Analysis of longitudinal neuroimaging data with OLS & Sandwich Estimator of variance

Bryan Guillaume

Reading workshop lifespan neurobiology 27 June 2014

Supervisors: Thomas Nichols (Warwick University) and Christophe Phillips (Liège University)

An example of longitudinal studies in neuroimaging The ADNI study

- Tensor-Based Morphometry (TBM) images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) (Hua et al., 2013; Guillaume et al., 2014)
- Available scans:

	AD	MCI	Ν	Total
0 month	188	400	229	817
6 months	159	346	208	713
12 months	138	326	196	660
18 months	n/a	286	n/a	286
24 months	105	244	172	521
36 months	n/a	170	147	317

TBM images?

Determinant of the deformation matrix:

det(J)

det(J) > 1: expansion det(J) < 1: contraction

Results

Summary

References

The Naive Ordinary Least Squares (N-OLS) model

- Assumes Compound Symmetry (CS):
 - Equal intra-visit variances
 - Equal intra-visit correlations
- No inference possible on between subject effects (e.g., group intercept, gender, age at first visit)

Compound Symmetry (CS) in the ADNI dataset?

 Box's test of Compound Symmetry (Box, 1950) image thresholded at 5% after Bonferroni correction:

• 56% of the in-mask voxels survived the thresholding!!!

The Summary Statistics OLS (SS-OLS) model

Procedure

- Extraction of summary statistics for each subject
 - E.g., intercept, slope

Use of an OLS model for each summary statistic

- Transformation of correlated data into uncorrelated data
- Important loss of information
 - Will affect negatively the power
 - In general, misbehaviour in unbalanced design
 - E.g., subject with 2 visits vs. subject with 6 visits

Linear Mixed Effect (LME) models

For each subject *i*:

Fixed effects

Random effects

Random error

Pros

- The gold standard in the biostatistic literature
- Accurate if correctly specified
- Subject-specific inferences on the random effects possible

Cons

- Difficult to specify and validate
 - Only random intercepts? Also, random slopes?
 - Best model may vary across the brain
- Generally not robust against misspecification
 - E.g., random-intercept LME assumes CS like the N-OLS method
- Iterative method
 - Generally slow
 - May fail to converge

References: Bernal-Rusiel et al. (2013a,b); Chen et al. (2013); Guillaume et al. (2014)

Other methods could also be considered

- The "SPM procedure"
 - Assumption of a common covariance structure for the whole brain
- Generalised Methods of Moments (Skup et al., 2012)
- Generalised Estimating Equations (Li et al., 2013)
- . . .

The Sandwich Estimator (SwE) method

- Use of a simple OLS model (without subject indicator variables)
- The fixed effect parameters β are estimated by

$$\hat{\beta}_{OLS} = \left(\sum_{i=1}^{M} X_i' X_i\right)^{-1} \sum_{i=1}^{M} X_i' y_i$$

• The fixed effect parameters covariance $var(\hat{\beta}_{OLS})$ are estimated by

$$S = \underbrace{\left(\sum_{i=1}^{M} X'_{i} X_{i}\right)^{-1}}_{\text{Bread}} \underbrace{\left(\sum_{i=1}^{M} X'_{i} \hat{V}_{i} X_{i}\right)}_{\text{Meat}} \underbrace{\left(\sum_{i=1}^{M} X'_{i} X_{i}\right)^{-1}}_{\text{Bread}}$$

Property of the Sandwich Estimator (SwE)

$$S = \left(\sum_{i=1}^{M} X_i' X_i\right)^{-1} \left(\sum_{i=1}^{M} X_i' \hat{V}_i X_i\right) \left(\sum_{i=1}^{M} X_i' X_i\right)^{-1}$$

If $m^{-1} \sum_{i=1}^{m} X'_i \hat{V}_i X_i$ consistently estimates $m^{-1} \sum_{i=1}^{m} X'_i V_i X_i$, the SwE tends **asymptotically** (Large samples assumption) towards the true variance var($\hat{\beta}_{OLS}$). (Eicker, 1963; Eicker, 1967; Huber, 1967; White, 1980)

The classical (uncorrected) SwE method

• V_i estimated from the residuals $e_i = y_i - X_i \hat{\beta}$ by

$$\hat{V}_i = e_i e_i'$$

and the SwE becomes

$$S_{\text{classic}} = \left(\sum_{i=1}^{M} X_i' X_i\right)^{-1} \left(\sum_{i=1}^{M} X_i' r_i r_i' X_i\right) \left(\sum_{i=1}^{M} X_i' X_i\right)^{-1}$$

- Asymptotic test:
 - $H_0: C\hat{\beta} = 0, H_1: C\hat{\beta} \neq 0$ C: contrast matrix of rank q

$$\frac{(C\hat{\beta})'(CSC')^{-1}(C\hat{\beta})}{q} \sim \chi^2(q)$$

- Works well in large samples
- But not in small samples

Small sample adjustment of the SwE method

- Several adjustments exists
- One of the best combination of adjustment (Guillaume et al., 2014):
 - Use of corrected residuals $e_{ik}/(1 h_{ik})$ in the estimation of V_i
 - Assumption of homogeneity across subjects within groups (e.g., same covariance structure for all the AD subjects)
 - Use of a statistical test assuming small samples $H_0: C\hat{\beta} = 0, H_1: C\hat{\beta} \neq 0$ *C*: contrast matrix of rank *q*

C: contrast matrix of rank q

$$\frac{\nu-q+1}{\nu q}(C\hat{\beta})'(CSC')^{-1}(C\hat{\beta}) \sim F(q,\nu-q+1)$$

- Designs considered:
 - ADNI design and 4 of its subsets (817, 408, 204, 103 and 51 subjects)
- Monte Carlo Gaussian null simulation (10,000 realizations)
- For each realization,
 - Generation of longitudinal Gaussian null data (no effect) with intra-visit covariance structures:

Compound Symmetry

Toeplitz

1	1	0.95	0.95	0.95	0.95 \	1	1	0.9	0.8	0.7	0.6)
	0.95	1	0.95	0.95	0.95	1	0.9	1	0.9	0.8	0.7	
	0.95	0.8	1	0.95	0.95		0.8	0.9	1	0.9	0.8	
	0.95	0.95	0.95	1	0.95		0.7	0.8	0.9	1	0.9	
	0.95	0.95	0.95	0.95	1 /		0.6	0.7	0.8	0.9	1	,
		-										

Statistical test (F-test at 5%) on the parameters of interest and estimation of the FPR

References

False Positive Rate (FPR) control

Summary

References

Real ADNI data: use of the SwE toolbox

• Freely available at http://warwick.ac.uk/tenichols/SwE

Real ADNI data: reminder of the Box's test of CS

 Box's test of Compound Symmetry (Box, 1950) image thresholded at 5% after Bonferroni correction:

• 56% of the in-mask voxels survived the thresholding!!!

Introduction

References

Real ADNI data: Visit effect on the brain atrophy

Introduction	The Sandwich Estimator method	Results	Summary	Reference
Summary				

- Longitudinal standard methods not really appropriate to neuroimaging data:
 - N-OLS & LME with random intercepts: issues when CS does not hold
 - Difficulties to specify and validate LME models
 - Convergence issues with LME models
 - Under unbalanced design, SS-OLS may be inaccurate and its power quite poor
- The SwE method
 - Accurate in a large range of settings
 - Easy to specify
 - No iteration needed
 - Quite fast
 - No convergence issues
 - Can accommodate pure between covariates
 - SPM toolbox available
 - But, careful in small samples:
 - Adjustments essential
 - Typically, less powerful than N-OLS or LME models

Results

Summary

References

Acknowledgement

- Thomas E. Nichols (Warwick University)
- Lourens Waldorp (Amsterdam University)
- Paul M. Thompson (UCLA)
- Xue Hua (UCLA)
- ADNI

Bibliography

- J. L. Bernal-Rusiel, D. N. Greve, M. Reuter, B. Fischl, and M. R. Sabuncu. Statistical analysis of longitudinal neuroimage data with linear mixed effects models. *Neuroimage*, 66:249–260, 2013a.
- J. L. Bernal-Rusiel, M. Reuter, D. N. Greve, B. Fischl, and M. R. Sabuncu. Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data. *NeuroImage*, 81(0):358 – 370, 2013b. ISSN 1053-8119. doi: http://dx.doi.org/10.1016/j.neuroimage.2013.05.049.
- G. E. Box. Problems in the analysis of growth and wear curves. Biometrics, 6(4):362-389, 1950.
- G. Chen, Z. S. Saad, J. C. Britton, D. S. Pine, and R. W. Cox. Linear mixed-effects modeling approach to fmri group analysis. *NeuroImage*, 2013.
- B. Guillaume, X. Hua, P. M. Thompson, L. Waldorp, and T. E. Nichols. Fast and accurate modelling of longitudinal and repeated measures neuroimaging data. *NeuroImage*, 94:287–302, 2014.
- X. Hua, D. P. Hibar, C. R. Ching, C. P. Boyle, P. Rajagopalan, B. A. Gutman, A. D. Leow, A. W. Toga, C. R. J. Jr., D. Harvey, M. W. Weiner, and P. M. Thompson. Unbiased tensor-based morphometry: Improved robustness and sample size estimates for alzheimer's disease clinical trials. *NeuroImage*, 66(0):648 – 661, 2013. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2012.10.086.
- Y. Li, J. H. Gilmore, D. Shen, M. Styner, W. Lin, and H. Zhu. Multiscale adaptive generalized estimating equations for longitudinal neuroimaging data. *NeuroImage*, 2013.
- M. Skup, H. Zhu, and H. Zhang. Multiscale adaptive marginal analysis of longitudinal neuroimaging data with time-varying covariates. *Biometrics*, 2012.

Thanks for your attention!