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Introduction

An example of longitudinal studies in neuroimaging
The ADNI study

@ Tensor-Based Morphometry
(TBM) images from the
Alzheimer’s Disease
Neuroimaging Initiative (ADNI)
(Hua et al., 2013; Guillaume

TBM images?

1 Warped

etal., 2014)
@ Available scans: Determinant of the
deformation matrix:
AD | MCI | N | Total det(J)

0 month | 188 | 400 | 229 | 817

6 months | 159 | 346 | 208 | 713
12 months | 138 | 326 | 196 | 660
18 months | n/a | 286 | n/a | 286
24 months | 105 | 244 | 172 | 521 det(J) > 1: expansion
36 months | nfa | 170 | 147 | 317  det(J) < 1: contraction




Introduction

The Naive Ordinary Least Squares (N-OLS) model

@ Design matrix in the ADNI design

@ Assumes Compound Symmetry (CS):

@ Equal intra-visit variances
@ Equal intra-visit correlations

@ No inference possible on between subject effects (e.g.,
group intercept, gender, age at first visit)



Introduction

Compound Symmetry (CS) in the ADNI dataset?

@ Box’s test of Compound Symmetry (Box, 1950) image
thresholded at 5% after Bonferroni correction:

@ 56% of the in-mask voxels survived the thresholding!!!



Introduction

The Summary Statistics OLS (SS-OLS) model

@ Procedure
@ Extraction of summary statistics for each subject
@ E.g., intercept, slope
@ Use of an OLS model for each summary statistic
@ Transformation of correlated data into uncorrelated data

@ Important loss of information

o Will affect negatively the power
e In general, misbehaviour in unbalanced design

@ E.g., subject with 2 visits vs. subject with 6 visits



Introduction

Linear Mixed Effect (LME) models

For each subject i:

yi= X +  Ziow + &
N <

~—~
Fixed effects  Random effects =~ Random error
Pros Cons
@ The gold standard in the @ Difficult to specify and
biostatistic literature validate
@ Accurate if correctly specified @ Only random intercepts? Also,
random slopes?
@ Subject-specific inferences © Best model may vary across
on the random effects the brain
possible @ Generally not robust against

misspecification

@ E.g., random-intercept LME

assumes CS like the N-OLS
method

@ lterative method

@ Generally slow
@ May fail to converge

References: Bernal-Rusiel et al. (2013a,b); Chen et al. (2013); Guillaume et al. (2014)
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Other methods could also be considered

@ The “SPM procedure”

e Assumption of a common covariance structure for the
whole brain

@ Generalised Methods of Moments (Skup et al., 2012)
@ Generalised Estimating Equations (Li et al., 2013)
o ...



The Sandwich Estimator method

The Sandwich Estimator (SwE) method

@ Use of a simple OLS model (without subject indicator
variables)

@ The fixed effect parameters g are estimated by
) M -1 m
Pors = <Z Xin> > Xy
i=1 i=1

@ The fixed effect parameters covariance var(3o.s) are
estimated by

. (i X{Xl) B (é X,‘ViXi) <ZM: Xin> 1

i=1 i=1

Bread Meat Bread



The Sandwich Estimator method

Property of the Sandwich Estimator (SwWE)

. (EMJ X§X,-> B (f; X] Vixi> (EM: X,‘Xl_) -1

i=1 i=1

If m=1 37 X!V.X; consistently estimates m~! 37 | X!ViX;, the
SwE tends asymptotically (Large samples assumption)
towards the true variance var(BOLS). (Eicker, 1963; Eicker,
1967; Huber, 1967; White, 1980)



The Sandwich Estimator method

The classical (uncorrected) SWE method

@ V; estimated from the residuals ¢; = y; — X,-B by

and the SwWE becomes

M -1 /M M -1
Selassic = <Z X;X,.> (Z X;rirl.xi> (Z X;X,.>
i=1 i=1 i=1

© Asymptotic test:
H0:CB:0,H12CB750
C: contrast matrix of rank ¢
(CBY(CsC) ' (CB)
q

@ Works well in large samples
@ But not in small samples

~x*(q)



The Sandwich Estimator method

Small sample adjustment of the SWE method

@ Several adjustments exists

@ One of the best combination of adjustment (Guillaume
et al., 2014):

e Use of corrected residuals ey /(1 — hy) in the estimation of
Vi

e Assumption of homogeneity across subjects within groups
(e.g., same covariance structure for all the AD subjects)

e Use of a statistical test assuming small samples
Hy:CB=0,H : CB#0
C: contrast matrix of rank ¢

v—g+1

L (CB)(CSC)THCB) ~ Flgv —q+1)



Simulations: setup

@ Designs considered:
o ADNI design and 4 of its subsets (817, 408, 204, 103 and
51 subjects)
@ Monte Carlo Gaussian null simulation (10,000 realizations)
@ For each realization,

@ Generation of longitudinal Gaussian null data (no effect)
with intra-visit covariance structures:

Compound Symmetry Toeplitz
1 095 095 095 0.95 1 09 0.8 0.7 0.6
0.95 1 095 0.95 0.95 0.9 1 09 0.8 0.7
095 0.8 1 095 0.95 0.8 0.9 1 09 0.8
0.95 095 0.95 1 0.95 0.7 0.8 0.9 1 0.9
095 095 095 0.95 1 0.6 0.7 0.8 09 1

@ Statistical test (F-test at 5%) on the parameters of
interest and estimation of the FPR



Results

False Positive Rate (FPR) control

FPR (%)

Unbalanced ADNI design
Compound Symmetry
Visit effect (AD vs. MCI)

Unbalanced ADNI design
Toeplitz
Visit effect (AD vs. MCI)
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FPR (%)

Power analysis

Unbalanced ADNI design
Compound Symmetry
Visit effect (AD vs. MCI)
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Visit effect (AD vs. MCI)
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Results

Real ADNI data: use of the SwWE toolbox
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@ Freely available at http://warwick.ac.uk/tenichols/SwE


http://warwick.ac.uk/tenichols/SwE

Real ADNI data: reminder of the Box’s test of CS

@ Box’s test of Compound Symmetry (Box, 1950) image
thresholded at 5% after Bonferroni correction:

@ 56% of the in-mask voxels survived the thresholding!!!



Results

Real ADNI data: Visit effect on the brain atrophy




Summary

Summary

@ Longitudinal standard methods not really appropriate to
neuroimaging data:
e N-OLS & LME with random intercepts: issues when CS
does not hold
o Difficulties to specify and validate LME models
e Convergence issues with LME models
e Under unbalanced design, SS-OLS may be inaccurate and
its power quite poor
@ The SwE method
e Accurate in a large range of settings
e Easy to specify
e No iteration needed
@ Quite fast
@ No convergence issues
Can accommodate pure between covariates
SPM toolbox available
But, careful in small samples:
@ Adjustments essential
o Typically, less powerful than N-OLS or LME models



Summary
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