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Abstract

Purpose: A conditioning regimen for allogeneic hematopoietic
cell transplantation (HCT) combining total lymphoid irradiation
(TLI) plus anti-thymocyte globulin (ATG) has been developed to
induce graft-versus-tumor effects without graft-versus-host dis-
ease (GVHD).

Experimental Design: We compared immune recovery in 53
patients included in a phase II randomized study comparing
nonmyeloablative HCT following either fludarabine plus 2 Gy
total body irradiation (TBI arm, n¼ 28) or 8Gy TLI plus ATG (TLI
arm, n ¼ 25).

Results: In comparison with TBI patients, TLI patients had a
similarly low 6-month incidence of grade II-IV acute GVHD,
a lower incidence of moderate/severe chronic GVHD (P ¼
0.02), a higher incidence of CMV reactivation (P < 0.001), and
a higher incidence of relapse (P ¼ 0.01). While recovery of total

CD8þ T cells was similar in the two groups, withmedian CD8þ T-
cell counts reaching the normal values 40 to 60 days after allo-
HCT, TLI patients had lower percentages of na€�ve CD8 T cells.
Median CD4þ T-cell counts did not reach the lower limit of
normal values the first year after allo-HCT in the two groups.
Furthermore, CD4þ T-cell counts were significantly lower in TLI
than in TBI patients the first 6 months after transplantation.
Interestingly, while median absolute regulatory T-cell (Treg)
counts were comparable in TBI and TLI patients, Treg/na€�ve
CD4þ T-cell ratios were significantly higher in TLI than in TBI
patients the 2 first years after transplantation.

Conclusions: Immune recovery differs substantially between
these two conditioning regimens, possibly explaining the dif-
ferent clinical outcomes observed (NCT00603954). Clin Cancer
Res; 1–9. �2015 AACR.

Introduction
Allogeneic hematopoietic cell transplantation (allo-HCT) fol-

lowing nonmyeloablative conditioning is frequently used in
patients with hematologic malignancies who are not eligible for
a myeloablative conditioning because of age, comorbidities, or
prior high-dose allo-HCT. This approach has relied on optimiza-
tion of pre- and posttransplant immunosuppression to overcome
host-versus-graft reactions, thereby allowing engraftment and

eradication of tumors nearly exclusively through immune-medi-
ated graft-versus-tumor effects (1–5). Main causes of failure of
nonmyeloablative HCT include disease relapse, graft-versus-host
disease (GVHD), and infections, stressing the need for research
focusing at immune reconstitution after nonmyeloablative HCT.

T-cell recovery after allo-HCT following high-dose condition-
ing depends on both homeostatic peripheral expansion (HPE) of
donor T cells contained in the graft (6), and T-cell neo-production
from donor hematopoietic stem cells (thymo-dependent path-
way; refs. 7–10). In young patients undergoing myeloablative
allo-HCT, most circulating T cells during the first months follow-
ing allo-HCT are the progeny of T cells infused with the graft
through HPE (6). Beyond day 100, neo-generation of T cells by
the thymus is progressively set up and plays an increasing role in
reconstituting the T cell (8, 11–13). However, previous studies
have demonstrated that the thymo-dependent pathway plays a
significant role only in patients younger than 60 years of age at
transplantation and is affected by the occurrence of acute and
extensive chronic GVHD (14–16). Because HPE allows the expan-
sion of both NK cells and nontolerant T cells, it has been
postulated that HPE is the driving force of graft-versus-tumor
effects, but also of acute GVHD, and to a lesser extent, chronic
GVHD (6).

One of the most widely used nonmyeloablative conditioning
regimens associates fludarabine (90 mg/m2 total dose) with 2 Gy
total body irradiation (TBI; refs. 1, 2). This regimen can be safely
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performed in an outpatient setting but is associated with a
relatively high incidence of GVHD (1–3, 5, 17). In an effort at
preventing GVHD, the Stanford group has developed another
nonmyeloablative conditioning that combines total lymphoid
irradiation (TLI, 8 Gy total dose) with anti-thymocyte globulin
(ATG; 7.5 mg/kg thymoglobulin total dose; refs. 18–23). This
approach allowed sustained engraftment with a low incidence of
GVHD. In murine models of transplantation, this was achieved
through Th2 polarization of donor T cells by recipient invariant
NK/T cells (iNKT, still present at transplantation thanks to their
relative resistance to ionizing radiation; refs. 18–21, 24), and
through expansion of donor regulatory T cells (Treg) by recipient
iNKT (24).

Here, we compared immune recovery in a cohort of 53 patients
included in a phase II randomized study carried out through the
Belgian Hematological Society-transplantation committee com-
paring nonmyeloablative allo-HCT with either fludarabine plus
2 Gy TBI (TBI arm) or 8 Gy TLI þ ATG (TLI arm) conditioning.
The aim was to explore whether differences in clinical outcomes
between TBI and TLI patients could be explained by different
patterns of immune recovery following these two conditioning
regimens.

Patients and Methods
Study population

This study includes data from53patients (from4 centers; out of
a total cohort of 94 patients included in 8 centers) included in a
phase II randomized study comparing nonmyeloablative alloge-
neic peripheral blood stem cell (PBSC) transplantation
with either fludarabine plus 2 Gy TBI (TBI arm, n ¼ 28) or 8 Gy
TLIþATG (TLI arm,n¼25). The studywas approvedby theEthics
Committee of the University of Li�ege (Li�ege, Belgium), and all

patients signed a written informed consent form. The study was
registered in clinicaltrial.gov (NCT00603954). The clinical results
of the study (including the data from the 94 patients) have been
reported elsewhere (25).

Conditioning regimen and GVHD prophylaxis
In the TBI arm, conditioning consisted of fludarabine 30 mg/

m2 on days �4, �3, and �2, followed by a single dose of 2 Gy
TBI administered on day 0 (TBI administration on day �1 was
also permitted). In the TLI arm, conditioning consisted of 8 Gy
TLI [80 cGy daily, starting 11 days before transplantation,
until a total of 10 doses (8 Gy) has been delivered] and ATG
(Thymoglobulin, Genzyme) given i.v. at a dose of 1.5 mg/kg/d
from days �11 through �7. Postgrafting immunosuppression
was similar in both arms and included mycophenolate mofetil
administered orally from the evening of day 0 through day 28
(HLA-identical sibling donors) or day 42 (10/10 HLA allele-
matched unrelated donors) at a dose of 15 mg/kg t.i.d., and
tacrolimus administered orally from day �3. Tacrolimus doses
were adapted to achieve whole blood through levels between
15 ng/mL and 20 ng/mL the first 28 days and between 10 ng/
mL and 15 ng/mL thereafter. Full doses were given until day
100 (sibling recipients) or 180 (unrelated recipients). Doses
were then progressively tapered to be discontinued (in the
absence of GVHD) by days 180 (sibling donors) or 365 (unre-
lated donors).

Clinical management
G-CSF (5 mg/kg/d) was generally administered when the gran-

ulocyte counts dropped below 1.0� 109/L. Acute GVHD and late
acute GVHD were graded using international criteria, whereas
chronic GVHD was graded according to the NIH criteria (26).
Treatment for acute GVHD usually consisted of prednisolone
2 mg/kg/d. Extensive chronic GVHD was treated according to the
investigator's choice, usually with prednisolone and a calcineurin
inhibitor.

Infection prophylaxis generally consisted of acyclovir (400 mg
t.i.d. orally), oral fluconazole (400 mg/day), and co-trimoxazole
or aerosolized pentamidine. PCR for cytomegalovirus (CMV)was
performed weekly until day 100 and every 2 to 4 weeks thereafter.
Patients with a positive PCR received preemptive ganciclovir.
Chimerism among T cells, isolated with the RosetteSep (Stem
Cell Technologies) technology or by flow cytometry, was assessed
at days 28, 40, 100, 180, and 365 after HCT using PCR-based
analysis of polymorphic microsatellite regions (multiplex PCR).
Graft rejection was defined as occurrence of < 5% T cells of
donor origin after HCT, as previously described (27). Disease
evaluation was routinely carried out on days 40, 100, 180, 365,
730, and 1,095 after HCT. Relapse and progression were defined
according to the criteria proposed by the European Group for
Blood and Marrow Transplantation (EBMT, https://portal.ebmt.
org/sites/clint2/clint/Documents/Statistical%20Endpoint-
s_CLINT%20Project_final%20version.pdf).

Cytokine levels
IL7 and IL15 levels were measured by ELISAs following the

manufacturer's protocol (high sensitivity IL7 and IL15 quanti-
kine, R&D Systems). The concentrations of IL2, IL4, IL10, TNFa,
and IFNg onday28were determined inpatient sera usingBio-Plex
Pro Human Cytokine 27-plex Assay (Bio-Rad Laboratories)
according to the manufacturer's recommendations.

Translational relevance
Over the last 2 decades, new conditioning regimens for

allogeneic hematopoietic cell transplantation (HCT) have
been developed. These approaches, termed nonmyeloablative
HCT, can be performed in patients up to 75 years of age and
rely nearly exclusively on immune-mediated graft-versus-
tumor effects for tumor eradication. Unfortunately, graft-ver-
sus-tumor effects have been associated with the development
of graft-versus-host disease (GVHD), a redoubtable compli-
cation of allogeneic HCT consisting of recipient healthy organ
destruction by donor immune cells contained in the graft. A
new conditioning regimen for allogeneicHCT combining total
lymphoid irradiation (TLI) and anti-thymocyte globulin
(ATG) has been developed with the aim of inducing strong
graft-versus-tumor effects withoutGVHD. In the current study,
we demonstrate that, in comparison with patients receiving a
nonmyeloablative conditioning combining fludarabine and
low-dose total body irradiation (TBI), patients conditioned
with the TLI-ATG regimen had a lower incidence of GVHD, a
higher frequency of CMV reactivation, and a higher incidence
of relapse. These phenomenons might be explained by slower
recoveries of CD4þ T cells and na€�ve CD8þ T cells but higher
regulatory T cells/na€�ve CD4þ T-cell ratios in TLI-ATG
recipients.
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Measurements of ATG concentrations
Concentrations of ATG capable of binding to human lympho-

cytes were assessed using themethod developed by Kakhniashvili
and colleagues (28) with minor modifications as reported by
Podgorny and colleagues (29) around days�7,�4, 0, 3, 7, 10, 14,
17, and 20 after transplantation.

Immune recovery
Immune recovery was prospectively assessed as previously

described (16). Briefly, fresh patients' PBMC were phenotyped
on days 28, 42, 60, 80, 100, 120, 180, 365, 540, 730, and yearly
thereafter using 4-color flow cytometry after treatment with a red
blood cell lyzing solution. The analyzed cell subsets were T cells
(CD3þ), CD4þ T cells (CD3þCD4þ lymphocytes), CD8þ T cells
(CD3þCD8þ lymphocytes), na€�ve CD4þ T cells (CD4þCD45RA-
high lymphocytes), memory CD4þ T cells (CD4þCD45ROþ lym-
phocytes), NK cells (CD3�CD56þ lymphocytes), as well as B cells
(CD19þ lymphocytes). The percentage of positive cells was mea-
sured relative to total nucleated cells, after subtraction of non-
specific staining. Absolute counts were obtained by multiplying
the percentages of positive cells by the white blood cell counts
(Advia 120 hematology analyzer, Bayer Technicon). Lower and
higher limits of normal values for each cell subset were defined,
respectively, as 5 and 95 percentiles of values obtained in 47 age-
matched healthy volunteer donors.

More detailed T- and B-cell phenotyping was retrospectively
performed using cryopreserved PBMC prospectively collected on
days 40, 100, 180, and 365 and then yearly thereafter using 8-color
flow cytometry. The following cell subsets were quantified using
multicolor staining: na€�ve T cells (CD4þCD45RAþCCR7þ and
CD8þCD45RAþCCR7þ lymphocytes), central memory T cells
(CD4þCD45RA�CCR7þ and CD8þCD45RA�CCR7þ), effector/
effector-memory T cells (CD4þCD45RA�CCR7� and CD8þ

CD45RA�CCR7�), regulatory T cells (Treg, CD4þCD25high

CD127lowFoxP3þ), proliferating Treg (CD4þCD25highCD127low

FoxP3þKI67þ),CD56dim NK cells (CD3�CD56low), CD56bright NK
cells (CD3�CD56high), iNKT cells (CD3þCD56þTCR Va24Ja18þ

TCRVb11þ), na€�ve B cells (CD19þCD27�IgDþ), unswitchedmem-
ory B cells (CD19þCD27þIgDþ), and switched memory B cells
(CD19þCD27þIgD�). The following clones were used: CD4 SK3,
CD45RA HI 100, CCR7 3D12, CD8 HiT8a, CD31 L133.1, CD25
BC96, CD127 eBioRDR5, FoxP3 206D, Ki67 B56, CD3 SP34-2,
CD56 B159, TCR Va24Ja18 6B11, TCR Vb11 C21, CD19 SJ25C1,
CD27 M-T271, IgD IA6-2. Surface staining was performed as pre-
viously described (16). Intracellular staining was performed using
human intracellular FoxP3 staining kit (Biolegend) according to the
manufacturer's instructions. Cells were acquired on a FACSCanto II
(Becton Dickinson) and data were analyzed with FlowJo software
(7.0, TreeStar Inc.). A minimum of 100 events in the parent pop-
ulation were considered mandatory to ensure reliable subsets anal-
ysesanddatawerenotconsidered if thenumberofcellsanalyzedwas
not sufficient. Absolute counts were calculated by multiplying the
percentage of positive cells in the lymphoid gate by the absolute
lymphocyte count measured in the patients' peripheral blood the
dayofPBMCcollection.Lowerandhigher limitsofnormalvalues for
each cell subsetweredefined, respectively, as the5and95percentiles
of values obtained in 45 age-matched healthy volunteer donors.

T-cell receptor excision circles assay
T-cell receptor excision circles (TREC) assays were performed

on blood samples collected on days 100, 365, and then yearly

after HCT, as previously described. Briefly, PBMCs were isolated
using Ficoll–Paque Plus gradient centrifugation and then cryo-
preserved. SjTRECs were quantified for each sample by nested
real-time PCR, as previously described (16).

Statistical analyses
Immunologic data from patients were censored at time of graft

rejection, at second transplantation, or at progression of the
underlying disease. TheMann–Whitney test was used to compare
immune recovery data between TBI and TLI recipients. The
Wilcoxon matched pair test was used to compare sjTRECs con-
centrations evolution. The Spearman correlation coefficient was
used to analyzepotential associations between lymphocyte subset
counts and sjTRECs levels after HCT. Comparison of the number
of patients who developed at least one infectious episode in the
two groups was performed using the Fisher exact test. Survival
(OS) and progression-free survival (PFS) were estimated by the
Kaplan–Meier method. Cumulative incidence curves were used
for GVHD, CMV infection, and relapse incidence (RI) with death
as a competing risk, and for nonrelapse mortality (NRM) with
relapse as a competing risk. Results were significant at the 5%
critical level (P < 0.05). Statistical analyses were carried out with
GraphPad Prism (GraphPad Software) and SAS version 9.3 for
Windows (SAS Institute).

Results
Patients, donors, and clinical outcomes

Patients' characteristics are summarized in Supplementary
Table S1, while comparison of characteristics and outcomes of
patients from the clinical publication (25) included or not in the
biologic study described here is provided in Supplementary Table
S2. Briefly, median patient age was 60 years (range, 38–71 years).
Twenty-eight patients received PBSC fromHLA-identical siblings,
and 25 from a 10/10 HLA allelic-matched unrelated donor. In
comparison with TBI patients, TLI patients had a similar (low)
incidence of graft rejection (1 vs. 2 patients, P ¼ 0.6) and of
grade II-IV acute GVHD (at 180 days 12% vs. 18%, P ¼ 0.8), a
lower incidence of chronic GVHD (at 3 years 8% vs. 46%, P ¼
0.02), a higher incidence of CMV reactivation (at 100 days: 89%
vs. 50%, P < 0.001), and a comparable incidence of NRM (at 3
years, 16% vs 14%, P ¼ 0.9) a higher incidence of relapse/
progression (at 3 years, 52% vs. 18%, P ¼ 0.01). Importantly,
overall survival was similar in the two groups.

ATG levels
We first assessed the kinetics of functional ATG serum levels in

15 TLI patients. As shown in Fig. 1A,median functional ATG levels
were 4.0 (range, 3.2–5.6) mg/L on day 0, 2.2 (range, 0.6–3.9) on
day 3, and 0.95 (range, 0.34–1.49) on day 10 after transplanta-
tion. These day 0 levels are below the threshold of ATG levels
associated with a lower incidence of chronic GVHD in a recent
paper by Chawla and colleagues (8.12 mg/L) in patients given
PBSC after conditioning with fludarabine, busulfan, and ATG
(thymoglobulin, 4.5 mg/kg given from day �2 to day 0 before
PBSC infusion) with or without TBI (30).

Cytokine levels
Previous studies in humans have demonstrated that HPE is

mainly driven by IL7 for CD4þ and CD8þ T cells (while IL7 also
stimulates B cells ontogenesis), and by IL15 for CD8þ T cells, NK,
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and NK/T cells (6, 31, 32). This prompted us to assess their levels
among TBI and TLI recipients. As shown in Fig. 1B, IL7 plasma
levels were higher in TLI than in TBI recipients the first 100 days
after transplantation (P values ranged from <0.001 to 0.5),
suggesting more pronounced T-cell lymphopenia in TLI recipi-
ents, given that IL7 levels after allo-HCT depend mainly on
consumption by T cells (32–34). In contrast, IL15 levels were
comparable between TBI and TLI recipients frompreconditioning
today28after transplantation, suggesting similarCD8þT-cell and
NK cell recovery in the two groups of patients (Supplementary

Fig. S1A), althoughposttransplant IL15 (and to a lesser extend Il7)
levels have also been correlated with other factors such as CRP
levels (32, 33).

On day 28 after transplantation, IL2 serum levels were below
the threshold for detection (2.1 pg/mL) in the two groups of
patients. IL4 levels were comparable in the two groups of patients,
but IL4/CD4 cell ratios were significantly higher in TLI than in TBI
patients (P¼ 0.0004; Supplementary Fig. S1B and S1C). Further-
more, IL10 levels were significantly higher in TLI patients
(P ¼ 0.0481), possibly suggesting a TH-2 polarization of donor

Figure 1.
A, kinetics of active ATG levels in the
serum of TLI patients (n ¼ 15). B,
evolution of plasma IL7 levels the first
100 days after transplantation in TBI
(black boxes, n ¼ 14) and TLI (white
boxes, n ¼ 13) patients. C–H, recovery
of T, B, and NK cells the first 4 years
after transplantation in TBI (black
boxes) and TLI (white boxes) patients.
Plots display the median, 25th and
75th percentiles of the distribution
(boxes), and whiskers extend to the
10th and 90th percentiles. Gray zones
show normal ranges (from 5th–95th
percentiles) and horizontal lines the
medians in 45 aged-matched healthy
controls. � , P < 0.05; �� , P < 0.01;
��� , P < 0.001.
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T cells (as observed by Lowsky and colleagues; ref. 18) or a higher
production of IL10 by Treg in TLI patients (as observed in a
preclinical murine model; ref. 24; Supplementary Fig. S1B).
Finally, IFNg serum levels were similar between the two groups
of patients, whereas TNFa levels were significantly higher in TLI
than in TBI patients (P ¼ 0.0493; Supplementary Fig. S1B).

T-cell chimerism levels and immune recovery (4-color flow
cytometry)

Previous studies have demonstrated that faster establishment
of donor T-cell chimerism correlated not only with lower risk of
graft rejection, higher incidences of acute and chronic GVHD, but
also with a lower risk of relapse in patients transplanted with a
nonmyeloablative conditioning (19, 27). Interestingly, in com-
parison with TBI patients, TLI patients had lower donor T-cell
chimerism levels on day 180 (median 82%vs. 95%, P¼ 0.09) and
365 (median 88% vs. 97%, P ¼ 0.04) after transplantation
(Supplementary Fig. S2A).

Immune recovery in TBI and TLI patients is described in Fig. 1
C–H. Recovery of CD8þ T cells was similar in the two groups, with
median CD8þ T-cell counts reaching the normal values 40 to 60

days after allo-HCT. The same was observed for NK cells, with
median NK cell counts reaching normal values 60 to 80 days after
transplantation. In contrast, recovery of CD4þ T cells was slower
than for CD8þ T cells with median CD4þ T-cell counts not
reaching the lower limit of normal values the first year after
allo-HCT in the two groups. Furthermore, CD4þ T-cell counts
were significantly lower in TLI than in TBI patients the first 6
months after transplantation. This was due to both slower recov-
ery of CD4þCD45RAþ T cells and memory CD4þCD45ROþ T
cells. Finally, B-cell recovery was similar in the two arms, with
median B-cell counts reaching the normal range 1 year after allo-
HCT.

Lymphocyte subset reconstitutions (8-colors flow cytometry)
CD8þ and CD4þ lymphocyte subsets (Fig. 2). Among CD8þ T cells,
TLI patients had lower percentages of na€�ve CD8þ T cells but
higher percentages of effector/effector-memory CD8þ T cells
(TEM CD8þ) than TBI patients. Similar observations were made
for CD4þ T cells where TLI patients had dramatically lower
percentages of na€�ve CD4þ T cells but higher percentages of
effector/effector-memory CD4þ T cells (TEM CD4þ).

Figure 2.
A–F, recovery of CD8þ and CD4þ T cell
subsets in TBI (black boxes) and TLI
(white boxes) patients. TCM, central
memory T cell; TEM, effector/effector
memory T cells. Plots display the
median, 25th and 75th percentiles of
the distribution (boxes), and whiskers
extend to the 10th and 90th
percentiles. Gray zones show normal
ranges (from 5th to 95th percentiles)
and horizontal lines the medians in 45
aged-matched healthy controls.
� , P < 0.05; �� , P < 0.01; ��� , P < 0.001.
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Treg and NK/T-cell recovery (Fig. 3). Previous studies have dem-
onstrated that Treg plays a pivotal role in preventing GVHD after
allo-HCT both in mouse-to-mouse and in humanized mouse
models of GVHD (35, 36). Given the lower incidence of chronic
GVHD observed in TLI patients, study of Treg recovery in our
patient population was of particular interest. Median absolute
Treg numbers reached the lower limit of normal values 6 months
and 2 years after transplantation in TBI and TLI patients, respec-
tively (NS), confirming the previously reported slowTreg recovery
after allo-HCT (37, 38). A prior study by the Stanford group in a
preclinical mouse model has demonstrated that the balance
between Treg and na€�ve CD4þ T cells was associated with toler-

ance induction after TLI/antithymocyte serum(ATS) conditioning
(39). This prompted us to compare Treg/na€�ve CD4 T cell ratios in
TBI with TLI patients. Interestingly, Treg/na€�ve CD4þ T-cell ratios
were significantly higher in TLI than in TBI patients the 2first years
after transplantation, possibly explaining a higher tolerance in TLI
patients leading to lower incidence of chronic GVHD.

Data from mouse models (40) as well as recent clinical obser-
vations in humans have demonstrated that Treg depends mainly
on IL2 for their homeostasis (41, 42). Although IL2 levels were
below the limit of detection on day 28 after transplantation, Treg
proliferation was relatively high with a mean of 23.5�18.0% of
Treg expressing Ki-67 on day 40 after transplantation [compared

Figure 3.
A–F, recovery of regulatory T cells
(Treg) and invariant NK/T cells (iNKT)
in TBI (black boxes) and TLI (white
boxes) patients. G, thymic function
(assessed by sjTREC blood
concentrations) in TBI and TLI patients.
H, evolution of sjTREC levels according
to recipient age in the whole cohort
(<50 years [blue boxes], 50 to 60years
[yellow boxes], >60 years [red boxes])
after transplantation. Plots display the
median, 25th and 75th percentiles of
the distribution (boxes), and whiskers
extend to the 10th and 90th
percentiles. Gray zones show normal
ranges (from 5th to 95th percentiles)
and horizontal lines the medians in 45
aged-matched healthy controls.
� , P < 0.05; �� , P < 0.01; ���, P < 0.001.
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with 21.2 � 18.0% for conventional T cells (Tconv), P ¼ 0.1].
Interestingly, there was a trend for higher Treg proliferation in TLI
than in TBI patients on day 40 after allo-HCT, with 29.9� 15.4%
Treg from TLI patients expressing Ki-67, versus 19.7 � 18.7% for
those in TBI patients (P ¼ 0.07).

As mentioned above, iNKT cells play a pivotal role in prevent-
ing GVHD following TLI/ATS conditioning in mice (43). Unfor-
tunately, we did not assess bone marrow iNKT levels on day 0
because we did not want to expose the patients to an additional
bonemarrow aspiration.With this limitation,median iNKT levels
in the peripheral blood were similar in TBI and TLI patients and
remained below the lower limit of normal from day 40 to 2 years
after transplantation. Furthermore, the iNKT/T cell ratio (a param-
eter recently demonstrated to be predictive of acute GVHD in
allogeneicHCT recipients; ref. 44)was also comparable in the two
groups.

B- and NK cell subset recovery (Supplementary Fig. S3). B-cell
recovery was superimposable in TBI and TLI patients. In contrast
with what was observed for T-cell subsets, na€�ve B-cell counts
recovered before memory B cells as previously reported by other
groups of investigators (7, 45–47), including after HLA-haploi-
dentical stem cell transplantation (48). Specifically, median na€�ve
B-cell counts were alreadywithin the normal ranges 180 days after
transplantation while unswitched memory B cells remained
below normal ranges the first year after transplantation in both
arms, and switched B cells reached the lower limit of normal
values 2 years after transplantation.

Finally, NK cell reconstitution was similar in both arms, with
faster recovery of CD56bright NK cells in comparison with
CD56dim NK cells, as reported previously by other groups of
investigators (49) and particularly after HLA-haploidentical stem
cell transplantation (50).

Thymic function (sjTREC levels)
SjTREC levels were significantly higher in TBI than in TLI

patients on day 100 as well as 2 and 3 years after transplantation.
Indeed, althoughmedian sjTREC levels reached the lower limit of
normal 2 years after transplantation in TBI patients, they
remained below that limit throughout the study period in those
given TLI conditioning (Fig. 3G). As observed previously in
another cohort of patients (16), the sjTREC levels increased
significantly from day 100 to 1 year (P ¼ 0.027), 2 years (P ¼
0.039), and 3 years (P ¼ 0.06) after transplantation in patients <
60 years of age at transplantation, while they did not (P values
ranged from 0.11 to 0.6) among patients 60 years of age or older
(Fig. 3H), reflecting an impaired thymic function in the latter
group.

Infections
First 100 days after transplantation.During the first 100 days after
transplantation, 11 TBI patients experienced 21 episodes of bac-
terial infection, whereas 12 TLI patients had a total of 20 episodes
of bacterial infection (P ¼ 0.7).

During the same period, 2 TBI patients experienced two fungal
infections (candidiasis), whereas 5 TLI patients had a total of six
fungal infections (2 candidiasis, 3 aspergillosis, and 1 cryptococ-
cosis; P ¼ 0.16).

Among CMV-seropositive patients and/or donors, 12 of 21 TBI
patients versus 16 of 18 TLI patients experienced a CMV infection
the first 100 days after transplantation (P¼ 0.038). Furthermore,

the first episode of CMV reactivation occurred sooner in TLI than
in TBI patients leading to a very significantly (P < 0.001) lower
cumulative incidence of CMV reactivation in TBI than in TLI
patients when compared using the log-rank test.

Days 101 to 365 after transplantation. Incidences of infections
from day 101 to day 365were calculated in patients who survived
free of progression/graft rejection for at least 350 days after
transplantation. Among these patients, 9 out of 23 TBI patients
experienced a total of 24 bacterial infections, whereas 8 out of 14
TLI patients had a total of 10 bacterial infections (P ¼ 0.7).
Furthermore, 3 out of 23 TBI patients experienced a total of four
fungal infections, whereas 1 of 14 TLI patients had a total of one
fungal infection (P ¼ 0.7).

Discussion
Main causes of failure after nonmyeloablative HCT are relapse

of the underlying disease, infections, and GVHD (5, 51). Given
that immune cells are involved in these three transplant compli-
cations, studies assessing immune recovery after nonmyeloabla-
tive transplantation are important. Indeed, following both HLA-
haploidentical and HLA-matched HCT, faster immune reconsti-
tution has been associated with lower relapse rates and better
survival (7, 48), while favoring Treg homeostasis improved ste-
roid-refractory chronic GVHD (41). In the current study, we
compared immune recovery in a cohort of 53 patients included
in a prospective multicenter randomized study comparing two
widely used nonmyeloablative conditioning regimens (25). The
main findings of the current analyses are discussed below.

Afirst observationwas that functional ATGpersisted up today 7
after transplantation, as observed by Lowsky and colleagues (18).
This might explain some differences in the pattern of immune
recovery thatwe observed between the two armsof the study, such
as slower recovery of CD4þ and of naive CD8þ T cells (52).
Furthermore, because all TLI but no TBI recipients received ATG, it
is impossible to separate the respective role of TLI versus ATG in
the observations discussed below. Importantly, ATG is unlikely to
be the sole factor responsible for the lower incidence of chronic
GVHDobserved in TLI patients given that functional ATG levels in
day 0 sera of our TLI patients were well below the threshold
associated with a lower incidence of chronic GVHD in a recent
paper by Chawla and colleagues (30).

In murine models of allo-HCT, protection from GVHD fol-
lowing TLI/ATS conditioning depends on residual host iNKT cells
(located mainly in the bone marrow) that secrete IL4, which in
turn polarizes donor T cells toward a Th2 pattern. Importantly,
iNKT cells also promote expansion of donor Treg and drive them
to produce IL10 (43). Several observations support similarities in
immune recovery patterns in the mouse model mentioned above
(43) and in TLI patients from the current study. First, as observed
in the mouse model, Treg/na€�ve CD4 T-cell ratios were signifi-
cantly higher in TLI than in TBI patients from day 40 to 2 years
after transplantation. This might have contributed to the lower
incidence of chronic GVHDobserved in current TLI patients given
that a high Treg/na€�ve CD4 T-cell ratio has been associated with
tolerance induction in mice conditioned with TLI/ATS (39).
Second, IL10 serum levels on day 28 were significantly higher in
TLI than in TBI patients, possibly translating Th-2 polarization of
donor CD4þ T cells in TLI patients or higher secretion of IL10 by
Treg fromTLI patients as observed in themousemodelwhere Treg
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from TLI/ATS mice produced higher levels of IL10 than control
Treg (24). Third, there was a trend for higher Treg proliferation in
TLI than in TBI patients on day 40 (as assessed by Ki-67 expres-
sion; P ¼ 0.066). Taken together, these observations might
support the hypothesis that the TLI/ATG regimen could prevent
chronic GVHD in part by increasing the Treg/na€�ve CD4þ T-cell
ratio.

Besides ATG and Treg, a third mechanism that might explain
protection from GVHD in TLI/ATG patients is their slower estab-
lishment of full donor T-cell chimerism (27).

Previous studies have observed a strong correlation between
occurrence of chronic GVHD and a lower relapse risk after non-
myeloablative allo-HCT (3–5, 53). In agreement with these
observations, the lower incidence of chronic GVHD in current
TLI patients was offset by a higher risk of disease relapse/progres-
sion (although this result should be taken with caution given the
relatively low number of patients with various diagnoses).

Finally, the slower CD4þ T-cell recovery was associated with a
higher incidence of CMV infection the first 100 days after trans-
plantation in TLI patients. This is in line with a prior publication
showing early CMV viremia due to impaired viral control in
patients given grafts after TLI-ATG conditioning (23). Whether
this is due to TLI/ATG conditioning or to the use of ATG itself
remains to be determined.

In conclusion, immune recovery differs substantially between
these two conditioning regimens, possibly explaining the differ-
ent clinical outcomes observed.
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