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Abstract  
Instead of adopting the common idea of using volume constraint in topology optimization, this work is focused on 
the structural topology optimization of multiphase materials with mass constraint. Related optimization models 
involving mass constraint and interpolation model are proposed. GSIMP (generalized Solid Isotropic Material 
with Penalization) and UIM (Uniform Interpolation Model) interpolation schemes are discussed and compared. 
The former is found to introduce the nonlinearity into the mass constraint and brings numerical difficulty to search 
the global optimum of the optimization problem. The adopted UIM scheme makes it possible to have a linear 
expression of mass constraint with separable design variables. This favors very much the mathematical 
programming approaches, especially the convex programming methods. Numerical examples show that the 
presented scheme is reliable and efficient to deal with the topology design problems of multiple materials with 
mass constraint. The latter is proved to be more significant and practically meaningful than the volume constraint 
in structural topology optimization of multiphase materials. 
Keywords: topology optimization; multiphase materials; volume constraint; mass constraint 
 
1. Introduction 
Structural topology optimization has been extended to various complicated design problems in recent years, such 
as the design-dependent load and multiple-field problem. In structural topology optimization, the material 
interpolation model is needed to transform the discrete design problem into a continuous one. Most popular 
schemes include the SIMP (Solid Isotropic Material with Penalization), RAMP (Rational Approximation of 
Material Properties) and homogenization method. Until now, most works of the topology optimization and the 
material interpolation model have been concerned with only one single solid material.  
In 1992, Thomsen [1] began to study the structural topology optimization with multiple materials and then many 
researches were made about these design problems. Sigmund [2, 3] expanded the SIMP model to interpolate the 
material properties in the optimization problems with two solid materials and void, and the model was adopted in 
the design of the compliant mechanisms and the microstructure with extreme thermal expansion coefficient. Later, 
Sun and Zhang [4, 5] applied the same material interpolation model on the multi-objective optimization design of 
the microstructure, and the perimeter control method was improved to avoid the checkerboard pattern. This model 
also was used by Gao and Zhang [6, 7] to solve the topology optimization problems with multiple materials under 
pressure and thermal stress loads. 
Yin and Ananthasuresh [8] used the so-called peak function to interpolate the properties of multi-phase materials. 
The main advantage of that model is its ability to include multiple materials without increasing the number of 
design variables. However, for more than two materials, the peak function model has some nonlinear difficulties in 
the numerical procedure. The authors suggested that the standard deviation of the peak function should gradually 
decrease after each optimization iteration. Wang and Zhou [9, 10] applied the phase field method for  topology 
optimization of multi-material structures. A generalized Cahn–Hilliard model was introduced to transform the 
structural optimization problem into a phase transition problem. Mei and Wang [11] introduced the level set to 
achieve the optimal shape and topology with multiple materials. The structural material interfaces were implicitly 
described by the vector level set and evolved continuously in the structure. Han and Lee [12] presented a material 
mixing method for ESO (Evolutionary Structural Optimization). The idea is very easy to understand. Considering 
the elements with low strain energy in ESO, if the element is filled with the larger stiffness material, it should be 
changed to the lower stiffness material; only the element with lower stiffness material will be removed. In the work 
of Stegmann and Lund [13], the laminate design with candidate fiber orientations was treated as the discrete 
material optimization (DMO) problem and tested with several interpolation models.  
Until now, although both the structural (e.g. minimization of structural compliance) and micro-structure (e.g. 
micro-structure design to minimize the thermal expansion coefficient or maximize the elastic modulus) design 
problems were investigated, the volume constraint has been defined to limit the material amount. For the 
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optimization problem with one phase solid material and void, the volume and mass constraints are exactly 
equivalent; nevertheless, they are totally different for the case of multiple solid materials. 
In this paper, the topology optimization problem of multiple materials with mass constraint is investigated. Two 
types of material interpolation schemes are considered, and the corresponding expressions of the optimization 
problem and the volume constraints are presented. Then the interpolation models of the material density and the 
expressions of the mass constraint are introduced. Numerical examples are presented to illustrate the validity of the 
presented interpolation scheme for multiple materials and the optimization model with mass constraint. Numerical 
tests and theoretical analysis are made to compare both types of interpolation schemes. The mass constraint is 
proved to be more significant and important than the volume constraint in structural topology optimization.  
 
2. Volume constraint and material interpolation model of multiple materials 
In this section, consider the traditional structural topology optimization problem, such as the 
minimum-compliance design with multiple materials subjected to the volume constraint. Obviously, for this type 
of problem, only the interpolation model of the Young’s modulus is needed. The material interpolation models aim 
at relating the design variable to the properties of the candidate materials. Usually, in the final optimization result, 
the mixed property should be equal to that of one certain candidate material. Here, two types of material 
interpolation schemes are investigated. 
 
2.1 Generalized SIMP model (GSIMP) 
This model was introduced by Bendsoe and Sigmund [14]. For the problems with m solid materials, each element 
will have m number of design variables.  
For the case of one solid material, the interpolation model of Young’s modulus is expressed as 
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where 
1ix  is the topology design variable of element i, which represents the existence of the solid material or void. 

The topology optimization problem to minimize the structural compliance should be written as 
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where vf1 is the prescribed volume fraction of the solid material 1. Vi denotes the volume of element i. Usually, a 
lower bound, xmin, e.g., 10-3, is introduced for the design variables to avoid the singularity of the structural stiffness 
matrix in the finite element analysis. 
The SIMP model can be easily extended to the case of two solid materials. For this case, two design variables xi1 
and xi2 are assigned to element i 
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2 1ix   represents the existence of either solid material 1 or 2, while
1ix  determines which phase the element is. 

2 0ix  represents the element is void regardless of the value of 
1ix . Similarly, the structural topology optimization 

problem can be stated as 
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In this expression, it should be noticed that the constraints of material amount are expressed as two volume 
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constraints to favor the problem resolution. The first one is to limit the total volume of solid phases 1 and 2, while 
the second one is to control the solid phase 2. In this manner, the volume constraints will hold a separable and 
linear form in terms of both sets of design variables. 
The same reasoning can be made for the optimization problems with m solid material problem to establish the 
material interpolation model and the volume constraints.  
 
2.2 Uniform interpolation model (UIM) 
This type model was introduced and studied by Stegmann and Lund [13] firstly. In their paper, the laminate design 
problem with candidate fiber orientations was treated as the discrete material optimization (DMO) problem, and 
several expressions of this type model were presented and analyzed. For each designable element, each phase solid 
material corresponds to a topology design variable and all these design variables are uniform. Thus, this type 
model is named as the uniform interpolation model in this paper. Obviously, each element will have m number of 
design variables for the case of m solid materials. 
The UIM interpolation model of the Young’s modulus can be expressed as the weighted sum of all candidate 
material 
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where
ijw is the weight corresponding to the jth phase material. To make sure that the unique material exists in each 

single designable element, a series of constraints as expressed below have to satisfy. 
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The structural topology optimization problem with volume constraints can be stated as 
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Varity of the expression of 
ijw can be adopted. Numerical tests show that there always are many elements with 

mixed material in the optimization result for the case of
ij ijw x . Thus, several other expressions of

ijw will be 

discussed as below. 
 
(a) UIM-1 

p
ij ijw x                                                                                 (8) 

ijw is defined as the penalization of the design variable. Our tests show that this model can not yield a 0-1 solution 

and there exists middle density area. As concluded by Stegmann and Lund [13], this model “is not very efficient as 
it fails to push the design to its limit values”. To push the design variables towards the bound, an additional term 
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  is attached to the objective function. Here, a is the prescribed  weight. The suitable a can lead to 

black-white topological configuration. The phase field method presented by Wang and Zhou [9, 10] is actually 
similar to UIM-1 with the additional term.  
Another disadvantage of UIM-1 is that a series of constraints as expressed in eq. (6) have to be included in the 
optimization problem to make sure the unique material exists in each single designable element. Obviously, the 
number of these constraints equals the designable element numbers. The large number of both the design variables 
and the constraints will bring more difficulties for the mathematical programming approaches. 
 
(b) UIM-2 
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This model was introduced by Stegmann and Lund (2005). For each design variable, we have0 1 ijx . Then, 

1ijw   if 1ijx   and 0 ( )ix j   . Similarly, 0ijw   if 0ijx   or 1 ( )ix j   . Thus, we must 

have 0 ( )iw j    if 1ijw  , which means the element consist of one single phase solid material. Accordingly, 

UIM-2 overcomes the drawbacks of UIM-1. In other words, UIM-2 can yield 0-1 solution and each designable 
element consists of one phase material without the additional constraints in eq.(6).  
 
(c) UIM-3 
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The optimization cannot converge if this model is used to the Young’s modulus. Stegmann and Lund [13] 
concluded that this model should be only used to interpolate the mass constraint. 
 
3. Mass constraint and material interpolation model of multiple materials 
For the structural topology optimization subjected to the mass constraint, the interpolation scheme of the density 
has to be involved. For a meshed structure with n designable finite elements, the mass constraint can be stated as 
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where 
i is the density of the element i andM is the upper bound of the structure mass. Then, the topology design 

problem to minimize the structural compliance should be written as 
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Firstly, consider the GSIMP model. For the problem of one solid material, the volume constraint and the mass 
constraint are exactly equivalent. If two solid materials are available, like the interpolation of the Young’s modulus 
in eq.(3), the density of the mixed material can be formulated as  

      2 1

2 1 1( ) 1i ij i i ix x x x                                      (13) 

Obviously, this expression is variable-inseparable and nonlinear. These characteristics bring numerical difficulties 
to search the global optimum of the optimization problem when the popular convex approximations are used, such 
as ConLin [15], MMA [16], GCMMA [17] and MDQA [18]. Some illustrations will be presented in the next 
section. For the UIM interpolation model with m phase solid materials, 

i can be formulated as a linear expression 
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In this formulation, the design variables are obviously separable. This favors very much the mathematical 
programming approaches, especially the convex programming methods. 
In all numerical examples of this paper, if GSIMP scheme is adopted, the Young’s modulus and density are 
interpolated using eq.(1, 3) and eq.(13), respectively; while eq.(9) and eq.(14) are applied for UIM-2 scheme. For 
both schemes, the mass constraint is described in eq.(11). 
 
4. Numerical examples 
In this section, Both GSIMP and UIM-2 models are applied to solve the minimum compliance structure design 
problem. Suppose four “virtual” isotropic solid materials are available in design and they have different 
stiffness-to-mass ratios. 
 

Table 1 Properties of the virtual materials 
virtual material Young’s modulus (GPa) density (kg/m3) stiffness-to-mass ratio 

VM1 70 2700 0.0259 
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VM2 210 5400 0.0389 
VM3 105 5400 0.0194 
VM4 175 3600 0.0486 

 
4.1 Cantilever beam under a load on the right-bottom corner 
A cantilever beam example is presented here, as shown in Fig.1. The structure is uniformly meshed with 80×50 

elements. Consider two solid material (VM2 and VM1). The mass constraint is set to be 370 10 kgmass   and the 

optimization results of GSIMP and UIM-2 are shown in Fig.2. 
 

 
Fig.1 Cantilever beam under a load on the right-bottom corner 

 
As shown in Fig.2(a), the optimal structure using GSIMP model consists of both VM1 and VM2. As a comparison, 
the result with single solid material (VM2) is shown in Fig.2(b). Obviously, the structure with VM2 is stiffer. Then 
it can be found that GSIMP model may not yield the global optimization result. The optimal structure using UIM-2 
model of VM2-VM1 is shown in Fig.2(c) and only VM2 remains. The configurations in Fig.2(c) and Fig.2(b) are 
very similar and the structure compliances using UIM-2 is even smaller.  

   
(a) GSIMP, VM1-VM2  

C= 172.58  
(b) GSIMP, VM2  

C=159.59 
(c) UIM-2, VM1-VM2 

C= 157.03  
Fig.2 Optimization results of the cantilever beam under a load on the right-bottom corner 

 
It is found that UIM-2 scheme is the better choice for the structural topology optimization of multiple materials 
with mass constraint. This advantage of UIM-2 model might be attributed to the linearity and separability of the 
mass constraint in terms of design variables. 
 
4.2 Cantilever beam under a load on the middle of right edge 
As shown in Fig.3, the structure is the same with the last example, but the load location is different. In this section, 
only UIM-2 is adopted.  
 

8m

5
m

 
Fig.3 Cantilever beam under a load on the middle of right edge 
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Suppose 370 10 kgmass  . For the optimization problem with VM3-VM1, both VM1 and VM3 are used in the 

optimization design, as shown in Fig.4.2(a). Comparatively, the results with single solid material (VM1 or VM3) 
are shown. According to the compliances of the optimization results, the design with both VM1 and VM3 is the 
best.  
 

   
(a) VM3-VM1 

C= 207.53 
(b) VM1 
C=215.02 

(c) VM3 
C=269.73 

Fig.4 Optimization results of the cantilever beam under a load on the middle of right edge 
 

The iteration histories of the design problem with VM3-VM1 are plotted in Fig.5. Obviously, the optimization 
iteration is very stable.  

 

 
(a) Iteration history of the structural compliance and mass 

 

 
(b) Iteration history of the solid material volume 

 
Fig.5 Iteration history (VM3-VM1) 

 
The influences of the upper bound of mass constraint upon the amount of the solid materials are shown in Fig.6. 
The amount of VM3 increases monotonously with the upper bound of the mass constraint. In contrast, the volume 
of VM1 increases firstly and then decreases. It means that the material with larger stiffness-to-mass ratio is more 
appropriate although its Young’s modulus is smaller when the upper bound of structure mass is small. If more 
materials are allowable, the structure consisting of more harder materials is stiffer.  
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Fig.6 Influences of the mass constraint upon the volumes of the solid materials (VM3-VM1) 

 
For the optimization problems with VM3-VM1 and VM1, the influences of the upper bound of mass constraint on 
the compliance of the optimization results are shown in Fig. 7. For these optimization problem, two solid materials 
always yield better designs. 
 

 
Fig.7 Influences of the mass constraint upon the compliance 

 
A comparison between the optimization results with mass and volume constraints is made here. Suppose that the 

structure mass is less than 370 10 kg . If the upper bound of the volume constraint of VM1 is fixed a priori, the 

upper bound of the volume constraint can be determined for VM3 correspondingly. The influence of the amount of 
VM1 on the optimization results are plotted in Fig.8. For the optimal solution with the mass constraint, the volume 
fractions of VM1 and VM3 are 0.6102 and 0.0190, respectively. Using these volume fractions as the upper bounds 
of the volume constraints, the optimal solution is very similar to that with mass constraint. Besides, this solution is 
better than any others with volume constraint in the sense of compliance minimization. Obviously, the mass 
constraint always leads to a better solution than the volume constraint with the precondition of the same structure 
mass. For most engineering problems, the mass constraint is more significant and important than the volume 
constraint to find the optimal design. 
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Fig.8 Comparison of the optimization results with mass and volume constraint 

 
4.3 Three solid materials problem 
Taking the cantilever beam in Fig. 3 as an example, three solid materials (VM1, VM3 and VM4) are considered 

and UIM-2 scheme is adopted. Firstly, only the mass constraint is included and 370 10 kgM   . As shown in 

Fig.9(a), the optimal structure consists of VM4, namely the material with largest stiffness-to-mass ratio. If the 
amount of VM4 is limited, for example 10%, the optimization result is shown in Fig.9(b). The dark area is filled 
with VM4 and the gray area indicates VM1. When the volume constraint of VM4 is added, VM1will play the role 
in the structure, while VM3 is still not chosen because its stiffness-to-mass ratio and Young’s modulus are both the 
smallest. It is also noticed that the volume constraint of VM4 is active in this optimal solution. Besides, the 
additional volume constraint is a binding constraint that reduces the design space of the optimization problem so 
that the value of the objective function is larger than that without one such volume constraint. For both results, the 
structure mass attains its upper bound.  
 

  
(a) mass constraint 

C=110.14 
VM1: 0%; VM3: 0%; VM4: 48.4% 

(b) mass and volume constraint of VM4 
C=164.37 

VM1: 51.3%; VM3: 0%; VM4: 10.0% 
Fig.11 Optimization results of the three-phase solid materials problem 

 
5. Conclusions 
For the structural topology optimization problems of multiphase materials, it is observed that the mass constraint is 
more significant and important than the volume constraint. GSIMP and UIM interpolation schemes are presented 
and compared. The mass constraint in the adopted UIM-2 scheme holds the linearity and separability in terms of 
design variables, while the constraint in the GSIMP scheme is nonlinear with coupling terms. From the viewpoint 
of solution efficiency, the former favors very much the mathematical programming approaches, especially the 
convex programming methods. Numerical examples indicate that the proposed UIM-2 scheme is efficient and 
reliable to solve the topology optimization problem with multiphase materials under the mass constraint. 
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