxa,
which might be due to missing depths in our analysis. The
detection of some OTUs in either bulk or potentially active
communities in both oxic and anoxic zones might reflect some
metabolic flexibility and capacity to cope with the different
redox conditions present in the lake’s water column.

Moreover, variation partitioning analyses were performed
to assess the contributions of depth, season, and environmen-
tal parameters to microbial community structure. The pool of
environmental parameters analyzed here could explain the
highest part of the variation in bacterial communities. The
results of this study showed that DO had the most significant
effect in shaping the BCC, as shown previously [86]. In addi-
tion toDO, bacterial community variancewas also significant-
ly related to pH in the lake. Any significant deviation in envi-
ronmental pH should impose stress on single-cell organisms,
since intracellular pH of most microorganisms is usually with-
in 1 pH unit of neutral [87, 88]. The significant effect of pH on
the BCC was also shown in a range of aquatic environments
[88]. The overall number of environmental variations that
could explain the presence of taxa was also higher for abun-
dant taxa in comparison to rare taxa. This might indicate that
abundant taxa are sufficient to describe the mechanisms un-
derlying the beta-diversity [6]. However, it is possible that rare
species were more affected by environmental parameters such
as concentrations of micronutrients, hydrocarbons, as well as
stochastic dispersal, immigration, and predation, which were
not measured in this study and thus not taken into account in
the statistical analysis [6]. Furthermore, a higher degree of the
variation was explained for the bulk BCC than for the poten-
tially active BCC. It might indicate that the seed bank likely
represents the species pool of the complex water habitat and
enables the shift in rapidly changing environments and also
potentially stabilize ecosystem.

Conclusions

Combination of complementary methods (16S rRNA, rDNA
pyrosequencing, and qPCR) provided insights into the active
community and functional genes present in Lake Kivu, where
biogeochemical cycling appeared to be functioning synergis-
tically. Detection of key players in biogeochemical cycles in
the various water layers were also supported by the vertical
chemical gradients. The experimental evaluation suggests that
the quantification of functional genes by qPCR was mostly in
agreement with the pyrosequencing of complex microbial
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communities. This study showed that rare taxa (mainly spe-
cialists), especially in the anoxic zone, cannot solely be char-
acterized as a seed bank or dormant cells in Lake Kivu but that
a significant portion of the rare community is potentially ac-
tive, which supports the results of various studies conducted in
freshwater and marine environments [13, 14]. However, the
impact of environmental parameters measuredwas stronger
for the generalists (mainly abundant taxa), which indicates
the presence of different ecological rules for different groups.
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