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Example of longitudinal studies in neuroimaging
Example 1

Effect of drugs (morphine and
alcohol) versus placebo over
time on Resting State Networks
in the brain
(Khalili-Mahani et al, 2011)

12 subjects
21 scans/subject!!!
Balanced design

Study design:
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Introduction
The Sandwich Estimator method

An adjusted Sandwich Estimator method
Remarks and summary

Example of longitudinal studies in neuroimaging
Example 2

fMRI study of longitudinal
changes in a population of
adolescents at risk for alcohol
abuse
(Heitzeg et al, 2010)

86 subjects
2 groups
1, 2, 3 or 4 scans/subjects
(missing data)
Total of 224 scans
Very unbalanced design
(no common time points
for scans)
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Why is it challenging to model longitudinal data in
neuroimaging ?

Longitudinal modeling is a standard biostatistical problem and
standard solutions exist:

Gold standard: Linear Mixed Effects (LME) model
Iterative method→ generally slow and may fail to converge

E.g., 12 subjects, 8 visits, Toeplitz, LME with unstructured
intra-visit correlation fails to converge 95 % of the time.
E.g., 12 subjects, 8 visits, CS, LME with random int. and
random slope fails to converge 2 % of the time.

LME model with a random intercept per subject
May be slow (iterative method) and only valid with
Compound Symmetric (CS) intra-visit correlation structure

Naive-OLS (N-OLS) model which include subject indicator
variables as covariates

Fast, but only valid with CS intra-visit correlation structure

Bryan Guillaume Analysis of longitudinal imaging data
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The Sandwich Estimator (SwE) method

Use of a simple OLS model (without subject indicator
variables)
The fixed effects parameters β are estimated by

β̂OLS =

(
M∑

i=1

X ′i Xi

)−1 M∑
i=1

X ′i yi

The fixed effects parameters covariance var(β̂OLS) are
estimated by

SwE =

(
M∑

i=1

X ′i Xi

)−1

︸ ︷︷ ︸
Bread

(
M∑

i=1

X ′i V̂iXi

)
︸ ︷︷ ︸

Meat

(
M∑

i=1

X ′i Xi

)−1

︸ ︷︷ ︸
Bread

Bryan Guillaume Analysis of longitudinal imaging data
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Property of the Sandwich Estimator (SwE)

SwE =

(
M∑

i=1

X ′i Xi

)−1( M∑
i=1

X ′i V̂iXi

)(
M∑

i=1

X ′i Xi

)−1

If Vi are consistently estimated, the SwE tends asymptotically
(Large samples assumption) towards the true variance
var(β̂OLS). (Eicker, 1963; Eicker, 1967; Huber, 1967; White,
1980)

Bryan Guillaume Analysis of longitudinal imaging data
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The Heterogeneous HC0 SwE

In practice, Vi is generally estimated from the residuals
ri = yi − Xi β̂ by

V̂i = ri r
′

i

and the SwE becomes

Het. HC0 SwE =

(
M∑

i=1

X ′i Xi

)−1( M∑
i=1

X ′i ri r
′

i Xi

)(
M∑

i=1

X ′i Xi

)−1

Bryan Guillaume Analysis of longitudinal imaging data
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Simulations: setup

Monte Carlo Gaussian null simulation (10,000 realizations)
For each realization,

1 Generation of longitudinal Gaussian null data (no effect)
with a CS or a Toeplitz intra-visit correlation structure:

Compound Symmetric
1 0.8 0.8 0.8 0.8

0.8 1 0.8 0.8 0.8
0.8 0.8 1 0.8 0.8
0.8 0.8 0.8 1 0.8
0.8 0.8 0.8 0.8 1



Toeplitz
1 0.8 0.6 0.4 0.2

0.8 1 0.8 0.6 0.4
0.6 0.8 1 0.8 0.6
0.4 0.6 0.8 1 0.8
0.2 0.4 0.6 0.8 1


2 Statistical test (F-test at α) on the parameters of interest

using each different methods (N-OLS, LME and SWE) and
recording if the method detects a (False Positive) effect

For each method, rel. FPR= Number of False Positive
10,000α

Bryan Guillaume Analysis of longitudinal imaging data
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Simulations: LME vs N-OLS vs Het. HC0 SwE
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Bias adjustments: the Het. HC2 SwE

In an OLS model, we have

(I − H)var(y)(I − H) = var(r)

where H = X (X
′
X )−1X

′

Under independent homoscedastic errors,

(I − H)σ2 = var(r)

(1− hik )σ
2 = var(rik )

σ2 = var
(

rik√
1− hik

)
This suggests to estimate Vi by

V̂i = r∗i r∗
′

i where r∗ik =
rik√

1− hik

Bryan Guillaume Analysis of longitudinal imaging data
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Bias adjustments: the Het. HC2 SwE

Using in the SwE

V̂i = r∗i r∗
′

i where r∗ik =
rik√

1− hik

We obtain

Het. HC2 SwE =

(
M∑

i=1

X
′

i Xi

)−1( M∑
i=1

X
′

i r∗i r∗
′

i Xi

)(
M∑

i=1

X
′

i Xi

)−1

Bryan Guillaume Analysis of longitudinal imaging data
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Homogeneous SwE

In the standard SwE, each Vi is normally estimated from only
the residuals of subject i . It is reasonable to assume a common
covariance matrix V0 for all the subjects and then, we have

V̂0kk ′ =
1

Nkk ′

Nkk′∑
i=1

rik rik ′

V̂0kk ′ : element of V̂0 corresponding to the visits k and k ′

Nkk ′ : number of subjects with both visits k and k ′

rik : residual corresponding to subject i and visit k
rik ′ : residual corresponding to subject i and visit k ′

V̂i = f (V̂0)

Bryan Guillaume Analysis of longitudinal imaging data
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Null distribution of the test statistics with the SwE

H0 : Lβ̂ = 0,H1 : Lβ̂ 6= 0
L: contrast matrix of rank q
Using multivariate statistics theory and assuming a
balanced design, we can derive the test statistic

M − pB − q + 1
(M − pB)q

(Lβ̂)′(LSwEL′)−1(Lβ̂) ∼ F (q,M − pB − q + 1)

q=1, the test becomes

(Lβ̂)′(LSwEL′)−1(Lβ̂) ∼ F (1,M − pB) 6= F (1,N − p)

Bryan Guillaume Analysis of longitudinal imaging data
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Simulations: LME vs N-OLS vs unadjusted SwE
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Simulations: unadjusted SwE vs adjusted SwE

●

●

●

●

●

Number of subjects

R
el

at
iv

e 
F

P
R

 (
%

)

12 50 100 200

80
10

0
12

0
14

0
16

0
18

0
20

0

● Het. HC0 SwE with F(1,N−p)
Hom. HC2 SwE with F(1,M−2)

Linear effect of visits
Group 2 versus group 1
Compound symmetry
8 vis., F−test at 0.05

Number of subjects

R
el

at
iv

e 
F

P
R

 (
%

)

●

●

●

●
●

Number of subjects

R
el

at
iv

e 
F

P
R

 (
%

)

12 50 100 200

80
10

0
12

0
14

0
16

0
18

0
20

0

● Het. HC0 SwE with F(1,N−p)
Hom. HC2 SwE with F(1,M−2)

Linear effect of visits
Group 2 versus group 1

Toeplitz
8 vis., F−test at 0.05

Number of subjects

R
el

at
iv

e 
F

P
R

 (
%

)

Bryan Guillaume Analysis of longitudinal imaging data



Introduction
The Sandwich Estimator method

An adjusted Sandwich Estimator method
Remarks and summary

Simulation with real design
Example 2

fMRI study of longitudinal
changes in a population of
adolescents at risk for alcohol
abuse

86 subjects
2 groups
1, 2, 3 or 4 scans/subjects
(missing data)
Total of 224 scans
Very unbalanced design
(no common time points
for scans)
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Simulation with real design
Example 2
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Simulation with real design
Example 2
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Real design
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Remarks about the SwE method

Power of the SwE method generally lower than the power
of the LME method

Power loss not significant with a high number of subject
(e.g., 86 subjects)
Power loss may be significant with a low number of subject
and a low significance level α

Solution: spatial regularization of the SwE

Test statistic with an unbalanced design and a low number
of subject

Estimation of the effective degrees of freedom of the test
needed
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Summary

Longitudinal standard methods not really appropriate to
neuroimaging data:

Convergence issues with LME
N-OLS & LME with random intercepts: issues when CS
does not hold

The SwE method
Accurate in a large range of settings
Easy to specify
No iteration needed

Quite fast
No convergence issues

Can accommodate pure between covariates
But, careful in small samples:

Adjustment essential
If low significance level, spatial regul. needed for power
If unbalanced design, effective dof estimation needed
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Thanks for your attention!
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