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Abstract 
 
To prevent the checkerboard and intermediate grey regions of material distributions in compliance-
volume topology optimization, an efficient sub-iteration scheme is established for the implementation 
of the perimeter constraint in dual approach. Considering the high nonlinearity of the perimeter 
function, a new variant quadratic formulation of the perimeter control is proposed. In each explicit 
subproblem, the satisfaction of the variant is achieved by sequential diagonal quadratic 
approximations. It is shown that the implementation of the sub-iteration scheme is very efficient and 
reliable without needs of move-limits and any artificial control parameters. Numerical results show 
that this variant perimeter constraint is effective to regularize the topology solution. The relaxation of 
the perimeter bound tends to generate a checkerboard free and satisfactory optimum topology solution. 
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1. Introduction 
 
Nowadays, topology optimization is a subject which has being extensively studied in the engineering 
community. Based on the fundamental work of Bendsoe and Kikuchi [1], this approach has gained 
great success in automobile, aeronautical, micro-systems, mechanism and other industrial applications. 
It is generally recognized that this is a very efficient method for material layout at the preliminary 
design stage. Compared to other design problems, topology optimization has some basic 
characteristics. A large number of design variables defined by the concerned element densities are 
often involved but few constraints exist. Numerically, this is very beneficial to utilize the dual 
approach because the original minimization problem will be indirectly solved by maximizing a quasi-
non constraint dual problem of few variables. Secondly, due to the poor finite element formulation of 
the 0-1 discrete topology optimization problem, it was found by Diaz and Sigmund [2] that topology 
solution involves the common trouble of checkerboards, small holes in members and local minima. 
These phenomena often depend upon the finite element mesh, starting point and numerical 
optimization algorithms, e.g., checkerboards increase along with the refinement of finite element mesh. 
 
To obtain the desired distribution pattern of materials regarding the manufacturability, a variety of 
measures are proposed to regularize the solution. Based on the theoretical proof of Ambrosio and 
Buttazzo [3] on the existence of optimal solution when the perimeter constraint is added in the 
problem formulation, Haber et al. [4,5] realize the first numerical implementation of the perimeter 
constraint to avoid the altering solid-void checkerboard solution. Thereafter, Sigmund [6] presented an 
alternative filtering method to avoid the checkerboards based on the image processing scheme. The 
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latter proceeds by smoothing the first-order derivatives of structural compliance with respect to 
density variables. Furthermore, Petersson and Sigmund [7] proposed a sort of local density slope 
control method. Recently, a variant scheme is proposed by Zhou et al. [8], in which the whole set of 
linear constraints associated with local slope control are approximately replaced with simple side 
constraints to design variables. An up-to-date overview is given by Rozvany [9] about the history, 
theoretical background and numerical methods of topology optimization. In this work, the perimeter 
constraint scheme is studied. Following earlier results of Duysinx [10, 11] and Beckers [12], the 
severe nonlinearity of the perimeter constraint usually results in poor approximations so that the 
constraint violation, the fluctuation of design variables and the instability of iteration procedure are 
inevitable. To remedy this, move-limits or artificial convexifications are often utilized to limit the 
variation of design variables. Here, an alternative perimeter control using quadratic function is 
proposed here. In our formulation, we adopt the SIMP (Solid Isotropic Micro-structure with 
Penalization), i.e., the power law to describe the dependence of element stiffness upon the density 
variable. Details are presented below.   
 
2. Finite element formulation of topology optimization problem  
 
In general, the discrete topology optimization problem is stated as follows  
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The minimization of mean compliance C(X) aims at finding element density variables to achieve the 
maximum rigidity of the structure while the total material volume V(X) over the design domain is 
limited by its upper bound V . V  is often defined by the volume fraction of the entire domain for 

1=ix  with i=1, n. The symbolδ  refers to a mall value (e.g. δ =10-5 ) used to avoid the singularity 
of the element stiffness matrix. The perimeter )X(P  is a global constraint used to prevent the 
growth of small holes in member and checkerboards over the design domain. Geometrically, it means 
that the total jump of density variables between all adjacent elements has to be limited when the 
material volume is given. In the expression, the symbol ε  is an artificial smoothing parameter used to 
ensure the differentiability of the perimeter function when two adjacent variables have equal values, 

kl  is the interface length between adjacent elements i and j. M is the total number of interface 
between to adjacent elements. 
 
To solve the above problem, sensitivity analysis is a basic computing task if gradient-based methods 
are used. By definition, the SIMP law means that the following relation is adopted for the stiffness 
matrix iK  of element i, 
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Thus, the global stiffness matrix is assembled by  
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In the above expression, the exponent is often chosen as p=3 or 4. Suppose that the external load 
vector F  is independent upon the density variable, then by differentiating the finite element system 
equation  
 

FKU =      (4) 
 
the sensitivity of compliance function can be calculated as follows 
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To make easy the computation, the above expression can be rewritten as  
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in which iF and iU designate the internal node force vector and displacement vector related to 
element I, respectively. This relation shows that the sensitivity of compliance function is always 
negative and can be evaluated just as a simple scaling of the potential deformation energy of related 
element. This can be very easily performed after the fulfilment of finite element analysis. Therefore, 
this scheme is not only efficient in time but also very advantageous to implement the topology 
optmization capability into any available finite element system without the source code. In our work, a 
topology optimization system is established on the basis of the SAMCEF finite element software. As 
for the volume constraint, the gradient simply corresponds to the set of coefficients due to its linearity.  
 
In contrast, it can be easily proved that the perimeter is a non monotonous function because the first-
order partial derivative of the perimeter function may be either positive or negative depending upon 
relative values of design variables. Therefore, a main problem is how to establish an appropriate 
approximation scheme. As observed by Duysinx [10], monotonous approximations are unsuitable for 
the perimeter constraint. They are likely to cause the divergence and numerical oscillations even 
quadratic approximations are used.  
 
3. Dual solution strategy using quadratic formulation of the perimeter and sub-iteration scheme 
 
Instead of the above perimeter definition, a variant quadratic form is proposed here to restrict the 
element density variation over the whole domain. The expression is written as,  
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M is still the total number of quadratic terms, equals the number of interfaces between two adjacent 
elements i and j. Clearly, this is a convex function since each constitutive quadratic term has a positive 
semi-definite Hessian matrix. Compared to the original one, this simplified formulation excludes the 
smoothing parameter and becomes differentiable.  
 
To solve the topology optimization problem, the dual approach is an efficient method due to the large 
number of design variables and few constraints. It proceeds by solving a sequence of explicit 
subproblems. To ensure the convexity of each subproblem, the compliance function is approximated 
by the reciprocal approximation. As for the perimeter function (7), a quadratic approximation of 
diagonal Hessian matrix is applied to ensure the approximation quality. As a result, the obtained 
subproblem has a separable form in terms of ix and it can be written in the following compact form if 

the approximation is made at point 0X . 
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Where the coefficients 0c , ic , 0v , iv 0p , ip and id are all constants depending upon the function 

values and first-order derivatives of the compliance and volume at the developing design point 0X ;  
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From the standpoint of duality, the minimization problem will be transformed into a maximization 
problem in the space of dual variables, i.e., Lagrangian multipliers. The min-max problem 
corresponds to 
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where the Lagrangian function is expressed as 
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The separability of primal variables ix  makes it possible to group related terms of ix  as, 
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Hence, the minimization in (10) is equivalent to find the solution of  
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It can be observed that the nonlinearity of this one-dimensional function makes it impossible to derive 
analytically the optimum ix  in function of dual variables 1λ  and 2λ . For this reason, the Newton-
Raphson iteration scheme is firstly applied to solve (13) before performing the maximization in the 
dual space. Details about this computation can be found in a similar work of authors [13].   
 
After solving (8), the intermediate solution obtained can guarantee the absolute satisfaction of the 
volume constraint instead the perimeter in (7) because the former is exactly approximated without 
error. To a great extent, the violation of perimeter constraint may accumulate and break the iteration 
process for the next subproblem. The sub-iteration scheme is a good approach to bypass this difficulty. 
It was proposed by authors [13] in the hydrodynamic shape optimization of a swatch hull. In that case, 
the geometrical condition associated with the hull volume has to be kept unchanged to ensure the 
body’s stability during optimization and the sub-iteration scheme is used to update the nonlinear 
equality constraint defined by this condition. In topology optimization, Duysinx [11] used the same 
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idea for the perimeter constraint defined in (1). The sub-iteration scheme is to solve repetitively the 
subproblem (8) for which approximations of the compliance and volume at 0X  remain unchanged 
whereas the perimeter constraint is gradually updated in an internal cycle until (7) is satisfied. The 
idea is based on the fact that the perimeter constraint (7) is a sort of geometrical condition unlike the 
compliance. Thus, function and derivative evaluations are very simple and fast without the need of 
finite element analysis. Let kX be an intermediate solution point of ( 8), then the updated subproblem 
corresponds to  
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with coefficients to be  
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In this way, the sub-iteration ensures the consideration of coupling term effects of (7) in the 
subproblem definition.  
 
4. Numerical examples 

 
In this section, two numerical tests are solved to validate the proposed method. Investigations are 
made to the formulation, approximation quality and effects of the perimeter constraint upon 
checkerboards. A 50% volume fraction is used as the upper bound of the volume constraint. The 
exponent 4=p is chosen for the SIMP law in all cases. 
 
4.1. Topology optimization of a 2D cantilever beam subject to a concentrated load 
 
The problem is shown in Fig. 1. It is a clamped rectangular design domain loaded by a concentrated 
force F. Initial data are given below. 

Domain length: L=32 in, Width: H=20 in, Thickness: t= 1 in, Volume: V= 640 in3 
Load: F=100 lb, Physical properties:  E =21×104 psi, ν =0.3 

Two load cases are considered. Suppose that the force is applied at the middle point A and the bottom 
point B of the right side, respectively. A 48×30 finite element mesh is used for the domain 
discretization. To solve the topology optimization problem, initial values are set to be 10.xi =  for all 
density variables. In Fig.2, a set of optimum solutions are obtained by varying the upper bound of the 
perimeter whose values are increased from 100 to 300. It can be seen that along with the relaxation of 
perimeter bound, each member in the design domain is gradually outlined, internal small holes tend to 
decrease and grey regions associated with intermediate material density values between (0, 1) begin to 
disappear. Finally, the iteration gives rise to a quasi 0/1 discrete solution for which the perimeter 
constraint becomes inactive. In this example, the minimum value of compliance decreases along with 
the relaxation of the perimeter bound. However, if the optimum solution is directly obtained without 
the use of the perimeter constraint, the solution is clearly less interesting. As shown in Fig. 2, due to 
the existence of local optima, grey elements and small holes involve inside the members. The 
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compliance value C=2.0506 is even larger than that when 300=P . 
 
 

 

 

 

 

 
 

Case 1        Case 2 

Fig. 1. 2D topology optimisation problem 

 

P =100, C=2.01212 
 

P =150, C=1.88721 

 
P =200, C=1.836337 

 
P =250, C=1.806325 

 
P*=266,  P =300, C=1.80359 

 
Without perimeter constraint, C=2.050554 

Volume fraction 50%  SIMP law with p=4 
 

Fig. 2. Topology optimum solutions in the first case 

F

A

F

B
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In the second case, the same conclusion can be drawn from numerical results shown in Fig. 3. The 
effect of progressive relaxation of perimeter constraint is significant and effective to achieve a 
satisfactory material distribution pattern. Additionally, the numerical iteration process is stable in both 
cases. Based on the diagonal quadratic approximation, the proposed perimeter constraint is found to 
be exactly satisfied after the sub-iteration process. 
 

 
P =50, C=2.8493 

 
P =100, C=2.3381 

P =150, C=2.2319 P =200, C=2.1741 

P*=247,  P =250, C=2.1544 
 

Without perimeter control, C=2.3438 

Volume fraction 50%     SIMP law with p=4 
 

Fig. 3. Topology optimum solutions in the first case 
 
4.2. Topology optimization of a 3D cantilever beam subject to a concentrated load 
 
To test the efficiency of the developed topology optimization procedure, the above problem is now 
extended to a 3D one by increasing the plate thickness to 4 in. Suppose that the load has the same 
magnitude and is applied at the middle point A. In this case, a 48×30×4 mesh of 8-node finite element 
is used for the domain discretization. In the same way, by increasing the perimeter bound, the 
optimum solution nearly tends to a discrete 0/1 design pattern. To some extent, this solution may be 
comparable to that obtained directly by the discrete optimization algorithm. As shown in Fig. 4, two 
internal grey regions in the member ultimately vanish when the perimeter constraint becomes inactive 
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with P =1500. Similarly, the last optimum pattern in Fig. 4 indicates that small holes with grey 
elements are involves if the perimeter control is not used. 

P =900, C=0.59957 

 
P =950, C=0.55491 

 
P =1000, C=0.54114 

 
P =1100 C=0.529397 

 
P*=1417,  P =1500, C=0.51801 

 
C=0.5621 Without perimeter constraint 

Volume fraction 50%   SIMP law with p=4 
 

Fig. 4. Topology optimum solution with gradual relaxation of perimeter constraint 
 

5. Conclusions 
 
An interactive topology optimization procedure is developed and integrated with the SAMCEF 
commercial finite element system. The integration relies basically on the scaling of element 
deformation energy for sensitivity analysis. Based on the perimeter control method, a variant quadratic 
formulation of perimeter function is proposed to prevent checkerboards and grey element appearances. 
This variant is proved to be very suitable to the diagonal approximation and easily implemented in the 
dual approach. An efficient sub-iteration scheme is established to update the approximation of the 
perimeter. Numerical results show that the optimization procedure works well. The perimeter 
constraint can be satisfied at the final solution. The gradual relaxation of the proposed perimeter 
control has the effect of reducing small holes inside the structural members and leads to a 
checkerboard free material pattern. 
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