Quadratizations of pseudo-Boolean functions

Elisabeth Rodriguez-Heck and Yves Crama

QuantOM, HEC Management School, University of Liège
Partially supported by Belspo - IAP Project COMEX

4th December 2014
comex
combinatorial optimization:
metaheuristics \& exact methods

Polynomial pseudo-Boolean optimization

Polynomial pseudo-Boolean optimization

Definitions

Definition: Pseudo-Boolean functions

A pseudo-Boolean function is a mapping $f:\{0,1\}^{n} \rightarrow \mathbb{R}$.

Multilinear representation

Every pseudo-Boolean function f can be represented uniquely by a multilinear polynomial (Hammer, Rosenberg, Rudeanu [7]).

Definitions

Definition: Pseudo-Boolean functions

A pseudo-Boolean function is a mapping $f:\{0,1\}^{n} \rightarrow \mathbb{R}$.

Multilinear representation

Every pseudo-Boolean function f can be represented uniquely by a multilinear polynomial (Hammer, Rosenberg, Rudeanu [7]).

Example:

$$
f\left(x_{1}, x_{2}, x_{3}\right)=9 x_{1} x_{2} x_{3}+8 x_{1} x_{2}-6 x_{2} x_{3}+x_{1}-2 x_{2}+x_{3}
$$

Definitions

Definition: Pseudo-Boolean functions

A pseudo-Boolean function is a mapping $f:\{0,1\}^{n} \rightarrow \mathbb{R}$.

Multilinear representation

Every pseudo-Boolean function f can be represented uniquely by a multilinear polynomial (Hammer, Rosenberg, Rudeanu [7]).

Example:

$$
f\left(x_{1}, x_{2}, x_{3}\right)=9 x_{1} x_{2} x_{3}+8 x_{1} x_{2}-6 x_{2} x_{3}+x_{1}-2 x_{2}+x_{3}
$$

Applications: MAX-SAT

MAX-SAT problem

- INPUT: a set of Boolean clauses $C_{k}=\left(\vee_{i \in A_{k}} \bar{x}_{i}\right) \vee\left(\vee_{j \in B_{k}} x_{j}\right)$, for $k=1, \ldots, m$, where $x_{i} \in\{0,1\}$, and $\bar{x}_{i}=1-x_{i}$.
- OBJECTIVE: find an assignment of the variables, $x^{*} \in\{0,1\}^{n}$ that maximizes the number of satisfied clauses.

Pseudo-Boolean formulation

C_{k} takes value 1 iff the term $\prod_{i \in A_{k}} x_{i} \prod_{j \in B_{k}} \bar{x}_{j}$ takes value 0 .

Applications: MAX-SAT

MAX-SAT problem

- INPUT: a set of Boolean clauses $C_{k}=\left(\vee_{i \in A_{k}} \bar{x}_{i}\right) \vee\left(\vee_{j \in B_{k}} x_{j}\right)$, for $k=1, \ldots, m$, where $x_{i} \in\{0,1\}$, and $\bar{x}_{i}=1-x_{i}$.
- OBJECTIVE: find an assignment of the variables, $x^{*} \in\{0,1\}^{n}$ that maximizes the number of satisfied clauses.

Pseudo-Boolean formulation

$$
\min \sum_{k=1}^{m}\left(\prod_{i \in A_{k}} x_{i}\right)\left(\prod_{j \in B_{k}} \bar{x}_{j}\right)
$$

C_{k} takes value 1 iff the term $\prod_{i \in A_{k}} x_{i} \prod_{j \in B_{k}} \bar{x}_{j}$ takes value 0 .

Applications: Computer Vision

Image restoration problems modelled as energy minimization

$$
E(I)=\sum_{p \in \mathcal{P}} D_{p}\left(I_{p}\right)+\sum_{S \subseteq \mathcal{P},|S| \geq 2} \sum_{p_{1}, \ldots, p_{s} \in S} V_{p_{1}, \ldots, p_{s}}\left(l_{p_{1}}, \ldots, l_{p_{s}}\right),
$$

where $I_{p} \in\{0,1\} \quad \forall p \in \mathcal{P}$.

Applications

- Constraint Satisfaction Problem
- Data mining, classification, learning theory...
- Graph theory
- Operations research
- Production management
- ...

Pseudo-Boolean Optimization

Many problems formulated as optimization of a pseudo-Boolean function

Pseudo-Boolean Optimization

$$
\min _{x \in\{0,1\}^{n}} f(x)
$$

- Optimization is $\mathcal{N} \mathcal{P}$-hard, even if f is quadratic (MAX-2-SAT, MAX-CUT modelled by quadratic f).

Pseudo-Boolean Optimization

Many problems formulated as optimization of a pseudo-Boolean function

Pseudo-Boolean Optimization

$$
\min _{x \in\{0,1\}^{n}} f(x)
$$

- Optimization is $\mathcal{N} \mathcal{P}$-hard, even if f is quadratic (MAX-2-SAT, MAX-CUT modelled by quadratic f).
- Much progress has been done for the quadratic case (exact algorithms, heuristics, polyhedral results...).

Pseudo-Boolean Optimization

Many problems formulated as optimization of a pseudo-Boolean function

Pseudo-Boolean Optimization

$$
\min _{x \in\{0,1\}^{n}} f(x)
$$

- Optimization is $\mathcal{N} \mathcal{P}$-hard, even if f is quadratic (MAX-2-SAT, MAX-CUT modelled by quadratic f).
- Much progress has been done for the quadratic case (exact algorithms, heuristics, polyhedral results...).

Polynomial pseudo-Boolean optimization

Quadratizations

Definition: Quadratization

Given a pseudo-Boolean function $f(x)$ on $\{0,1\}^{n}$, we say that $g(x, y)$ is a quadratization of f if $g(x, y)$ is a quadratic polynomial depending on x and on m auxiliary variables y_{1}, \ldots, y_{m}, such that

$$
f(x)=\min \left\{g(x, y): y \in\{0,1\}^{m}\right\} \quad \forall x \in\{0,1\}^{n}
$$

Then, $\min \left\{f(x): x \in\{0,1\}^{n}\right\}=\min \left\{g(x, y): x \in\{0,1\}^{n}, y \in\{0,1\}^{m}\right\}$.
Which quadratizations are "good"?

- Small number of auxiliary variables.
- Good optimization properties: submodularity.

Quadratizations

Definition: Quadratization

Given a pseudo-Boolean function $f(x)$ on $\{0,1\}^{n}$, we say that $g(x, y)$ is a quadratization of f if $g(x, y)$ is a quadratic polynomial depending on x and on m auxiliary variables y_{1}, \ldots, y_{m}, such that

$$
f(x)=\min \left\{g(x, y): y \in\{0,1\}^{m}\right\} \quad \forall x \in\{0,1\}^{n}
$$

Then, $\min \left\{f(x): x \in\{0,1\}^{n}\right\}=\min \left\{g(x, y): x \in\{0,1\}^{n}, y \in\{0,1\}^{m}\right\}$.
Which quadratizations are "good"?

- Small number of auxiliary variables.
- Good optimization properties: submodularity.
- A quadratic pseudo-Boolean function is submodular iff all quadratic terms have non-positive coefficients.

Quadratizations

Definition: Quadratization

Given a pseudo-Boolean function $f(x)$ on $\{0,1\}^{n}$, we say that $g(x, y)$ is a quadratization of f if $g(x, y)$ is a quadratic polynomial depending on x and on m auxiliary variables y_{1}, \ldots, y_{m}, such that

$$
f(x)=\min \left\{g(x, y): y \in\{0,1\}^{m}\right\} \quad \forall x \in\{0,1\}^{n}
$$

Then, $\min \left\{f(x): x \in\{0,1\}^{n}\right\}=\min \left\{g(x, y): x \in\{0,1\}^{n}, y \in\{0,1\}^{m}\right\}$.
Which quadratizations are "good"?

- Small number of auxiliary variables.
- Good optimization properties: submodularity.
- A quadratic pseudo-Boolean function is submodular iff all quadratic terms have non-positive coefficients.

Quadratic pseudo-Boolean optimization methods

Quadratic optimization is $\mathcal{N} \mathcal{P}$-hard, but much work has been done:

- Algorithms based on MAX-CUT (which reduces to a polynomial MIN-CUT problem when f is submodular).

Quadratic pseudo-Boolean optimization methods

Quadratic optimization is $\mathcal{N} \mathcal{P}$-hard, but much work has been done:

- Algorithms based on MAX-CUT (which reduces to a polynomial MIN-CUT problem when f is submodular).
- Heuristics such as local search.

Quadratic pseudo-Boolean optimization methods

Quadratic optimization is $\mathcal{N} \mathcal{P}$-hard, but much work has been done:

- Algorithms based on MAX-CUT (which reduces to a polynomial MIN-CUT problem when f is submodular).
- Heuristics such as local search.
- In computer vision: approaches based on Roof Duality (1984) ([8]).

Quadratic pseudo-Boolean optimization methods

Quadratic optimization is $\mathcal{N} \mathcal{P}$-hard, but much work has been done:

- Algorithms based on MAX-CUT (which reduces to a polynomial MIN-CUT problem when f is submodular).
- Heuristics such as local search.
- In computer vision: approaches based on Roof Duality (1984) ([8]).
- Polyhedral results: Isomorphism between boolean quadric polytope (associated to quadratic pseudo-Boolean optimization) and cut polytope (associated to MAX-CUT) (1990) ([4]), good separation algorithms...

Quadratic pseudo-Boolean optimization methods

Quadratic optimization is $\mathcal{N} \mathcal{P}$-hard, but much work has been done:

- Algorithms based on MAX-CUT (which reduces to a polynomial MIN-CUT problem when f is submodular).
- Heuristics such as local search.
- In computer vision: approaches based on Roof Duality (1984) ([8]).
- Polyhedral results: Isomorphism between boolean quadric polytope (associated to quadratic pseudo-Boolean optimization) and cut polytope (associated to MAX-CUT) (1990) ([4]), good separation algorithms...

Rosenberg

Rosenberg (1975) [11]: first quadratization method.

(1) Take a product $x_{i} x_{j}$ from a highest-degree monomial of f and substitute it by a new variable $y_{i j}$.
(2) Add a penalty term $M\left(x_{i} x_{j}-2 x_{i} y_{i j}-2 x_{j} y_{i j}+3 y_{i j}\right)$ (M large enough) to the objective function to force $y_{i j}=x_{i} x_{j}$ at all optimal solutions.
(3) Iterate until obtaining a quadratic function.

- Advantages:
- Can be applied to any pseudo-Boolean function f.
- The transformation is polynomial in the size of the input.

Rosenberg

Rosenberg (1975) [11]: first quadratization method.

(1) Take a product $x_{i} x_{j}$ from a highest-degree monomial of f and substitute it by a new variable $y_{i j}$.
(2) Add a penalty term $M\left(x_{i} x_{j}-2 x_{i} y_{i j}-2 x_{j} y_{i j}+3 y_{i j}\right)$ (M large enough) to the objective function to force $y_{i j}=x_{i} x_{j}$ at all optimal solutions.
(3) Iterate until obtaining a quadratic function.

- Advantages:
- Can be applied to any pseudo-Boolean function f.
- The transformation is polynomial in the size of the input.
- Drawbacks: The obtained quadratization is highly non-submodular.

Rosenberg

Rosenberg (1975) [11]: first quadratization method.

(1) Take a product $x_{i} x_{j}$ from a highest-degree monomial of f and substitute it by a new variable $y_{i j}$.
(2) Add a penalty term $M\left(x_{i} x_{j}-2 x_{i} y_{i j}-2 x_{j} y_{i j}+3 y_{i j}\right)$ (M large enough) to the objective function to force $y_{i j}=x_{i} x_{j}$ at all optimal solutions.
(3) Iterate until obtaining a quadratic function.

- Advantages:
- Can be applied to any pseudo-Boolean function f.
- The transformation is polynomial in the size of the input.
- Drawbacks: The obtained quadratization is highly non-submodular.

Termwise quadratizations

Multilinear expression of a pseudo-Boolean function:

$$
f(x)=\sum_{S \in 2^{[n]}} a_{S} \prod_{i \in S} x_{i}
$$

Idea: quadratize monomial by monomial, using different sets of auxiliary variables for each monomial.

Termwise quadratizations: negative monomials

Kolmogorov and Zabih [10], Freedman and Drineas [6].

$$
a \prod_{i=1}^{n} x_{i}=\min _{y \in\{0,1\}} a y\left(\sum_{i=1}^{n} x_{i}-(n-1)\right), a<0 .
$$

- Advantages: one single auxiliary variable, submodular quadratization.

Termwise quadratizations: negative monomials

Kolmogorov and Zabih [10], Freedman and Drineas [6].

$$
a \prod_{i=1}^{n} x_{i}=\min _{y \in\{0,1\}} a y\left(\sum_{i=1}^{n} x_{i}-(n-1)\right), a<0 .
$$

- Advantages: one single auxiliary variable, submodular quadratization.

Termwise quadratizations: positive monomials

Ishikawa [9]

$$
a \prod_{i=1}^{d} x_{i}=a \min _{y_{1}, \ldots y_{n_{d}} \in\{0,1\}} \sum_{i=1}^{n_{d}} y_{i}\left(c_{i, d}\left(-S_{1}+2 i\right)-1\right)+a S_{2},
$$

S_{1}, S_{2} : elementary linear and quadratic symmetric polynomials in d variables, $\mathbf{n}_{\mathbf{d}}=\left\lfloor\frac{\mathbf{d}-\mathbf{1}}{2}\right\rfloor$ and $c_{i, d}=\left\{\begin{array}{l}1, \text { if } d \text { is odd and } i=n_{d}, \\ 2, \text { otherwise. }\end{array}\right.$

- Number of variables: best known bound for positive monomials.
- Submodularity: $\binom{d}{2}$ positive quadratic terms, but very good computational results.

Termwise quadratizations: positive monomials

Ishikawa [9]

$$
a \prod_{i=1}^{d} x_{i}=a \min _{y_{1}, \ldots y_{n_{d}} \in\{0,1\}} \sum_{i=1}^{n_{d}} y_{i}\left(c_{i, d}\left(-S_{1}+2 i\right)-1\right)+a S_{2},
$$

S_{1}, S_{2} : elementary linear and quadratic symmetric polynomials in d variables, $\mathbf{n}_{\mathbf{d}}=\left\lfloor\frac{\mathbf{d}-\mathbf{1}}{2}\right\rfloor$ and $c_{i, d}=\left\{\begin{array}{l}1, \text { if } d \text { is odd and } i=n_{d}, \\ 2, \text { otherwise } .\end{array}\right.$

- Number of variables: best known bound for positive monomials.
- Submodularity: $\binom{d}{2}$ positive quadratic terms, but very good computational results.

Number of variables

Using termwise quadratizations:

- One variable per negative monomial and \} \lfloor \frac { d - 1 } { 2 } \rfloor per positive monomial (d : degree of the monomial).
- Best known upper bounds: $O\left(n^{d}\right)$ variables for a polynomial of fixed degree $d, O\left(n 2^{n}\right)$ for an arbitrary function.

Can we do better?

Tight upper and lower bounds independent of the quadratization procedure by Anthony, Boros, Crama and Gruber [1]

- $\Theta\left(2^{\frac{n}{2}}\right)$ for a general pseudo-Boolean function.
- $\Theta\left(n^{\frac{d}{2}}\right)$ for a fixed polynomial of degree d.

Number of variables

Using termwise quadratizations:

- One variable per negative monomial and $\left\lfloor\frac{d-1}{2}\right\rfloor$ per positive monomial (d : degree of the monomial).
- Best known upper bounds: $O\left(n^{d}\right)$ variables for a polynomial of fixed degree $d, O\left(n 2^{n}\right)$ for an arbitrary function.

Can we do better?

Tight upper and lower bounds independent of the quadratization procedure by Anthony, Boros, Crama and Gruber [1]

- $\Theta\left(2^{\frac{n}{2}}\right)$ for a general pseudo-Boolean function.
- $\Theta\left(n^{\frac{d}{2}}\right)$ for a fixed polynomial of degree d.

Note: bounds are polynomial in the size of the input:
$f(x)=\sum_{S \in 2^{[n]}}$ as $\prod_{i \in S} x_{i}$ can have up to 2^{n} monomials.

Number of variables

Using termwise quadratizations:

- One variable per negative monomial and $\left\lfloor\frac{d-1}{2}\right\rfloor$ per positive monomial (d : degree of the monomial).
- Best known upper bounds: $O\left(n^{d}\right)$ variables for a polynomial of fixed degree $d, O\left(n 2^{n}\right)$ for an arbitrary function.

Can we do better?

Tight upper and lower bounds independent of the quadratization procedure by Anthony, Boros, Crama and Gruber [1]

- $\Theta\left(2^{\frac{n}{2}}\right)$ for a general pseudo-Boolean function.
- $\Theta\left(n^{\frac{d}{2}}\right)$ for a fixed polynomial of degree d.

Note: bounds are polynomial in the size of the input: $f(x)=\sum_{S \in 2^{[n]}} a_{S} \prod_{i \in S} x_{i}$ can have up to 2^{n} monomials.

Summary: known quadratization techniques

What has been done until now?

Specific quadratization procedures, experimental evaluations...

- Several quadratizations known for monomials.

Summary: known quadratization techniques

What has been done until now?

Specific quadratization procedures, experimental evaluations...

- Several quadratizations known for monomials.
- Case of negative monomials well-solved (one auxiliary variable, submodular).

Summary: known quadratization techniques

What has been done until now?

Specific quadratization procedures, experimental evaluations...

- Several quadratizations known for monomials.
- Case of negative monomials well-solved (one auxiliary variable, submodular).
- Improvements can perhaps be done for positive monomials.

Summary: known quadratization techniques

What has been done until now?

Specific quadratization procedures, experimental evaluations...

- Several quadratizations known for monomials.
- Case of negative monomials well-solved (one auxiliary variable, submodular).
- Improvements can perhaps be done for positive monomials.
- Non-termwise quadratization techniques: reduce degree of several terms at once (Fix, Gruber, Boros, Zabih [5]).

Summary: known quadratization techniques

What has been done until now?

Specific quadratization procedures, experimental evaluations...

- Several quadratizations known for monomials.
- Case of negative monomials well-solved (one auxiliary variable, submodular).
- Improvements can perhaps be done for positive monomials.
- Non-termwise quadratization techniques: reduce degree of several terms at once (Fix, Gruber, Boros, Zabih [5]).

Objective: Global perspective

Systematic study of quadratizations, understand properties and structure.

Summary: known quadratization techniques

What has been done until now?

Specific quadratization procedures, experimental evaluations...

- Several quadratizations known for monomials.
- Case of negative monomials well-solved (one auxiliary variable, submodular).
- Improvements can perhaps be done for positive monomials.
- Non-termwise quadratization techniques: reduce degree of several terms at once (Fix, Gruber, Boros, Zabih [5]).

Objective: Global perspective

Systematic study of quadratizations, understand properties and structure.

Polynomial pseudo-Boolean optimization

Standard linearization

Original polynomial problem

$$
\min _{x \in\{0,1\}^{n}} f(x)=\sum_{S \in \mathcal{S}} a_{S} \prod_{i \in S} x_{i}
$$

\mathcal{S} : set of non-constant monomials.

1. Substitute monomials

Standard linearization

Original polynomial problem

$$
\min _{x \in\{0,1\}^{n}} f(x)=\sum_{S \in \mathcal{S}} a_{S} \prod_{i \in S} x_{i}
$$

\mathcal{S} : set of non-constant monomials.

1. Substitute monomials

2. Linearize constraints

$$
\begin{aligned}
& \min _{z s} \sum_{S \in \mathcal{S}} a_{s} z_{S} \\
& \text { s.t. } z_{S}=\prod_{i \in S} z_{i}, \forall S \in \mathcal{S} \\
& z_{S} \in\{0,1\}, \forall S \in \mathcal{S}
\end{aligned}
$$

Standard linearization

Original polynomial problem

$$
\min _{x \in\{0,1\}^{n}} f(x)=\sum_{S \in \mathcal{S}} a_{S} \prod_{i \in S} x_{i}
$$

\mathcal{S} : set of non-constant monomials.

1. Substitute monomials

2. Linearize constraints

$$
\begin{array}{c|c}
\min _{z_{s}} \sum_{S \in \mathcal{S}} a_{S} z_{S} & \min _{z s} \sum_{S \in \mathcal{S}} a_{S} z_{S} \\
\text { s.t. } z_{S}=\prod_{i \in S} z_{i}, \forall S \in \mathcal{S} & \text { s.t. } z_{S} \leq z_{i}, \forall i \in S, \forall S \in \mathcal{S} \\
z_{S} \in\{0,1\}, \forall S \in \mathcal{S} & z_{S} \geq \sum_{i \in S} z_{i}-|S|+1, \forall S \in \mathcal{S} \\
z_{S} \in\{0,1\}, \forall S \in \mathcal{S}
\end{array}
$$

Linearization of a quadratization

Original polynomial problem

$$
\min _{x \in\{0,1\}^{n}} f(x)=\sum_{S \in \mathcal{S}} a s \prod_{i \in S} x_{i}
$$

\mathcal{S} : set of non-constant monomials

1. Define quadratization for f

$$
\min _{x \in\{0,1\}^{n+m}} \sum_{Q \in \mathcal{Q}} b_{Q} \prod_{i \in Q} x_{i}
$$

where \mathcal{Q} is the set of non-constant monomials in the original $\left\{x_{1}, \ldots, x_{n}\right\}$ and the auxiliary $\left\{x_{n+1}, \ldots, x_{n+m}\right\}$ variables and all $Q \in \mathcal{Q}$ have degree at most 2.

Linearization of a quadratization

Original polynomial problem

$$
\min _{x \in\{0,1\}^{n}} f(x)=\sum_{S \in \mathcal{S}} a_{S} \prod_{i \in S} x_{i}
$$

\mathcal{S} : set of non-constant monomials

1. Define quadratization for f

$$
\min _{x \in\{0,1\}^{n+m}} \sum_{Q \in \mathcal{Q}} b_{Q} \prod_{i \in Q} x_{i}
$$

where \mathcal{Q} is the set of non-constant monomials in the original $\left\{x_{1}, \ldots, x_{n}\right\}$ and the auxiliary $\left\{x_{n+1}, \ldots, x_{n+m}\right\}$ variables and all $Q \in \mathcal{Q}$ have degree at most 2.

Linearization of a quadratization

2. Substitute monomials

$$
\begin{aligned}
& \min _{w_{Q}} \sum_{Q \in \mathcal{Q}} b_{Q} w_{Q} \\
& \text { s.t. } w_{Q}=\prod_{i \in Q} w_{i}, \forall Q \in \mathcal{Q} \\
& \\
& \quad w_{Q} \in\{0,1\}, \forall Q \in \mathcal{Q}
\end{aligned}
$$

3. Linearize constraints

Linearization of a quadratization

2. Substitute monomials

3. Linearize constraints

$$
\begin{array}{ll}
\min _{w_{\mathcal{Q}}} & \sum_{Q \in \mathcal{Q}} b_{Q} w_{Q} \tag{B}\\
\text { s.t. } & w_{Q}=\prod_{i \in \mathcal{Q}} w_{i}, \forall Q \in \mathcal{Q} \\
& w_{Q} \in\{0,1\}, \forall Q \in \mathcal{Q}
\end{array}
$$

$$
\begin{array}{ll}
\min _{w_{Q}} & \sum_{Q \in \mathcal{Q}} b_{Q} w_{Q} \\
\text { s.t. } & w_{Q} \leq w_{i}, \forall i \in Q, \forall Q \in \mathcal{Q} \\
& w_{Q} \geq \sum_{i \in Q} w_{i}-|Q|+1, \forall Q \in \mathcal{Q} \\
& w_{Q} \in\{0,1\}, \forall Q \in \mathcal{Q}
\end{array}
$$

Comparing relaxations of linearizations

Relaxation of standard linearization (A)

$$
\begin{aligned}
& \min _{z_{S}} \sum_{S \in \mathcal{S}} a_{S} z_{S} \\
& \text { s.t. } z_{S} \leq z_{i}, \forall i \in S, \forall S \in \mathcal{S} \\
& \quad z_{S} \geq \sum_{i \in S} z_{i}-|S|+1, \forall S \in \mathcal{S} \\
& \quad 0 \leq z_{S} \leq 1, \quad \forall S \in \mathcal{S}
\end{aligned}
$$

Relaxation of linearized quadratization (B)

$$
\begin{array}{ll}
\min _{w_{Q}} & \sum_{Q \in \mathcal{Q}} b_{Q} w_{Q} \\
\text { s.t. } & w_{Q} \leq w_{i}, \forall i \in Q, \forall Q \in \mathcal{Q} \\
& w_{Q} \geq \sum_{i \in Q} w_{i}-|Q|+1, \forall Q \in \mathcal{Q} \\
& 0 \leq w_{Q} \leq 1, \forall Q \in \mathcal{Q}
\end{array}
$$

Comparing relaxations of linearizations

Questions:

- Which relaxation is tighter?

Comparing relaxations of linearizations

Questions:

- Which relaxation is tighter?
- Relaxation (B) also depends on the chosen quadratization method, which quadratization gives better relaxations?

Comparing relaxations of linearizations

Questions:

- Which relaxation is tighter?
- Relaxation (B) also depends on the chosen quadratization method, which quadratization gives better relaxations?
- What happens if we intersect the constraints of the relaxed linearizations of all quadratizations of f ?

Comparing relaxations of linearizations

Questions:

- Which relaxation is tighter?
- Relaxation (B) also depends on the chosen quadratization method, which quadratization gives better relaxations?
- What happens if we intersect the constraints of the relaxed linearizations of all quadratizations of f ?

Comparing polytopes at substitution step

Standard linearization (A)

Quadratization (B)

$$
\begin{aligned}
& \min _{z_{\boldsymbol{s}}} \sum_{S \in \mathcal{S}} a_{S} z_{S} \\
& \text { s.t. } z_{S}=\prod_{i \in S} z_{i}, \forall S \in \mathcal{S} \\
& z_{S} \in\{0,1\}, \forall S \in \mathcal{S}
\end{aligned}
$$

$$
\begin{array}{ll}
\min _{w_{\boldsymbol{Q}}} & \sum_{Q \in \mathcal{Q}} b_{Q} w_{Q} \\
\text { s.t. } & w_{Q}= \\
& \prod_{i \in \mathcal{Q}} w_{i}, \forall Q \in \mathcal{Q} \\
& w_{Q} \in\{0,1\}, \forall Q \in \mathcal{Q}
\end{array}
$$

Comparing polytopes at substitution step

Questions:

- Do we have a better knowledge of one of the convex hull of feasible solutions of one of these problems? (i.e., polyhedral description, good separation algorithms...).

Buchheim and Rinaldi's approach

Polynomial Optimization Problem

LP-relaxation (standard lin.), polytope P

Buchheim and Rinaldi's approach

Polynomial Optimization Problem

LP-relaxation (standard lin.), polytope P

Buchheim and Rinaldi's approach: Polytope P^{*} ?

Presented in [2], [3].

Original polynomial problem

$$
\min _{x \in\{0,1\}^{n}} f(x)=\sum_{S \in \mathcal{S}} a_{S} \prod_{i \in S} x_{i}
$$

\mathcal{S} : set of non-constant monomials

- Assumption: every $S \in \mathcal{S}$ can be written as the union of two other monomials $S_{l}, S_{r} \in \mathcal{S}$.

Buchheim and Rinaldi's approach: Polytope P^{*} ?

Presented in [2], [3].

Original polynomial problem

$$
\min _{x \in\{0,1\}^{n}} f(x)=\sum_{S \in \mathcal{S}} a_{S} \prod_{i \in S} x_{i}
$$

\mathcal{S} : set of non-constant monomials

- Assumption: every $S \in \mathcal{S}$ can be written as the union of two other monomials $S_{l}, S_{r} \in \mathcal{S}$.
- For a given S, there might be several pairs of subsets S_{I}, S_{r} such that $S_{l} \cup S_{r}=S$.

Buchheim and Rinaldi's approach: Polytope P^{*} ?

Presented in [2], [3].

Original polynomial problem

$$
\min _{x \in\{0,1\}^{n}} f(x)=\sum_{S \in \mathcal{S}} a_{S} \prod_{i \in S} x_{i}
$$

\mathcal{S} : set of non-constant monomials

- Assumption: every $S \in \mathcal{S}$ can be written as the union of two other monomials $S_{l}, S_{r} \in \mathcal{S}$.
- For a given S, there might be several pairs of subsets S_{l}, S_{r} such that $S_{l} \cup S_{r}=S$.
- Set of monomials can be "completed" heuristically if necessary.

Buchheim and Rinaldi's approach: Polytope P^{*} ?

Presented in [2], [3].

Original polynomial problem

$$
\min _{x \in\{0,1\}^{n}} f(x)=\sum_{S \in \mathcal{S}} a_{S} \prod_{i \in S} x_{i}
$$

\mathcal{S} : set of non-constant monomials

- Assumption: every $S \in \mathcal{S}$ can be written as the union of two other monomials $S_{l}, S_{r} \in \mathcal{S}$.
- For a given S, there might be several pairs of subsets S_{l}, S_{r} such that $S_{l} \cup S_{r}=S$.
- Set of monomials can be "completed" heuristically if necessary.

Buchheim and Rinaldi's approach: Polytope P^{*} ?

Buchheim and Rinaldi's formulation over a quadric polytope
Consider the set $\mathcal{S}^{*}=\{\{S, T\} \mid S, T \in \mathcal{S}$ and $S \cup T \in \mathcal{S}\}$.

$$
\begin{aligned}
\min _{\{S\}} & \sum_{S \in \mathcal{S}} a_{S} y_{\{S\}} \\
\text { s.t. } & y_{\{S, T\}}=y_{\{S\}} y_{\{T\}}, \forall\{S, T\} \in \mathcal{S}^{*} \\
& y_{\{S, T\}} \in\{0,1\}, \forall\{S, T\} \in \mathcal{S}^{*}
\end{aligned}
$$

P^{*} : convex hull of feasible solutions of problem (C)
Observation: P^{*} is a boolean quadric polytope.

Buchheim and Rinaldi's approach: polytope P^{*} ?

Polytope P^{*}

- Is isomorph to a Cut-Polytope (efficient separation algorithms are known).
- Lives in a higher-dimensional space (introducing auxiliary variables).

Buchheim and Rinaldi's approach: polytope P^{*} ?

Polytope P^{*}

- Is isomorph to a Cut-Polytope (efficient separation algorithms are known).
- Lives in a higher-dimensional space (introducing auxiliary variables).
- P is isomorph to a face of P^{*} (imposing some additional constraints to P^{*}): cutting on P^{*} is equivalent to cutting on P.

Buchheim and Rinaldi's approach: polytope P^{*} ?

Polytope P^{*}

- Is isomorph to a Cut-Polytope (efficient separation algorithms are known).
- Lives in a higher-dimensional space (introducing auxiliary variables).
- P is isomorph to a face of P^{*} (imposing some additional constraints to P^{*}): cutting on P^{*} is equivalent to cutting on P.

Objective:

We are interested in understanding the quadratic problem that is used to define P^{*} :

Buchheim and Rinaldi's approach: polytope P^{*} ?

Polytope P^{*}

- Is isomorph to a Cut-Polytope (efficient separation algorithms are known).
- Lives in a higher-dimensional space (introducing auxiliary variables).
- P is isomorph to a face of P^{*} (imposing some additional constraints to P^{*}): cutting on P^{*} is equivalent to cutting on P.

Objective:

We are interested in understanding the quadratic problem that is used to define P^{*} :

- Is it a quadratization in our sense?

Buchheim and Rinaldi's approach: polytope P^{*} ?

Polytope P^{*}

- Is isomorph to a Cut-Polytope (efficient separation algorithms are known).
- Lives in a higher-dimensional space (introducing auxiliary variables).
- P is isomorph to a face of P^{*} (imposing some additional constraints to P^{*}): cutting on P^{*} is equivalent to cutting on P.

Objective:

We are interested in understanding the quadratic problem that is used to define P^{*} :

- Is it a quadratization in our sense?

Buchheim and Rinaldi's formulation and Rosenberg's quadratization

Theorem

Buchheim and Rinaldi's formulation over a quadric polytope can be obtained (up to elimination of redundant constraints) by linearizing a variant of Rosenberg's quadratization where:

- the order of substituting variables is induced by the decomposition S_{l}, S_{r} of each monomial S, and
- when substituting a product by a variable, we do not impose $y_{i j}=x_{i} x_{j}$ with a penalty, but with a constraint.

Assumption: every $S \in \mathcal{S}$ can be written as the union of two other monomials $S_{l}, S_{r} \in \mathcal{S}$.

Conclusions

- Understand quadratization methods from a global perspective: - Properties and structure, which quadratizations are "better"?

Conclusions

- Understand quadratization methods from a global perspective:
- Properties and structure, which quadratizations are "better"? - Describe all quadratizations of f.

Conclusions

- Understand quadratization methods from a global perspective:
- Properties and structure, which quadratizations are "better"?
- Describe all quadratizations of f.
- Linearizing quadratizations:

Conclusions

- Understand quadratization methods from a global perspective:
- Properties and structure, which quadratizations are "better"?
- Describe all quadratizations of f.
- Linearizing quadratizations:
- How does the tightness of a relaxation depend on the quadratization?

Conclusions

- Understand quadratization methods from a global perspective:
- Properties and structure, which quadratizations are "better"?
- Describe all quadratizations of f.
- Linearizing quadratizations:
- How does the tightness of a relaxation depend on the quadratization?
- How do relaxations of linearized quadratizations relate to other methods (e.g. standard linearization)?

Conclusions

- Understand quadratization methods from a global perspective:
- Properties and structure, which quadratizations are "better"?
- Describe all quadratizations of f.
- Linearizing quadratizations:
- How does the tightness of a relaxation depend on the quadratization?
- How do relaxations of linearized quadratizations relate to other methods (e.g. standard linearization)?
- Can we use the knowledge about the polytopes associated to linearizations? (e.g. cut polytope separation techniques...)?

Conclusions

- Understand quadratization methods from a global perspective:
- Properties and structure, which quadratizations are "better"?
- Describe all quadratizations of f.
- Linearizing quadratizations:
- How does the tightness of a relaxation depend on the quadratization?
- How do relaxations of linearized quadratizations relate to other methods (e.g. standard linearization)?
- Can we use the knowledge about the polytopes associated to linearizations? (e.g. cut polytope separation techniques...)?

Some references I

M. Anthony, E. Boros, Y. Crama, and A. Gruber. Quadratic reformulations of nonlinear binary optimization problems. Working paper, 2014.
C. Buchheim and G. Rinaldi. Efficient reduction of polynomial zero-one optimization to the quadratic case. SIAM Journal on Optimization, 18(4):1398-1413, 2007.
C. Buchheim and G. Rinaldi. Terse integer linear programs for boolean optimization. Journal on Satisfiability, Boolean Modeling and Computation, 6:121-139, 2009.
C. De Simone. The cut polytope and the boolean quadric polytope. Discrete Mathematics, 79(1):71-75, 1990.
A. Fix, A. Gruber, E. Boros, and R. Zabih. A hypergraph-based reduction for higher-order markov random fields. Working paper, submitted to PAMI?, 2014.

Some references II

D. Freedman and P. Drineas. Energy minimization via graph cuts: settling what is possible. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 2, pages 939-946, June 2005.
P. L. Hammer, I. Rosenberg, and S. Rudeanu. On the determination of the minima of pseudo-boolean functions. Studii si Cercetari Matematice, 14:359-364, 1963. in Romanian.
P. L. Hammer, P. Hansen, and B. Simeone. Roof duality, complementation and persistency in quadratic 0-1 optimization. Mathematical Programming, 28(2):121-155, 1984.
H. Ishikawa. Transformation of general binary mrf minimization to the first-order case. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33(6):1234-1249, June 2011.

Some references III

V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts? Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(2):147-159, Feb 2004.
I. G. Rosenberg. Reduction of bivalent maximization to the quadratic case. Cahiers du Centre d'Etudes de Recherche Opérationnelle, 17:71-74, 1975.
S. Živnỳ, D. A. Cohen, and P. G. Jeavons. The expressive power of binary submodular functions. Discrete Applied Mathematics, 157(15):3347-3358, 2009.

