Analysis of longitudinal imaging data with OLS & Sandwich Estimator standard errors

Bryan Guillaume

GSK / University of Liège / University of Warwick

FMRIB Centre - 07 Mar 2012

Supervisors: Thomas Nichols (Warwick University) and Christophe Phillips (Liège University)

ヘロト ヘアト ヘビト ヘビト

Outline

- 2 The Sandwich Estimator method
- 3 An adjusted Sandwich Estimator method
- 4 Remarks and summary

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

ъ

Example of longitudinal studies in neuroimaging

Effect of drugs (morphine and alcohol) versus placebo over time on Resting State Networks in the brain (Khalili-Mahani et al, 2011)

- 12 subjects
- 21 scans/subject!!!
- Balanced design

イロト イポト イヨト イヨト

Study design:

Example of longitudinal studies in neuroimaging

fMRI study of longitudinal changes in a population of adolescents at risk for alcohol abuse

(Heitzeg et al, 2010)

- 86 subjects
- 2 groups
- 1, 2, 3 or 4 scans/subjects (missing data)
- Total of 224 scans
- Very unbalanced design (no common time points for scans)

Why is it challenging to model longitudinal data in neuroimaging ?

Longitudinal modeling is a standard biostatistical problem and standard solutions exist:

- Gold standard: Linear Mixed Effects (LME) model
 - $\bullet~$ Iterative method \rightarrow generally slow and may fail to converge
 - E.g., 12 subjects, 8 visits, Toeplitz, LME with unstructured intra-visit correlation fails to converge 95 % of the time.
 - E.g., 12 subjects, 8 visits, CS, LME with random int. and random slope fails to converge 2 % of the time.
- LME model with a random intercept per subject
 - May be slow (iterative method) and only valid with Compound Symmetric (CS) intra-visit correlation structu
- Naive-OLS (N-OLS) model which include subject indicator variables as covariates
 - Fast, but only valid with CS intra-visit correlation structure

Why is it challenging to model longitudinal data in neuroimaging ?

Longitudinal modeling is a standard biostatistical problem and standard solutions exist:

- Gold standard: Linear Mixed Effects (LME) model
 - $\bullet~$ Iterative method \rightarrow generally slow and may fail to converge
 - E.g., 12 subjects, 8 visits, Toeplitz, LME with unstructured intra-visit correlation fails to converge 95 % of the time.
 - E.g., 12 subjects, 8 visits, CS, LME with random int. and random slope fails to converge 2 % of the time.
- LME model with a random intercept per subject
 - May be slow (iterative method) and only valid with
 - Compound Symmetric (CS) intra-visit correlation structure
- Naive-OLS (N-OLS) model which include subject indicator variables as covariates
 - Fast, but only valid with CS intra-visit correlation structure

Why is it challenging to model longitudinal data in neuroimaging ?

Longitudinal modeling is a standard biostatistical problem and standard solutions exist:

- Gold standard: Linear Mixed Effects (LME) model
 - $\bullet~$ Iterative method \rightarrow generally slow and may fail to converge
 - E.g., 12 subjects, 8 visits, Toeplitz, LME with unstructured intra-visit correlation fails to converge 95 % of the time.
 - E.g., 12 subjects, 8 visits, CS, LME with random int. and random slope fails to converge 2 % of the time.

• LME model with a random intercept per subject

 May be slow (iterative method) and only valid with Compound Symmetric (CS) intra-visit correlation structure

Naive-OLS (N-OLS) model which include subject indicator variables as covariates

Fast, but only valid with CS intra-visit correlation structure

Why is it challenging to model longitudinal data in neuroimaging ?

Longitudinal modeling is a standard biostatistical problem and standard solutions exist:

- Gold standard: Linear Mixed Effects (LME) model
 - $\bullet~$ Iterative method \rightarrow generally slow and may fail to converge
 - E.g., 12 subjects, 8 visits, Toeplitz, LME with unstructured intra-visit correlation fails to converge 95 % of the time.
 - E.g., 12 subjects, 8 visits, CS, LME with random int. and random slope fails to converge 2 % of the time.
- LME model with a random intercept per subject
 - May be slow (iterative method) and only valid with Compound Symmetric (CS) intra-visit correlation structure
- Naive-OLS (N-OLS) model which include subject indicator variables as covariates
 - Fast, but only valid with CS intra-visit correlation structure

Outline

2 The Sandwich Estimator method

3 An adjusted Sandwich Estimator method

ヘロア 人間 アメヨア 人口 ア

ъ

The Sandwich Estimator (SwE) method

- Use of a simple OLS model (without subject indicator variables)
- The fixed effects parameters β are estimated by

$$\hat{\beta}_{OLS} = \left(\sum_{i=1}^{M} X_i' X_i\right)^{-1} \sum_{i=1}^{M} X_i' y_i$$

• The fixed effects parameters covariance $var(\hat{\beta}_{OLS})$ are estimated by

Property of the Sandwich Estimator (SwE)

$$\mathsf{SwE} = \left(\sum_{i=1}^{M} X_i' X_i\right)^{-1} \left(\sum_{i=1}^{M} X_i' \hat{V}_i X_i\right) \left(\sum_{i=1}^{M} X_i' X_i\right)^{-1}$$

If V_i are consistently estimated, the SwE tends **asymptotically** (Large samples assumption) towards the true variance $var(\hat{\beta}_{OLS})$. (Eicker, 1963; Eicker, 1967; Huber, 1967; White, 1980)

ヘロン 人間 とくほ とくほ とう

The Heterogeneous HC0 SwE

In practice, V_i is generally estimated from the residuals $r_i = y_i - X_i \hat{\beta}$ by

$$\hat{V}_i = r_i r_i'$$

and the SwE becomes

Het. HC0 SwE =
$$\left(\sum_{i=1}^{M} X'_i X_i\right)^{-1} \left(\sum_{i=1}^{M} X'_i r_i r'_i X_i\right) \left(\sum_{i=1}^{M} X'_i X_i\right)^{-1}$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Simulations: setup

- Monte Carlo Gaussian null simulation (10,000 realizations)
- For each realization,
 - Generation of longitudinal Gaussian null data (no effect) with a CS or a Toeplitz intra-visit correlation structure:

Compound Symmetric						Toeplitz				
′ 1	0.8	0.8	0.8	0.8 \		/ 1	0.8	0.6	0.4	0.2
0.8	1	0.8	0.8	0.8		0.8	1	0.8	0.6	0.4
0.8	0.8	1	0.8	0.8		0.6	0.8	1	0.8	0.6
0.8	0.8	0.8	1	0.8		0.4	0.6	0.8	1	0.8
0.8	0.8	0.8	0.8	1 /		0.2	0.4	0.6	0.8	1 /

- Statistical test (F-test at α) on the parameters of interest using each different methods (N-OLS, LME and SWE) and recording if the method detects a (False Positive) effect
- For each method, rel. FPR= $\frac{\text{Number of False Positive}}{10.000\alpha}$

Simulations: LME vs N-OLS vs Het. HC0 SwE

Bryan Guillaume Analysis of longitudinal imaging data

< ∃→

э

Introduction The Sandwich Estimator method An adjusted Sandwich Estimator method

Outline

- An adjusted Sandwich Estimator method 3

・ロット (雪) () () () ()

ъ

Bias adjustments: the Het. HC2 SwE

In an OLS model, we have

$$(I-H)$$
var $(y)(I-H) =$ var (r)

where $H = X(X'X)^{-1}X'$

• Under independent homoscedastic errors,

$$(I - H)\sigma^{2} = \operatorname{var}(r)$$
$$(1 - h_{ik})\sigma^{2} = \operatorname{var}(r_{ik})$$
$$\sigma^{2} = \operatorname{var}\left(\frac{r_{ik}}{\sqrt{1 - h_{ik}}}\right)$$

• This suggests to estimate V_i by

$$\hat{V}_i = r_i^* r_i^{*'}$$
 where $r_{ik}^* = rac{r_{ik}}{\sqrt{1-h_{ik}}}$

Bias adjustments: the Het. HC2 SwE

Using in the SwE

$$\hat{V}_i = r_i^* r_i^{*'}$$
 where $r_{ik}^* = rac{r_{ik}}{\sqrt{1-h_{ik}}}$

We obtain

Het. HC2 SwE =
$$\left(\sum_{i=1}^{M} X_i' X_i\right)^{-1} \left(\sum_{i=1}^{M} X_i' r_i^* r_i^{*'} X_i\right) \left(\sum_{i=1}^{M} X_i' X_i\right)^{-1}$$

・ロト ・ 理 ト ・ ヨ ト ・

2

Homogeneous SwE

In the standard SwE, each V_i is normally estimated from only the residuals of subject *i*. It is reasonable to assume a common covariance matrix V_0 for all the subjects and then, we have

$$\hat{V}_{0kk'} = \frac{1}{N_{kk'}} \sum_{i=1}^{N_{kk'}} r_{ik} r_{ik'}$$

 $\hat{V}_{0kk'}$: element of \hat{V}_0 corresponding to the visits k and k' $N_{kk'}$: number of subjects with both visits k and k' r_{ik} : residual corresponding to subject i and visit k $r_{ik'}$: residual corresponding to subject i and visit k'

$$\hat{V}_i = f(\hat{V}_0)$$

▲ □ ▶ ▲ □ ▶ ▲

Null distribution of the test statistics with the SwE

•
$$H_0: L\hat{\beta} = 0, H_1: L\hat{\beta} \neq 0$$

L: contrast matrix of rank c

• Using multivariate statistics theory and assuming a balanced design, we can derive the test statistic

$$rac{M-p_B-q+1}{(M-p_B)q}(L\hateta)'(L\mathsf{Sw}\mathsf{E}L')^{-1}(L\hateta)\sim F(q,M-p_B-q+1)$$

q=1, the test becomes

$$(L\hat{\beta})'(LSwEL')^{-1}(L\hat{\beta}) \sim F(1, M - p_B) \neq F(1, N - p)$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Simulations: LME vs N-OLS vs unadjusted SwE

Bryan Guillaume Analysis of longitudinal imaging data

< 口 > < 同

프 🕨 🗆 프

Simulations: unadjusted SwE vs adjusted SwE

< 口 > < 同

프 🕨 🗉 프

Simulation with real design

fMRI study of longitudinal changes in a population of adolescents at risk for alcohol abuse

- 86 subjects
- 2 groups
- 1, 2, 3 or 4 scans/subjects (missing data)
- Total of 224 scans
- Very unbalanced design (no common time points for scans)

Simulation with real design Example 2

Bryan Guillaume Analysis of longitudinal imaging data

► < E >

э.

Simulation with real design Example 2

Bryan Guillaume Analysis of longitudinal imaging data

코 에 제 코 어

Real design

・ロト ・ ア・ ・ ヨト ・ ヨト

Real design

・ロト ・ ア・ ・ ヨト ・ ヨト

Outline

- 2 The Sandwich Estimator method
- 3 An adjusted Sandwich Estimator method

ヘロト ヘワト ヘビト ヘビト

ъ

Remarks about the SwE method

- Power of the SwE method generally lower than the power of the LME method
 - Power loss not significant with a high number of subject (e.g., 86 subjects)
 - Power loss may be significant with a low number of subject and a low significance level α
 - Solution: spatial regularization of the SwE
- Test statistic with an unbalanced design and a low number of subject
 - Estimation of the effective degrees of freedom of the test needed

ヘロン 人間 とくほ とくほ とう

Summary

- Longitudinal standard methods not really appropriate to neuroimaging data:
 - Convergence issues with LME
 - N-OLS & LME with random intercepts: issues when CS does not hold
- The SwE method
 - Accurate in a large range of settings
 - Easy to specify
 - No iteration needed
 - Quite fast
 - No convergence issues
 - Can accommodate pure between covariates
 - But, careful in small samples:
 - Adjustment essential
 - If low significance level, spatial regul. needed for power
 - If unbalanced design, effective dof estimation needed

Thanks for your attention!

Bryan Guillaume Analysis of longitudinal imaging data