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Abstract

Teleost fish such as zebrafish (Danio rerio) are increasingly used for physiological, genetic
and developmental studies. Our understanding of the physiological consequences of al-
tered gravity in an entire organism is still incomplete. We used altered gravity and drug treat-
ment experiments to evaluate their effects specifically on bone formation and more
generally on whole genome gene expression. By combining morphometric tools with an ob-
jective scoring system for the state of development for each element in the head skeleton
and specific gene expression analysis, we confirmed and characterized in detail the de-
crease or increase of bone formation caused by a 5 day treatment (from 5dpf to 10 dpf) of,
respectively parathyroid hormone (PTH) or vitamin D3 (VitD3). Microarray transcriptome
analysis after 24 hours treatment reveals a general effect on physiology upon VitD3 treat-
ment, while PTH causes more specifically developmental effects. Hypergravity (3g from
5dpf to 9 dpf) exposure results in a significantly larger head and a significant increase in
bone formation for a subset of the cranial bones. Gene expression analysis after 24 hrs at
3g revealed differential expression of genes involved in the development and function of the
skeletal, muscular, nervous, endocrine and cardiovascular systems. Finally, we propose a
novel type of experimental approach, the "Reduced Gravity Paradigm", by keeping the de-
veloping larvae at 3g hypergravity for the first 5 days before returning them to 1g for one ad-
ditional day. 5 days exposure to 3g during these early stages also caused increased bone
formation, while gene expression analysis revealed a central network of regulatory genes
(hes5, sox10, Igals3bp, egri1, edn1, fos, fosb, kif2, gadd45ba and socs3a) whose expres-
sion was consistently affected by the transition from hyper- to normal gravity.
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Introduction

For many years, the zebrafish has been recognized as an excellent model system for vertebrate
developmental biology. More recently, it is increasingly used to study vertebrate physiology,
pathology, pharmacology and toxicology [1-5]. Its main advantages are easy maintenance,
high fertility, rapid and external development, easy observation of all developmental stages,
small size, transparency of the embryos and close contact with surrounding medium (water) al-
lowing easy administration of drugs. In addition, its genome is sequenced and extensively an-
notated together with well established forward and reverse functional genomics and access to
already generated and characterized mutants and transgenic lines of fish (zfin.org).

Skeletal development in zebrafish was first more widely addressed in large scale mutagenesis
screening initiatives, resulting in identification of a number of genes required for early forma-
tion of the head skeleton [6, 7]. Cranial cartilage is the first skeletal structure to be detected as
early as 3 days post-fertilization (dpf), while first calcified intramembranous bone structures
start to form at about the same time. Perichondral bone elements slowly build up on the exist-
ing cartilage matrix during the following days. In mammals, one of the major genes involved in
osteoblast differentiation is Runx2. In zebrafish, its ortholog runx2b is similarly required for os-
teoblast differentiation [8] and the onset of osteoblast specific genes [9], such as members of
the dlx family [10] and osterix (osx) [11, 12], again with mammalian orthologs. Other expressed
genes code for bone extracellular matrix (ECM) proteins osteocalcin (Osc2)[13], collagenl0ala
(Col10ala)[14], Bglap, Spp1 and collagenlala (Collala) [9, 15, 16]. The latter is mutated in
the chihuahua (chi) mutant, a model for the human condition of osteogenesis imperfecta. Final-
ly, correct calcification of the bone ECM depends on transcellular epithelial calcium uptake
through the calcium channel Trpv5/6 [17] and the precise control of phosphate/pyrophosphate
homeostasis by the Entpd5 diphosphohydrolase, expressed in osteoblasts [18] together with
the widely expressed phosphodiesterase Enppl [19]. Taken together, these observations indi-
cate an extensive similarity of the molecular pathways governing bone physiology between tele-
osts and mammals, validating the zebrafish as a vertebrate model in this field [16, 20-22].

During space flight, human passengers experience profound alterations of their skeletal and
muscular system, as well as blood circulatory and immune systems [23-25]. Microgravity is
the main differential factor of the environment in space and is probably responsible for the
rapid bone loss (osteoporosis) observed in space. Various fish species, such as carp [26], gold-
fish [27-31], or cichlids [32-39] have been utilized in the past for evaluating the effects of al-
tered gravity. More recently, smaller fishes such as swordtail [37, 40], medaka [41-46] and
zebrafish [47-51] have attracted more attention. Most analyses using fishes have concentrated
on the impact of altered gravity on graviperception [33, 52], the vestibular system [37, 53, 54]
and its involvement in motion sickness [38, 55-57]. Several studies also revealed that general
embryogenesis of various organisms is not affected by gravity conditions (review in [46, 49, 50,
58]).

Here, we investigate the effect of increased gravity on the general physiology of zebrafish lar-
vae by using a Large Diameter Centrifuge (LDC) [59] to study whole genome gene expression.
We investigate in more detail the effects on head skeleton development and we validate our ap-
proach by studying the effects of drug treatments (VitD3 and PTH) known to affect bone for-
mation. Finally, we propose a novel approach to study the effects of microgravity by growing
zebrafish in hypergravity for 5 days (from 0-5dpf) before returning them to normal gravity,
the Reduced Gravity Paradigm, RGP [60]. The hypothesis for this paradigm dictates that simi-
lar effects as observed from the transition going from 1g into micro-g are observed going from
a hypergravity level towards a 1g acceleration, a special kind of simulated microgravity or
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‘relative microgravity’. However, it may be expected that the magnitude of the effects applying
RGP is reduced as compared to the 1g - pg transition.

Materials and Methods
Animal procedures

Zebrafish (Danio rerio) were maintained under standard conditions [61] in the GIGA zebrafish
facility (licence LA2610359). Briefly, zebrafish (Danio rerio) of the AB strain were reared in a
recirculating system from Techniplast, Italy at a maximal density of 7 fish/l. The water charac-
teristics were as follows: pH = 7.4, conductivity = 500 pScm-1, temperature = 28°C. The light
cycle was controlled (14 h light, 10 h dark). Fish were fed twice daily with dry powder (ZM fish
food) adapted to their age and once daily with fresh Artemia salina nauplii (ZM fish food). Lar-
vae aged less than 14 days were also fed twice daily with a live paramecia culture. Wild type em-
bryos were used and staged according to [62].

The day before breeding, wild-type adult male and female zebrafish were set up in several
breeding tanks, separated by a clear plastic wall. After the light was turned on the next morn-
ing, walls are removed, eggs are generated by natural mating and collected from 30 minutes to
2 hours after spawning. After sorting, clean eggs are moved to Petri dishes and incubated at
28°Cin E3 medium (5 mM Na Cl, 0.17 mM KCl, 0.33 mM CacCl,, 0.33 mM MgSOy,, 0.00001%
Methylene Blue). All protocols for experiments were evaluated by the Institutional Animal
Care and Use Commiittee of the University of Liége and approved under the file numbers 568,
1074, and 1264 (licence LA 1610002).

Chemicals

Parathyroid hormone (PTH; Merck-Calbiochem, Overijse, Belgium) stock solution (1ug/ml)
was prepared in DMSO and stored in aliquots at -20°C. Vitamin D3 (cholecalciferol, VitD3;
Sigma-Aldrich, Diegem, Belgium) stock solution (200ul/ml) in DMSO was stored in aliquots at
-20°C for maximum one month.

Chemical treatments

The chemical protocol was inspired by Fleming and collaborators experiments [63]. Larvae at
5dpf were transferred into a 6 well plate (Millipore) containing E3 medium supplemented with
the required chemical or vehicle (DMSO) as negative control. The medium was changed every
day at the same time. Final concentrations in E3 were at 10ng/ml for PTH and 200ng/ml for
VitD3. Each well contained 20 fish in 4ml. They were treated for 1day (n = 50-60 larvae) to
perform microarrays and for 5days, from 5 to 9 or 10dpf, to observe the longer-term effects of
treatments by different staining (n = 20-30 larvae). Plates were placed into the dark and incu-
bated at 28°C. The larvae were euthanized by tricaine overdose (0.048% w/v) and directly sub-
mitted to an RNA extraction at 6dpf (for microarrays) or a 4% para-formaldehyde (PFA;
Sigma- Aldrich, Diegem, Belgium) fixation at 6, 9 or 10dpf (for staining).

Hypergravity experiments in the Large Diameter Centrifuge

A Large Diameter Centrifuge (LDC) was used for hypergravity experiments. It is composed of
a central axis linked to 2 perpendicular arms, each arm terminating in 2 opposing gondolas
where it is possible to install an incubator containing the samples. The arms provide an 8m di-
ameter for rotation and can provide centrifugal forces of maximum 20g. The zebrafish larvae
were incubated in 20 ml E3 in a Petri dish placed in an incubator within a gondola for 3g
experiments, and placed either in an incubator on the centrifuge axis (axe) or outside of the
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centrifuge for 1g controls. In this setting, the medium represents less then 5 mm of water col-
umn and thus the 3g acceleration causes an increase in hydrostatic pressure of maximum
0.0015 bar, as compared to the 1bar atmospheric pressure [64].

Staining methods

Acid-free protocols were adapted [65] to perform Alcian blue (8 GX Sigma-Aldrich, Diegem,
Belgium) staining of cartilage structures and Alizarin red S (Sigma-Aldrich, Diegem, Belgium)
staining of calcified structures. At 6, 9 or 10dpf, the larvae were fixed in 4% PFA for 2h at room
temperature and rinsed several times with PBST.

Cartilage was stained overnight in 10 mM MgCl,, 80% EtOH and 0.04% Alcian blue. The
larvae were washed in different concentrations of ethanol (80%, 50%, 25%) to remove excess
staining. Pigmentation was bleached in a H,O, solution (H,O, 3%, KOH 0.5%) and finally the
larvae were rinsed 3 times in a solution of 25% glycerol / 0.1% KOH and 50% glycerol, 0.1%
KOH and finally stored in this solution at 4°C.

During acid-free bone structure staining with Alizarin red, bleaching was performed imme-
diately after fixation, before the staining. After the bleaching, long rinses (at least 20min each)
in a 25% glycerol, 0.1% KOH solution are necessary to prevent the fading of the staining. The
larvae are stained in a 0.05% Alizarin red solution in water for 30min in the dark on low agita-
tion, rinsed in a 50% glycerol, 0.1% KOH solution to remove excess staining and kept at 4°C in
the same solution.

Images of stained larvae (n = 20-30 larvae) were obtained on a binocular (Olympus, cell B
software).

Image analysis

Image analysis was performed on the pictures of larvae stained with Alcian blue for cartilage or
Alizarin red for bone. Individual cartilage and bone elements were identified according to [10,
15, 66-68]. For morphometric analysis, images were uploaded into the CYTOMINE environ-
ment [69] and manually annotated by positioning 21 landmarks for larvae stained for cartilage
(Fig 1A) as previously defined in the CYTOMINE ontology. 29 landmarks were placed for lar-
vae stained for bone in hormonal treatments (Fig 1C), of which 15 were selected for the hyper-
gravity experiments. The program then defines the positions of all selected landmarks and
computes all the distances (in pixels) and angles (in radian) of all the possibilities between two
points of interest. These data were exported into an Excel file and a selection of interesting
measures was conducted by performing principal component analysis on data obtained from
differently treated larvae to identify invariable or redundant measures. The measures selected
were: for cartilage (Alcian blue): Anterior to Ethmoid plate, Anterior to Posterior, Articulation
down to Articulation up, Ceratohyal ext. down to Ceratohyal ext. up, Ceratohyal ext. down to
Ceratohyal int. down, Ceratohyal ext. up to Ceratohyal int. up, Ethmoid plate to Posterior,
Hyosymplectic down to Hyosymplectic up; and for bone (Alizarin red): Anguloarticular down
to Anguloarticular up, Anterior to Notochord, Anterior to Parasphenoid a, Branchiostegal ray
1 down to Branchiostegal ray 1 up, Entopterygoid down to Entopterygoid up, Maxilla down to
Maxilla up, Opercle down to Opercle up, Parasphenoid a to Parasphenoid b, Parasphenoid b to
Parasphenoid c, area of the parasphenoid triangle: parasphenoid a, b, and ¢, and finally the an-
gles between parasphenoid a and b, a and ¢, b and c.

Statistics were performed using GraphPad Prism5. A t-test was used for control versus treat-
ment experiments, while a one way ANOVA was used for multiple comparisons.

Morphometric analysis did not inform about the extent of ossification within each larva.
Thus, a systematic structure analysis was generated. Each bone structure was classified based
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Control VitD3 PTH

Fig 1. (A-D) Cartilage and bone elements of the head skeleton in 10dpf zebrafish. (A) Alcian blue staining of head cartilage representing the landmarks
used for morphometry. (B) Schematic representation of the different head cartilage elements. anterior limit (an), articulation (ar), ceratobranchial pairs 1 to 4
(cb1-4), ceratohyal (ch), ethmoid plate (et), hyosymplectic (h), Meckel's cartilage (mk), palatoquadrate (pq), posterior limit (po). (C) Alizarin red staining of
cranial bones representing the landmarks used for morphometry. (D) Schematic representation of the different cranial bone elements with 29 landmarks used
for chemicals treatments and 15 landmarks for the 3g and the relative-hypergravity. The 15 landmarks are anguloarticular (aa), anterior (an), branchiostegal
ray1 (br1), entopterygoid (en), maxilla (m), notochord (n), opercle (o), parasphenoid (p). Note that the parasphenoid is a triangular bone defined by its anterior
summit (a) and two posterior summits (b,c). The 29 landmarks include the 15 named before with branchiostegal ray2 (br2), cleithrum (c), ceratobranchial 5
(cb), ceratohyal (ch), dentary (d), hyomandibular (hm). (E-J) 10dpf zebrafish larvae after 5 days chemical treatments. (E-G) Alcian blue staining of
cartilage. (H-J) Alizarin red staining of bone. (E,H) Controls in DMSO. (F,G) no significant effect of, respectively VitD3 and PTH on cartilage development, nor
on chondrocyte shape or size (inlays showing close-up). I: increase of bone development after VitD3 treatment. (J) decrease of bone development after PTH
treatment. Ventral views, anterior to the left, (E-J) scale bar = 250um.

doi:10.1371/journal.pone.0126928.g001
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on the progress of development into one of the four following categories: absent, early ossifica-
tion, advanced ossification and over ossification. When values were considered as quantitative,
comparison between two groups (control versus chemical treatment or hypergravity in 1g>3g)
was assessed by a Student t-test, while comparison between different treatments ("relative mi-
crogravity" experiment) was assessed by an analysis of variance (ANOVA). A contingency
table considered ordinal values distributed among the 4 classes (from absent to over ossifica-
tion) or only 3 classes when one class was not present in the sample. Association between clas-
ses and treatment was assessed by X* test and by an ordinal logistic regression and the odds
ratio (OR). The "relative microgravity" experiment was analyzed in addition by grouping the
3g, 3g>1g and 3g>axe versus the 1g sample.

Statistical analyses were performed using the Statistica Software (version 10). Results were
considered statistically significant at the 5% critical level (p < 0.05).

RNA extraction and reverse transcription

Larvae at 6dpf, after 24h treatment, were used for the RNA extraction. Total RNA was ex-
tracted of 60 larvae per experiment using Trizol, followed by the RNeasy Mini kit (Qiagen, Hil-
den, Germany) according to the manufacturer’s instructions and conserved at -80 degrees
using. They were treated with Rnase-free Dnase Set (Qiagen, Hilden, Germany). After extrac-
tion, the quality and concentration of total RNA was evaluated by electrophoresis on capillary
gel and the ratio of absorbance at 260/280nm by spectrophotometer (Bioanalyzer 2100, Agilent
Technologies, Diegem, Belgium). Synthesis of cDNA was performed from 1ug of total RNA,
which was reverse transcribed (Transcriptor iScript cDNA Synthesis Kit, Bio-Rad, Nazareth,
Belgium) according to the manufacturer’s instructions.

Real Time-PCR

Gene-specific oligonucleotide primers were designed using Primer3 software to span exon-
exon junctions to avoid detection of genomic DNA contamination (see S1 Table for primer se-
quences) and synthesized by Eurogentec (Seraing, Belgium) or Integrated DNA Technology
(Leuven, Belgium). cDNA was used as template for quantitative Real-Time PCR with the Sensi-
Mix SYBR Kit (Bioline, London, UK), containing Sybr green. Reactions were performed on an
Applied Biosystems 7900 HT sequences Detection System (Applied Biosystems, Foster City,
CA) using the onboard software (SDS 2.4). Purity of the amplicons was checked by melting
curves at the end of each reaction. Ct values were exported from the onboard software as a text
file and imported into a customized Microsoft excel spreadsheet. 1 pl of the RT reaction (1/20
of the total cDNA) was added to 1X SYBR green master mix (Bioline, London, UK), 150 nmol
of each primer in 15 pl total volume. Samples were run in triplicate in optically clear 384-well
plates (ABgene), sealed with optical adhesive film (Applied Biosystems). "No template” con-
trols were run for all reactions, and all RNA preparations were subjected to sham reverse tran-
scription to check for the absence of genomic DNA amplification. The relative transcript level
of each gene was obtained by the 2"**“* method [70] and normalized relative to the gapdh
(glyceraldehyde-3-phosphate deshydrogenase) housekeeping gene chosen from a panel of 3
genes (gapdh, efl-a, f-actin) as the most stably expressed throughout our experiments (not
shown). Data from biological replicates were averaged and shown as mean normalized gene
expression + SD.

Cycling parameters: 50°C x 2 min, 95°C x 10 min, then 40 cycles of the following 95°C x
155, 62°C x 20 s. A melting temperature-determining dissociation step was performed at
95°Cx 15, 60°C x 15 s, and 95°C x 15 s at the end of the amplification phase.
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Microarray expression experiments

For microarray expression analysis, four replicates from each treatment (control and drug or
gravity treatment) were analyzed in 2+2 dye-swap hybridizations. One pg total RNA was line-
arly amplified one round and labeled, using Amino Allyl Message Amp IT aRNA amplification
kit (Ambion-Life Technologies, Gent, Belgium) as previously described [71]. Five ug of the re-
sulting antisense RNA (aRNA) from the exposed and control groups was labeled either with
Cy3-dUTP or Cy5-dUTP (GE Healthcare Bio-Sciences AB, Uppsala, Sweden). The labeled tar-
gets were examined for amplification yield and incorporation efficiency by measuring the
aRNA concentration at 260 nm, Cy3 incorporation at 550 nm, and Cy5 at 650 nm using Nano-
drop (Thermoscientific, Wilmington, DE, USA). A good aRNA probe had a labeling efficiency
of 30-50 fluorochromes every 1000 bases. One to 5 pg of each labeled aRNA target was mixed,
9 ul 25x fragmentation buffer (Agilent Technologies, Diegem, Belgium) added, and the final
volume adjusted to 225 pl with RNase-free H20 followed by incubation for 30 min at 60°C.
The hybridization solution was prepared by adding 220.5 ul of 2x hybridization buffer (Agilent
Technologies, Diegem, Belgium) and 4.5 pl sonicated herring sperm DNA (10 pg/ul; Promega,
Madison, WI, USA) to the labeled target aRNA. Microarray slides (4x44K zebrafish V2 or V3,
Agilent Technologies, Diegem, Belgium) were prehybridized at 42°C, 60 min using 0.1% bovine
serum albumin (BSA) Fraction V, 5x SSC, and 0.1% sodium dodecyl sulfate (SDS). Hybridiza-
tion was performed at 60°C in 16 h using gasket slides, hybridization chamber, and oven (Agi-
lent Technologies, Diegem, Belgium) according to Agilent 60-mer oligo microarray processing
protocol. Microarray slides were then washed 3 x 5 min in 0.5 x SSC, 0.01% SDS (first wash at
42°C and next two at room temperature). Finally, slides were washed 3 times in room temp
with 0.06x SSC and dried immediately with centrifugation at 800xg for 1 min.

Microarray slides were scanned using a GenePix 4000B (Axon instrument, Foster City, CA).
Scanning was performed at a level just before saturation of several spots. Raw data generated
from Genepix were imported into the Bioconductor package LIMMA and corrected for back-
ground [72]. For within-array and between-array normalization, print tip Loess and scale were
used, respectively [72]. An empirical Bayes moderated t-test [72, 73] was applied to detect dif-
ferently expressed genes across treated and control samples. The p values were corrected for
multiple testing using the Benjamini-Hochberg (BH) [74] method and p-values <0.1 were se-
lected as differently expressed genes. The generated gene list was further filtered for genes with
low intensity and with small changes in expression. In the averaged normalized MA-Plot, the
majority of genes were clustered in between M values of +0.4 (fold change +1.3) and selected
to be threshold criteria for differently expressed gene list. The VitD3 data were obtained on a
SureScan Dx instrument (Agilent Technologies, Diegem, Belgium) and analyzed using the
GeneSpring software (Agilent Technologies, Diegem, Belgium) by applying the same settings.

Raw data and complete lists of analyzed data are publicly available at Arrayexpress (https://
www.ebi.ac.uk/arrayexpress/) under the accessions: E-MTAB-3285, E-MTAB-3286, E-MTAB-
3289, and E-MTAB-3290.

Ingenuity Pathway Analysis

For pathway and biological function analysis of significantly differently expressed genes,
Ingenuity pathway analyses (IPA, QIAGEN Redwood City; http://www.ingenuity.com) were
used. The lists with differently expressed genes generated by the microarray analysis were
translated into mammalian (human, mouse, and rat) orthologs using the Unigene & Gene
Ontology Annotation Tool and uploaded to IPA. The IPA software is an online exploratory
tool with a curated database for over 20,000 mammalian genes and 1.9 million published litera-
ture references. IPA’s database together with EntrezGene, Gene Ontology, etc., integrates
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transcriptomics data with mining techniques to predict and build gene networks, pathways,
and biological function clusters. The output results are given scores and p-values that are com-
puted based on the number of uploaded genes in the cluster or network and the size of the net-
work or cluster in the Ingenuity knowledge database. Fisher’s exact test is used to determine
the probability that each associated biological function is due to chance alone. Scores for IPA
networks are the negative logarithm of the p-value, indicating the likelihood of the focus genes
(genes uploaded to IPA) in a network being found together due to random chance. Scores of 2
or higher have at least a 99% likelihood of not being generated by chance alone.

Results
Effects of drug treatments on head skeletal formation

To characterize in detail the process of cartilage and bone formation in zebrafish, we first
wanted to examine the effects of chemical treatments known to affect skeletal development.
Treatment of zebrafish larvae with vitamin D (VitD3) was previously shown to result in en-
hanced bone formation, while continuous treatment with parathyroid hormone (PTH) led to
decreased bone formation [63]. We decided to confirm and extend these findings by compar-
ing the effects on skeletal formation to those on gene expression.

VitD3 and PTH treatments were performed continuously from 5dpf to 10dpf. Control and
treated larvae were stained by Alcian blue for cartilage extracellular matrix (ECM) and with
Alizarin red to detect the calcified bone matrix. At this stage, the head cartilage is well formed
and a complete set of cartilage elements is observed (Fig 1A and 1B). In contrast, although ossi-
fication begins at 3dpf and the first bone structures are visible at 5dpf, the bone skeleton con-
tinues its formation until 30dpf [68]. Nevertheless, at 10dpf, a number of bone elements are
observed in the head region, the first vertebral centrae are formed, while others only begin to
be calcified (for example the branchiostegal ray2) (Fig 1C and 1D).

In three independent experiments, 27-29 ventral view images of Alcian blue- or Alizarin
red-stained larvae were obtained. After 5days of VitD3 or PTH treatment, cartilage stays un-
changed as compared to the control by general observation. The structures are well formed,
complete with the glycosaminoglycans present in the cartilage matrix judging from the similar
staining intensity (Fig 1E-1G). In a close-up view (Fig 1E-1G, inlays), no difference could be
observed in cell shape or size between the different treatments. Considering bone calcification,
a general observation revealed a clear increase of bone development upon VitD3 treatment
(Fig 1I). Some structures appear in advance, such as the retroarticular (Fig 11 arrowhead) bone
and the preopercular (not shown) bone, while some other structures are thicker such as the
dentary or the ceratohyal, or longer such as the branchiostegal ray2. Nevertheless, the general
morphology was unchanged. In contrast, continuous PTH treatment led to a general decrease
of bone formation and to a complete absence of some structures, such as the anguloarticulars
and branchiostegal ray2 (Fig 1]).

Based on these images, we applied two complementary approaches to obtain a more objec-
tive qualitative and quantitative description of the skeleton. The first one is a morphometric
approach that evaluates the general aspect of the head skeleton by measuring the distances be-
tween and the relative position of all detected bone elements. The images were introduced into
the CYTOMINE software (see Materials and Methods, [69]) and each image was annotated by
positioning specific landmarks representing the different skeletal elements. For larvae stained
for cartilage, 21 landmarks were defined (Fig 1A), while 29 points of interest were positioned
within the Alizarin red-stained bone skeleton (Fig 1C). In these pictures, we consider the head
separated horizontally in 2 parts. Some structures are unique and located on the symmetry
axis, while others are paired and localized symmetrically, such as the dentary, maxilla,
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entopterygoid, and hyosymplectic. To facilitate recognition, these were labelled “up” and
“down”. The software then computes the distances between selected landmarks and the angles
formed by lines drawn between selected points.

Morphometric analysis in VitD3-treated larvae cartilage revealed an increase of the distance
between articulation (ar) "up" and "down", leading to a broader jaw as compared to untreated
animals, while all the other distances remained unchanged (S1A and S1C Fig). Morphometric
cartilage analysis of larvae treated with PTH for 5 days revealed an increase in length of the cer-
atohyal cartilages (ch, S1B Fig). Analysis of the bone skeleton after VitD3 treatment revealed a
significant increase of the distance between maxillae (m, Fig 2A), consistent with a broader jaw
as already observed by cartilage morphometry. The length of the head skeleton is also increased
upon VitD3 treatment with a longer distance between the anterior part of the head (an) and
the notochord (n) or the parasphenoid (p). Other measures are not significantly modified (Fig
2A and 2C). PTH treatment led to a significant decrease of the size of the parasphenoid (p, Fig
2C). Some structures are missing, such as the anguloarticular (aa), branchiostegal ray2 (br2),
ceratohyal (ch) and/or maxilla (m) and a significant broadening of the posterior head skeleton
is revealed by the increased distance between left and right ("up" and "down") branchiostegal
raysl (brl), entopterygoids (en), and opercula (o) (Fig 2B).

The second approach consists in the evaluation of the intensity and progression of bone for-
mation of the different bone structures, and their level of ossification. In each image, every
bone structure is assigned a score, ranging from absent (red), early ossification (yellow), ad-
vanced (green) or over-ossified (purple) in comparison to a typical image of a control larva of
the same age. The distribution of the scores obtained for the different elements in VitD3- or
PTH-treated larvae and the corresponding controls is shown in Fig 3 and the results of the sta-
tistical analysis are given in S2 and S3 Tables.

After 5 days VitD3 treatment, all the structures are present and some are over-ossified like
the hyomandibular, the entopterygoid, the dentary and the ceratohyal bones. Early (delayed)
ossification is decreased for all the structures shown, as compared to controls, while advanced
ossification increased in the maxilla, branchiostegal rayl, branchiostegal ray2 and anguloarti-
cular (Fig 3A). Statistical analysis (S2 Table) reveals that only the anguloarticular and the max-
illa up do not change significantly in this condition. All the other structures (brl, br2, m down,
ch, d, en, hm) are significantly increased, with the hyomandibulars, entopterygoids and cera-
tohyals displaying the most drastic effect. These results confirm a very significant positive effect
of VitD3 treatment on bone formation.

PTH treatment resulted in nearly opposite effects to VitD3. Only the entopterygoid and the
branchiostegal rayl are present in each fish (Fig 3B) with the branchiostegal rayl unaffected
and the entopterygoid displaying 60% of early ossification in PTH-treated larvae compared to
3,45% in controls. All the other structures were absent in at least 20% of the total 27 fish ana-
lyzed. The strongest effect was seen in the anguloarticular bone with 94% of absence compared
to 21% absence, 19% early ossification and 60% of advanced ossification in the controls. Specif-
ic statistical analysis confirmed that PTH treatment significantly (p<0,001) reduced nearly all
the structures except branchiostegal ray1 (S3 Table).

To obtain a global score describing the head skeleton in the different conditions, the individ-
ual structure scores in each image were added up and a mean global score was obtained show-
ing that VitD3 treatment significantly increases bone development (from a score of 26+3 in the
controls to 33+4 in the VitD3 treatment), while PTH treatment significantly decreases ossifica-
tion to approximately half of untreated control (from a score of 27+ 4 to 13+5,5).

In summary, these complete image analyses reveals that VitD3 treatment conserves the gen-
eral skeletal morphology, but leads to a longer head and a larger jaw. Bone calcification is stron-
ger for most elements, and some elements calcify earlier. In contrast, PTH treatment conserves
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bone skeleton after VitD3 treatment revealed a significant increase of the distance between maxillae (m), consistent with a broader jaw as already observed
by cartilage morphometry. The length of the head skeleton is also increased upon VitD3 treatment with a longer distance between the anterior part of the
head (an) and the notochord (n), and between an and the parasphenoid (p) bone. Other measures are not significantly modified (A, C). B) PTH treatment
caused an increase of the distance between the anterior part of the head and the summit “a” of the parasphenoid, mainly due to a significant decrease of the
size of the parasphenoid (p) (C). Some structures are missing, such as the anguloarticular (aa), branchiostegal ray2 (br2), ceratohyal (ch) and/or maxilla (m).
However, a significant broadening of the posterior head skeleton is revealed by the increased distance between left and right ("up" and "down")
branchiostegal rays1 (br1), entopterygoids (en) and also the opercula (o) (B).

doi:10.1371/journal.pone.0126928.9002

the general cartilage morphology except for an increased length of the ceratohyal. In bone,
PTH treatment leads to a general decrease of ossification. Some structures are missing and the
parasphenoid is significantly decreased.

Modification of gene expression upon drug treatment

To gain deeper insight into the molecular mechanisms involved in the observed skeletal modi-
fications, we analyzed the expression of several genes selected for their known function in bone
formation. One class of genes codes for structural proteins such as collagens (Collal, Colla2,
Coll0ala) or bone specific ECM proteins such as secreted acidic cysteine rich protein (Sparc,
previously named osteonectin or Osn), secreted phosphoprotein 1(Spp1, previously named
osteopontin or Osp) and bone gamma-carboxyglutamate protein (Bglap, previously named
osteocalcin or Ocn). The second class of interest consists of those genes coding for factors in-
volved in regulation of cartilage and bone differentiation, including the pthla gene coding for
PTH as well as transcription factor genes dlx5a, dlx6a, runx2b and osx.

We first decided to follow the expression of these genes during the 6-10dpf period in un-
treated animals, using the glyceraldehyde-3-phosphate dehydrogenase (gapdh) house-keeping
gene as reference (selected from 3 candidate housekeeping genes, see Materials and Methods).
Compared to their expression at 6dpf, we observe an increase of sparc, bglap, spp1 and collal
at 7dpf, followed by a decrease at 8dpf for sparc, bglap and spp1, while the collal gene peaked
at 8dpf and decreased its expression at later stages (Fig 4A and 4D). The pthla gene expression
strongly increased 76-fold during the 6-10dpf period, while runx2b displayed a 10-fold in-
crease. The transcription factor gene dlx5a displayed an expression peak at 7 and 8dpf and de-
creased after that, while dlx6a was unaffected and osx surprisingly revealed a 2-fold decrease
from 6 to 7dpf (Fig 4G and 4]).

We then investigated the modulation of expression of these genes during drug treatment
starting at 5dpf. Compared to untreated controls, VitD3 treatment led to a clear and significant
increase in expression of all the structural protein genes: sparc, bglap, spp1, collal and, to a less-
er extent colla2 and coll0ala (Fig 4C and 4F). These results correlate well with the observed in-
crease in bone calcification observed at 10dpf. Among the regulatory factor genes, only pthla
revealed a strong up-regulation that increased during the treatment, while dix5a and dix6a
were transiently induced at 8 and 9dpf. Finally, runx2b displayed a weak but significant in-
crease up to 1.5-fold at 10dpf, and osx1 was only transiently induced 2-fold at 7dpf (Fig 4I and
4]).

On the other hand, relative to untreated controls, PTH treatment resulted in a transient in-
crease of sppl at 8-9dpf, while sparc, and bglap were unchanged before a decrease at 10dpf (Fig
4B). Surprisingly, no significant effect of PTH treatment was observed on the expression of the
collagen genes (Fig 4E). Among the regulatory factors, osx expression remained constant, while
pthla, dix5a, dix6a and runx2b declined at 10 dpf (Fig 4H and 4K). Taken together, these ob-
servations are consistent with the observed decrease in bone matrix calcification at 10dpf.
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Fig 3. Extent of bone formation in 10dpf larvae after 5days chemical treatments. Bone development is
classified for each element into different categories: Absent (no structure present; red), early ossification
(beginning of the bone ossification; yellow), advanced ossification (the structure is present and already
developed as the control; green) and over ossification (the structure is more developed compared to the
control; purple). Cumulated frequencies in % are represented for each element. As no significant difference
was observed for paired structures between left and right (up and down), their scores have been combined.
Statistical analysis was performed by X2 of Pearson and a logistic regression. (A) Cumulated frequency after
5days VitD3 treatment. To obtain this, values were attributed to each element according to its category and
added up for each larva: O for absent, 1 for early, 2 for advanced, and 4 for over ossification (B) Cumulated
frequency after 5days PTH treatment.

doi:10.1371/journal.pone.0126928.9003

Whole genome analysis of gene expression modulation by drugs

To obtain a global view of the physiological changes caused by PTH and VitD3 treatment, we
performed a microarray whole genome expression analysis. We compared 6dpf control larvae
to larvae treated between 5dpf and 6dpf with the corresponding compounds, in order to cap-
ture early regulatory events rather then secondary regulations leading ultimately to the ob-
served modulations of bone formation at 10dpf.

Four independent experiments were carried out and total RNA was extracted from control
and VitD3-treated 6dpf larvae. A complete list of genes affected more than 1.3-fold (log2 fold
change 0.4) by VitD3 treatment is given in S4 Table (p-value<0.1). Six genes were selected
from the list for validation by RT-qPCR, which demonstrated the reliability of the microarray
data (Table 1). Confirming that the VitD3 pathway was indeed activated, the most highly in-
duced gene is cyp24al, encoding a member of the cytochrome P450 superfamily of enzymes in-
volved in the degradation of 1,25-dihydroxyvitamine D3. Modulation of the insulin pathway is
indicated by the significant induction of igfbpI and igf2. According to Ingenuity Pathway Anal-
ysis (IPA; Materials and Methods), other biological functions that were affected by vitamin D
treatment (S5 Table) are related to lipid, small molecule, amino acid, carbohydrate and drug
metabolism, followed by organismal and cardiovascular system development. A striking fea-
ture of the affected genes list is the abundance of genes involved in molecular transport, from
ion channels to ATP-dependent pumps (S4 Table), consistent with a profound adaptation to
the changes in metabolism that were also previously observed [75-77]. Among the transcrip-
tion regulatory factors, we note the decreased expression of ppara and of foxo3, involved in
lipid metabolism, as well as fosb and twist1, while kIf11 and kIf13 were significantly induced (S4
Table). As these experiments were performed using mRNA from the entire larvae, we at-
tempted to focus on individual organ systems by filtering the affected gene set against available
databases of genes involved in muscle or cartilage/bone function (GO annotation of human
gene orthologs using IPA knowledge base). A network of regulatory interactions could be con-
structed, comprising genes common to both systems and genes specific for each organ (S2 Fig).
Major hubs, such as the protooncogene MYC controlling cell proliferation, components of the
insulin-like pathway such as IGFBPI and IGF2, or the cytokine receptor regulator SOCS]I are
common to both systems. Specific to muscle, regulators such as PPARA or FOXO3 are down-
regulated, while STAT3, mediating the cytokine receptor response, is up-regulated. Interesting-
ly, muscle structural genes such as TTN (Titine) are inhibited. Other affected genes are bone-
specific transcription factors, such as ATF4 and FOSB, a member of the WNT pathway
(WNT3) or the carbohydrate (glycoprotein)-binding protein LECT1 (Lectinl).

PTH treatment between 5dpf and 6dpf resulted in less modulation of gene expression (S6
Table). Six genes were selected from the list to include up- and down-regulated genes for inde-
pendent confirmation of the microarray expression results by RT-qPCR (Table 1). Interesting-
ly, we observed a decrease (2.5-fold) in the expression of the endogenous pthla gene (PTH in
S6 Table), thus confirming the previous RT-PCR results (Fig 4K) and suggesting that the PTH
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doi:10.1371/journal.pone.0126928.g004

treatment was effective, as the larvae exerted a compensatory response by decreasing endoge-
nous PTH production. In rat and human osteoblastic cells, PTH receptor mRNA was shown to
be down-regulated upon PTH treatment [78, 79], in contrast we observe a significant induction
(1.9-fold) of PTH receptor (pthlrb), suggesting more complex regulatory networks in using an
in vivo model as opposed to in vitro cultures. Additional affected genes are the repressed
cyp21a2 and hsd3b7, indicating a decrease in steroid degradation. The increased expression of
rxra nuclear receptor mRNA (S6 Table) contrasts with the observed VitD3 effects (54 Table),
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Table 1. Comparison of fold change values from the microarray dataset with those observed by RT-qPCR for VitD3 and PTH treatment.

VitD3 PTH
microarray RT-PCR microarray RT-PCR
Gene Fold Change p-value Fold Change p-value Fold Change p-value Fold Change p-value
cad 1.424 0.094 2.017 < 0.001
cyp24at 8.938 0.005 10.969 < 0.001
igfbp1 3.782 0.004 5.250 < 0.001
socs1 0.355 0.066 0.447 < 0.001
slc26a3 0.525 0.028 0.654 < 0.001
slc6a18 0.726 0.029 0.895 0.002 0.203 0.066 0.883 0.035
fgf4 0.520 0.110 0.777 < 0.001 0.450 0.079 0.831 < 0.001
mcph1 1.934 0.056 1.130 0.026
ndrg2 1.545 0.060 1.101 0.036
rxra 1.990 0.076 1.247 < 0.001
nrbp2 2514 0.056 1.210 0.010

The fold change and statistical significance (p-values) are given from the microarray data and the RT-qPCR confirmation experiments. The data for the
genes selected for confirmation of microarray results, respectively for VitD3 or PTH, are shaded in grey. slc6a18 and fgf4 were chosen for their regulation
by PTH and the results for VitD3 regulation are also shown

doi:10.1371/journal.pone.0126928.t001

where pathways involving Rxra and its nuclear receptor dimerization partner Ppara were
down-regulated (S4 and S5 Tables). IPA comparison between PTH and VitD3 effects reveals
that, unlike the general metabolic effects exerted by VitD3, the most prominent biological func-
tions affected by PTH treatment were related to cell development, signaling and embryonic de-
velopment (S7 Table). The most highly developmentally affected systems were hematopoiesis
and the skeletal, muscular and cardiovascular systems. Further analysis revealed up-regulation
of a number of genes involved in or dependant on calcium metabolism, such as calreticulin
(CALR), integrin a9 (ITGA9), calcitonin receptor like (CALCRL) or arginine vasopressin re-
ceptor al (AVPRIA). Comparison of the genes affected by the two hormones exerting opposite
effects on bone formation, VitD3 and PTH, revealed only 12 genes in common (Fig 5A and
5B). Using these 12 genes allows building a regulatory network around the protooncogene
MYC and containing several genes that are differentially regulated in these two conditions (Fig
5A and 5C), suggesting opposing effects on mitochondrial (GSR), pyrimidine (CAD) or lipid
metabolism (CES1).

Effects of hypergravity on bone and general development

To compare the effects caused by bio-chemical or hormonal treatment on bone formation to
those exerted by bio-physical/mechanical constraints, we investigated the effects due to in-
creased gravity using the large diameter centrifuge (LDC) at the European Space Agency, ESA
(Noordwijk, Netherlands). In a first experiment, zebrafish larvae were grown at normal gravity
(1g) until 5dpf. One half of the population was brought to 3g hypergravity in the LDC for an-
other 4 days, while the other half was kept at 1g (see Fig 6). At 9dpf, the larvae were stained
with Alizarin red for bone matrix (Fig 7A and 7B) and analyzed as described above. No differ-
ence was observed between the two samples when total length of the larvae or size of the eye or
lens was determined (not shown). In the morphometric analysis, the 3g larvae present a larger
head skeleton with a significant increase of the distance between the 2 anguloarticular bones,
branchiostegal rays1, entopterygoid and the opercles (Fig 7C). In bone formation analysis (S3A
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Fig 5. Comparison of genes affected after PTH or VitD3 treatment between 5-6dpf. (A) List of common genes and their respective log2(fold change) in
the two conditions. (B) Comparison of the number of genes affected by PTH or VitD3 treatment. The number of probes resulting in different hybridization
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doi:10.1371/journal.pone.0126928.9005

Fig, S8 Table), the anguloarticular, branchiostegal ray2 and hyomandibular presented a clear
over ossification, while the ceratohyal presented a significantly higher proportion of advanced
ossification. In contrast, the dentary, maxilla and entopterygoid were not significantly affected
(S3A Fig). The global score obtained by addition of the scores of all the separate structures re-
vealed a significant increase of bone formation (from a score of 23+ 4 to 27+ 5.5) (Fig 7D). A clearly
weaker calcification was observed in the otoliths. More than 60% of the controls show 2 pairs of
dark otoliths (Fig 7A, 7B and 7E) compared to only lightly stained otoliths in the 3g group.

In addition, total mRNA was extracted from the larvae at 6dpf and whole genome gene ex-
pression was compared between larvae exposed for 1 day to 3g and 1g controls. The number of
genes found to be modulated by hypergravity was 499, although the extent of induction or
repression was surprisingly low (S9 Table), but significant as confirmed by RT-qPCR for 5 se-
lected genes (S10 Table). Interestingly, among the affected biological functions (S11 Table),
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cellular and organism developmental processes ranked highest, only molecular transport appears
in second position. More specifically, development and function of the skeletal and muscular sys-
tem and connective tissue ranked highest, followed by the nervous and endocrine systems and fi-
nally hematological and cardiovascular systems. Among the specifically affected genes, many
transporter and ion channel genes are present, reminiscent of the observations after VitD3 treat-
ment. Interestingly, among the transcription factors, vitamin D receptor (vdr) is weakly, but sig-
nificantly down-regulated, similar to the nuclear receptor pparg. Other prominent transcription
factor genes are the homeo-box containing pou3f3 and its potential partners meisl and onecutl.
Construction of specific networks in three different organ systems using IPA (54 Fig) revealed
the inhibition of hubs like MYC, PPARG, vitamin D receptor (VDR), NFKBIA inhibitor in all sys-
tems, but also an extensive network specific to the cardiovascular system with, interestingly, a
down-regulation of the growth factor receptor/Ras mediator gene GRB2.

Effects of reduced gravity on bone and general development: “relative
microgravity"
As an approach to investigate some of the effects on zebrafish physiology to be expected when

going into real microgravity, we applied a protocol that we would qualify as "Reduced Gravity
Paradigm" or "relative microgravity". The principle is to grow the zebrafish larvae for a defined
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3g hypergravity after 5 days at 1g (B). Ventral view, anterior to the left. (C) Comparison of morphometric measurements for some selected distances within
the heads of control and 3g-treated larvae. Mean + SD and t-test analysis were calculated for each measure on at least 20 individuals. * p < 0.05, ** p < 0.01
and ***p < 0.001. (D) Global score for bone formation in control and 3g treated larvae. (E) Comparison of cumulated frequencies of, respectively light, 1 pair
dark or two pairs dark otoliths in control and 3g treated larvae. For abbreviations see legend to Fig 1.

doi:10.1371/journal.pone.0126928.9007
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period (5 days) in a hypergravity environment (this case 3g), before returning them to normal
gravity for one additional day (Fig 6B). The effect of this decrease in gravity on bone formation
and gene expression was then investigated.

Zebrafish fertilized eggs were subjected at 4hpf to 3g hypergravity until 5dpf. For compari-
son, a parallel batch was grown at normal gravity outside of the centrifuge chamber (1g). The
morphology of the embryos and larvae was monitored every day by microscopic observation,
no striking effect was observed on developmental processes such as segmentation, organogene-
sis or hatching time. Only a clearly decreased (delayed) pigmentation was observed at 24hpf
(Fig 8A and 8B), which was rapidly resolved as pigmentation was indistinguishable in 1g and
3g embryos at 2dpf.

At 5dpf, the larvae exposed for 5 days to 3g in the LDC, were separated in three distinct
batches, one was left in the LDC for another day (3g) while the other two were returned to nor-
mal gravity for one day. One batch was kept in a separate incubator outside of the centrifuge
chamber (3g>1g); the other was placed in an incubator positioned on the axis of the LDC
(3g>axe), in order to maintain a rotation movement without increasing the gravitational force.
The 1g batch continued to grow at normal gravity outside of the centrifuge chamber for the en-
tire 6 days.

At 6dpf, all larvae were collected and stained for calcified structures using Alizarin red.
Compared to larvae grown for 6 days at 1g, the bone structures in the head of all 3g exposed
larvae appeared more intense (Fig 8C-8F), more specifically the anguloarticular, maxillary
and, to a lesser extent the ceratohyal, hyomandibular and branchiostegal ray 1 (S12 Table). The
global score was significantly increased in all samples exposed to 3g for 5 or 6 days (Fig 8G).
Morphological analysis revealed a significant increase in the distance between branchiostegal
rays 1, enteropterygoids and opercles, and an increase in the parasphenoid area (Fig 9).

A central gene network is rapidly activated in reduced gravity

At 6dpf, all larvae were collected and used for mRNA extraction. Gene expression was deter-
mined by micro-array analysis, larvae exposed to 3g for the entire 6 days were chosen as con-
trol (S13-S15 Tables). Relative to this hypergravity sample, a remarkable similarity was
observed in the biological functions affected in the normal gravity larvae (Table 2). Among the
top ten functions modulated in each condition we found, on the one hand cell growth and pro-
liferation, development, death and survival, organization and function, on the other hand em-
bryonic and organismal (organ) development with a focus on connective tissue and
cardiovascular development in the 6 days control at 1g. Only 3g>axe larvae presented 7 affect-
ed genes related to "auditory and vestibular system", related to their stay on a purely

rotating position.

When comparing the affected genes in the three conditions, it appears that 16 genes are
common to all three (Fig 10), while 20 genes are common only to the 1g samples between days
5and 6 (3g>1g and 3g>axe). Respectively, 69 and 20 genes are common between the static 1g
for 1 day (3g>1g) or rotating 1g (3g>axe) for 1 day and the larvae having spent all 6 days at 1g
(1g). Several genes, mostly common to all three conditions, were selected and the modulation
of their expression was confirmed by RT-qPCR (S16 Table). Regulatory networks were con-
structed using the genes common to all three conditions, but also using those common to the
1g for one day condition (3g>1g and 3g>1axe) (Fig 11). Strikingly, a network composed of 7
genes (FOS, FOSB, EGR1, EDN1, SOCS3, GADD45B, KLF2) that were affected in exactly the
same manner in all three conditions could be constructed, indicating that they represent a cen-
tral network that is affected by gravitational conditions. Most importantly, these central genes
were affected to the same extent, relative to the 3g for 6 days control, whether the larvae were
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Fig 8. Effect of "relative microgravity" between 5-6dpf on bone formation. (A, B) comparison of
pigmentation at 24hpfin 1g (A) and 3g (B) larvae. (C-F) Alizarin red staining of larvae kept at 1g until 6dpf (1g,
C), control larvae kept at 3g until 6dpf (3g, D), larvae kept at 3g until 5dpf and returned to 1g off the centrifuge
(8g>1g, E) or on the axis (3g>axe, F), Ventral view, anterior to the left. (G) Global scores for bone formation in
control and the different treated larvae.

doi:10.1371/journal.pone.0126928.g008
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Fig 9. Morphometric analysis of bone elements at 6dpf after "relative microgravity”. The distances are measured in pixels. Mean + SD and t-test
analysis were calculated for each measure on at least 20 individuals. (A) Distances between the different cranial bone elements. (B) Area of the
parasphenoid bone. * p < 0.05 and ***p < 0.001. For abbreviations see legend to Fig 1.

doi:10.1371/journal.pone.0126928.9g009

kept at 1g during the entire experiment or only for the last day, suggesting that their expression
levels are specific to this gravitational condition and are rapidly (within one day) adapted to
new conditions. Five additional genes (MVP, HBEI, HES5, SOX10, LGALS3BP) were only af-
fected after 1 day at lower gravity (both 3g>1g and 3g>1axe), indicating that they may be actu-
ally involved in the mechanism for rapid adaptation to lower gravity. Further analyses were
performed using all the genes common to any two of the conditions (S5 Fig), also analyzed ac-
cording to their potential function in individual organ systems (S6 Fig). By extending the net-
work that way, other nodes become apparent, such as the nuclear receptor PPARG, the protein
chaperone HSP90AA1 and the regulatory peptide endothelin (EDN1) (S5 Fig). Expression of
NFKBIA, a target gene for the NFkB pathway coding for an inhibitor of this pathway, was de-
creased in two conditions, potentially causing the decreased expression of the antiproliferative
factor BTG2 [80] observed in all three conditions.

Finally, we compared the genes affected in the 1g>3g experiment, which experienced a shift
from 1g to 3g on day 5, with those affected in the 3g>1g experiment where the larvae were re-
turned to 1g after 5 days at 3g. Among the affected genes, 41 were common to both
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Table 2. Biological functions associated to "relative microgravity"-affected genes.

19 3g > axe 3g>1g
Categor -value N -value N -value N
gory p p p

Cellular Growth and Proliferation 5.71511.4 9803 181 6.87507-6.95503 70 5.78509.3.15503 213
Cell Cycle 1.155710.4 9gE03 93 3.615°05.7 6503 20 8.79506.2 63503 85
Organismal Survival 8.15:09.g 1500 119 1.23504.7 24508 46 1.87596.3. 23508 139
Cellular Development 495084 9gE-03 156 6.895°08.8 09503 60 2.17506.3 31503 205
Connective Tissue Development and Function 495084 9gE-03 44 1.55504.6,95503 26 1.91505.3 3503 75
Tissue Development 4.9F-08_ 4 gE-03 104 6.89598.8 11503 65 2.26596.3 31503 177
Cell Death and Survival 1.795°97-4.99F 03 157 6.01509- 25503 59 1.49510.3 35503 203
DNA Replication. Recombination. and Repair 1.11506.4 9gE03 77 4275037 37803 7 2205032 g3E03 8
Cardiovascular System Developt and Function 9.785:06.3 03503 28 1.15:05.7 81503 28 3.765°06.3,025%3 92
Hematological System Developt and Function 9.785:06.4 9gF-08 57 4535058 11503 32 6.3506.3 31503 114
Cellular Assembly and Organization 1.755:95-4.98508 80 4215067 65503 42 1.83505.3,02F03 90
Cellular Movement 2.64595.4 55503 94 2.43504.7 ggF-03 35 1.825:06.3 02F03 132
Cell Morphology 3.38595.3,03503 89 2.43504.7 65503 47 7.12808.p 7803 144
Amino Acid Metabolism 4.2755.4 9gF-03 23 2.3753.6 69503 3 1.085:05-1.83503 13
Small Molecule Biochemistry 4.27595.4 9gF-03 100 1.6505.7.6508 36 1.085°05.2, 74503 72
Embryonic Development 4.66595-4.985-03 83 6.89508.7 g15-:03 52 2.46507.3 22503 141
Organismal Development 466505493503 85 6.895°08.7 81503 63 2.465°07.3 2003 203
Cell-To-Cell Signaling and Interaction 7.89505.4 39503 27 6.44505.7 6503 17 2.0753.2 07503 7
Cellular Function and Maintenance 1.275:04.4 39508 67 4.21506.7 65503 37 1.835°05.3,02F03 148
Energy Production 1.72804.2 24E03 22 5.955°03.7 37503 6
Lipid Metabolism 1.72504.4 9gE 03 60 6.84505.7 6503 30 4525052 74E:03 58
Renal and Urological Developt and Function 1.72804.2 93E03 25 2.045:04.7 6503 5 2.56503.2 56503 2
Nucleic Acid Metabolism 1.745:94.3,035°08 36 1.6505.7.37593 15 2.63503.2 63503 3
Tissue Morphology 1.755:04.4,.98503 80 4535057 g15:03 47 2.49506.3 15503 129
Cellular Compromise 2.25504.9 79504 13 5.37504.7 6503 15 4.79504.9 19504 9
Molecular Transport 2.25F04.4 9gF-03 89 1.6505.7 6508 41 4528052 74503 106
Lymphoid Tissue Structure and Developt 2295044 55503 24 1.18503.,38503 17 2.245:05.3 01503 36
Gene Expression 4.455°04.4 39503 83 2.045°04.7 g1E03 37 6.975°08.2 2gE03 134
Carbohydrate Metabolism 5,2E04.3 1E-03 43 6.845°05.7 52E:03 19 2.63503.2 63503 3
Hematopoiesis 5.21504.4 55503 10 2.785°03.7 76503 14 6.35°06.3 31503 70
Hair and Skin Development and Function 6.67504-4.49503 19 1.88503.1 8gE03 6 8.795°06.3 35503 47
Nervous System Developt and Function 8.285°04.4 9gF-03 40 8.725°06.7 6503 46 2.375°05.2 7803 76
Organ Morphology 8.73504.3 03503 18 3.32505.6 97503 33 4,58506.3 11503 87
Organ Development 1.06503-4 24503 33 1.25506.7 6503 35 2.26506.3,01503 109
Skeletal and Muscular Developt and Function 1.0659%-4.28508 34 1.55504.7 6503 23 2.26506.3.115:03 67
Immune Cell Trafficking 1.545:03.1 71808 3 8.11503.g 11503 5 2.23F04.p 79503 53
Reproductive System Developt and Function 1.545:93.4 6503 10 2.37593.7 6508 8 1.21508.2 g1E03 21
Visual System Development and Function 1.7508.1. 71503 6 1.255°06.4 5F-03 17 4585051 78503 35
Post-Translational Modification 1.715:93.4 9g&03 4 8.85°95.5.835°03 15 3.03504.1 43503 48
Digestive System Development and Function 2.64503.4 04503 8 1.175:04.8,04503 24 6.28505.1 79503 52
Hepatic System Development and Function 2.64E03.4 p4E03 6 2.04E04.6 g5E03 15 1.02504.7 51504 28
Protein Synthesis 2.98503.2 9gF03 41 8.85°05.3,545°03 27 26504224508 66
Vitamin and Mineral Metabolism 3.555°03.3 55503 8 1E03.3 18503 6 2.56503.2 56503 2
Organismal Functions 4985034 9gE 03 2 6.735°04.4 27803 8 3.15503.3,15503 13
Protein Trafficking 4985034 9gE03 2 2.455:03.2 4503 19
Cell Signaling 8.8505.5 02503 14 6.4504.1 05503 46

(Continued)
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Table 2. (Continued)

Category

Protein Degradation
Behavior

Auditory and Vestibular System Developt and Function

19 3g > axe 3g>1g
p-value N p-value N p-value N
3.545:03.3 54503 13 2.245:03.p p4E-03 13
3.615°04.3 82503 22 5.505°06.3 15503 77
5.554-3.825% 7

Ingenuity Pathway Analysis of the lists of genes affected at 6dpf after 6 days at 1g (1g), or after 5 days at 3g and returned to 1g on the centrifuge axis
(3g>axe) or outside of the centrifuge room (3g>1g), each time compared to 3g hypergravity treatment for 6 days (3g). Columns indicate respectively the
function, the range of p-values (significance) associated to various sub-functions, and the number of genes concerned (N).

doi:10.1371/journal.pone.0126928.1002

experiments (Fig 10) that could be assembled in a regulatory network (S7 Fig). Two regulatory
genes attracted our attention due to their increased expression in the 3g environment (note the
fold change relative to the 1g control in the 1g>3g, and relative to the 3g sample in the 3g>1g
experiment): SOX3 is a transcription factor shown to be involved in neural, pituitary and cra-
niofacial development [81], while the HEYI gene is a target of Notch signaling and was shown
to regulate bone homeostasis [82]. Two other genes, coding for embryonic hemoglobin HBE1
and the oligopeptide transporter SLC15A1 were down-regulated at 3g.

Discussion

Zebrafish present remarkable degrees of similarity with mammals in the molecular mecha-
nisms involved in their developmental biology and physiology. Moreover, their ease of hus-
bandry, high fecundity, and small size paves the way for a possible future space experiment,
triggering the proposal of their use for the study of gravitational biology [83-89]. We decided
to explore the effects of increased gravity (hyper-g) on zebrafish larvae using the large diameter
centrifuge (LDC). This device allows applying a well-controlled and constant centrifugal force
(1g-20g) by minimizing, through the large diameter of the rotating arms, the possible effects of
Coriolis force [64].

Our aim was to concentrate on the effects on bone formation, therefore we chose to start the
experiments at 5dpf, when perichondral ossification is taking place within all major cranial car-
tilage elements and intramembranous bone formation is ongoing. We evaluated the effects on
cartilage and bone formation by staining these structures after several days of treatment, at 9 or
10dpf. For a more detailed, more accurate and more objective evaluation of skeletal develop-
ment, we developed two different, but complimentary methods for analyzing images of stained
zebrafish larvae. The first one uses a number of landmarks placed manually within the images
(using the software environment CYTOMINE) and allows automatic extraction of distances
and angles between these landmarks, ultimately resulting in a morphometric description of the
head skeleton. The second one is based on manually assigning a developmental score to each
cranial bone element within each image, enabling us to calculate a mean score for each element
and a global score for each individual.

To validate these approaches, we performed two treatments of zebrafish larvae whose effects
had been previously described [63]. The first treatment uses exogenous vitamin D3 (VitD3)
[90] to increase bone formation, indeed the general VitD3 metabolism in teleosts is similar to
that in mammals, teleosts possess two vitamin D receptors (VDRs) and knock-down of VDRa
expression causes a decrease of calcium ion uptake [90]. PTH and related peptides are known
hypercalcemic agents in mammals, however their function is more controversial in teleosts, de-
pending on the species [91]. Although teleosts do not present a parathyroid gland, they do
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Fig 10. Number of genes affected in the various hypergravity experiments. The absolute number of
probes resulting in a statistically significant hybridization signal is given for each condition. In parentheses,
the corresponding number of genes with an annotation in IPA is given, while the Venn diagrams represent the
number of genes unique to each condition and genes common to two or three conditions.

doi:10.1371/journal.pone.0126928.9g010

produce PTH in the gills, probably in cells identified by the expression of gem2, a gene whose
orthologues are required for parathyroid development in chicken and mouse [92, 93]. PTH ad-
ministration induced hypercalcemia in fugu (Tetraodon nigrividans) by inducing both osteo-
blast and osteoclast function and by decreasing scale calcium content [94]. Genes homologous
to the mammalian PTH-related peptides (PTHrP) were found in teleosts, they are more widely
expressed [95], they increase calcium uptake in sturgeon (Acipenser nacarii) [96]and were
shown to play different roles in craniofacial development in zebrafish [97]. Blocking PTH sig-
naling through the use of a PTH/PTHTrP antagonist resulted in a decreased hypercalcemic

PLOS ONE | DOI:10.1371/journal.pone.0126928 June 10,2015 24 /42



@’PLOS | ONE

Zebrafish Bone and General Physiology in Hyper-Gravity

Path Designer Common Inc-axe-g+common axe-1g 27102014

Overlay 3g > 1g

g§

© 2000-2014 QIAGEN. All rights reserved.

Path Designer Common Inc-axe-g+common axe-1g 27102014

Overlay 3g > axe

© 2000-2014 QIAGEN. Al rights reserved.

Path Designer Common Inc-axe-g+common axe-1g 27102014

Overlay 1g

Ve HES5
7N / \T \\\\
\ i
= (53%0)

LGA:&SBP
© 2000-2014 QIAGEN. Al rights reserved.

Fig 11. Network of genes affected in "relative microgravity" experiments. A network was constructed
using the genes common to all three experiments, or the genes common only to 3g>1g and 3g>axe. Color
overlay indicates the fold change relative to the 3g sample taken as control. Genes up-regulated (red), down-
regulated (green), (*) indicates that the gene is represented by two or more probes on the microarray.

doi:10.1371/journal.pone.0126928.g011
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response to estradiol in sea bream (Sparus aurata) [98]. Finally, four stanniocalcin (stc) genes
are present in fugu and zebrafish, only stcI-a expression was sensitive to the calcium concen-
tration in water [99].[98] while PTHrP and Stc were shown to have opposing effects on calcium
uptake in intestinal explants [100]. Depending on the mode of administration (intermittent or
continuous) PTH and PTHrP were shown, respectively to increase or decrease bone formation
in zebrafish [101] or seabream [102].

We confirm the effects described in zebrafish on general bone formation and in addition,
the combined approach allowed us give a more detailed description of these effects. Although
the general morphology was preserved in both cases, VitD3 treatment lead to a broader jaw
both in cartilage and bone and a longer head in bone, while PTH treatment leads to an in-
creased length of the ceratohyal cartilage, a general decrease of ossification, a decreased length
of the parasphenoid bone and a broadening of the posterior head skeleton. The discrepancy be-
tween cartilage and bone concerning the longer head probably results from the fact that the
landmarks used in bone (parasphenoid and notochord) do not have a real equivalent in carti-
lage and may mineralize independently from it. When we applied the same method to larvae
subjected to hypergravity, we observed a broadening of the entire head skeleton (increased dis-
tance between symmetrically paired elements), for both types of treatment: 3g between 5-9dpf
(1g>3g experiment, Fig 7A-7C), and 3g between 0 and 6dpf (experiments 3g, 3g>1g and
3g>axe, Fig 8). Similarly, the developmental scoring method allowed a more differentiated de-
scription of the observed effects (Fig 12). While VitD3 treatment caused a generally significant
increase in ossification of most elements, this was less prominent for the maxillary and absent
for the anguloarticular. Conversely, the decrease of ossification caused by PTH treatment was
significant for all elements except branchiostegal rays 1. Increased ossification was significant
only in the anguloarticular and ceratohyal after 3g treatment between 5-9dpf (1g>3g), but ex-
tended to the maxillary in the earlier treatments from 0-5 or 6dpf. Importantly, exposing the
larvae for 6 days to 3g (3g condition) or returning them to 1g for the last day (3g>1g and
3g>axe) did not significantly affect bone formation, indicating that 1 day of altered gravity is
not sufficient to cause morphological changes in the skeleton. Understanding of the molecular
mechanisms underlying these differential effects on the various skeletal elements and their
morphology will require further investigation.

Exposure to 3g starting at 5dpf (1g>3g condition) led to increased bone calcification in the
anguloarticular and ceratohyals at 9dpf (Fig 7), while the otoliths were clearly less stained. The
decrease in otolith calcification was already previously described [103, 104] and was proposed
to involve a regulatory mechanism linking gravity sensing to the production of carbonic anhy-
drase and other matrix proteins in the inner ear [105-107]. Thus, the decrease in otolith calcifi-
cation after prolonged exposure to 3g was expected, but it also emphasizes the specificity of the
observed increase in ossification.

During early exposure to 3g (in the "relative microgravity" experiments), we observed a
transient delay in pigmentation at 24hpf, which was rapidly resorbed at 48hpf. This finding is
reminiscent of the transient decrease in the number of melanocytes that was observed at 24hpf
during early exposure to simulated microgravity using a Rotating Wall Vessel device [51]. It is
at present unclear whether a common mechanism may explain such a similar delay both in
hypergravity and in simulated microgravity.

We then turned to studying differences in gene expression caused by the various treatments.
We chose to perform these studies using mRNA from entire larvae, as methods for isolation of
specific cells, such as dissection or fluorescent cell sorting might not be available in a future
space experiment. First, we followed expression of bone-specific genes during normal develop-
ment between 6 and 10dpf. We observed a sharp rise of mRNA coding for bone matrix proteins
Sparc, Bglap, Spp1 and Colla2 followed by a rapid decrease after 7dpf, suggesting that the
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Fig 12. Summary graphs comparing the bone formation scores for each structure in the different experiments. Statistical analysis was performed by
X2 of Pearson and a logistic regression. In red, the scores are significantly increased. In green, the scores are significantly decreased. (A) PTH. (B) VitD3. (C)
3g hypergravity between 5-6dpf (D) "relative microgravity". For abbreviations see legend to Fig 1.

doi:10.1371/journal.pone.0126928.g012

major part of the bone matrix is formed at 7dpf and that further ossification is mainly due to
mineral deposition. This is consistent with the observed sharp decrease of osx expression, fol-
lowed with some delay by dix5a expression, both indicating a decrease in osteoblast differentia-
tion. The continuous decrease in the levels of col10ala mRNA could be related to the proposed
inhibitory effect of this factor on biomineralization [108, 109], while the large increase of
runx2b and pthla mRNA during the entire period could be related to some other functions of
these factors [110, 111]. Following the modulation of gene expression during chemical treat-
ments revealed a clear upward trend for bone matrix protein-encoding genes upon VitD3 treat-
ment and a clear downward trend during PTH treatment. These trends are consistent with the
assumption that bone matrix secretion plays a functional role in the observed increase or de-
crease, respectively, in bone formation. Expression of osx is increased during the first day of
VitD3 treatment and decreased during PTH treatment, again consistent with a respectively
prolonged or shortened period of osteoblast differentiation, also further supported by the in-
crease of dix5a and dix6a expression at 8-9dpf during VitD3 treatment.
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Finally, to determine the effects on whole genome gene expression of the various treatments,
we chose to concentrate on mRNA levels only after one day of treatment, as we are mainly in-
terested in regulatory events. A summary of all the genes affected by any of the studied condi-
tions is shown in S17 Table. Again, we validated our approach by investigating the effects of
known regulators of bone formation. As expected, VitD3 treatment induced cyp24al expres-
sion, while PTH administration led to a decrease in endogenous pthla expression. Further-
more, VitD3 treatment caused significant changes in overall metabolism, as shown by the
involvement of affected genes in molecular transport or lipid metabolism. Probably for this rea-
son, functions related to embryogenesis or organ morphology rank much lower in the list of af-
tected pathways. These findings are consistent with previous results, obtained using a deep
sequencing (RNA-seq) approach, which also showed a high proportion of metabolic pathways
affected by VitD3 treatment, administered either between 2 and 6-7dpf or between 6-7dpf
[112]. In contrast, PTH treatment affected less genes, but these were more involved in develop-
mental processes. Interestingly, several genes were regulated in opposite directions upon VitD3
or PTH treatment (Fig 5A and 5C), suggesting that they may be involved in the opposite effects
on bone mineralization that we observed. However, when we classified the genes according to
their known involvement in specific organ function (54 Fig), these genes were more specifically
known for their function in muscle, indicating that further investigations are required.

When comparing genes and pathways affected by hypergravity, cellular growth and prolif-
eration functions ranked very high, followed by cellular, tissue and organismal development
(Table 2). Among the canonical pathways affected (S18 Table), we found those involving IGF,
as already mentioned, and those involving pituitary hormones Prl and Gh as well as nuclear re-
ceptors. Interestingly, finer analysis of the affected biological functions revealed that all hyper-
gravity conditions acted on organism survival and cell apoptosis (S19 Table), although no
effect on larval survival or growth was observed in our experiments. Affected regulatory net-
works comprise PPARG, involved in adipocyte differentiation and regulating blood glucose
uptake, consistent with the presence of other genes connected to insulin function. This obser-
vation may be related to previous experiments in rodents that showed a decrease in fat mass in
hypergravity [113, 114]. Another gene consistently induced by hypergravity in mammals is the
Hsp70 stress response gene [113, 114]. In zebrafish kept for the first two days at 3g, increased
expression of a fluorescent reporter transgene hsp70-gfp hypergravity was shown mainly in the
lens [49], however no induction of the hsp70 gene was observed here, probably due to the later
observation stages. This indicates that older fish larvae are probably less stressed by hypergrav-
ity than are mammalian systems. Note that changes in the flil-gfp transgene expression were
also only observed for exposures before 24hpf [115]. Similarly, a decrease of fS-actin-gfp trans-
gene expression was described in Rohon-Beard neurons [115], which disappear after 80hpf.
Other important nodes are the NFKBIA inhibitor of the NF-kB pathway, involved in immune
and inflammatory responses, and the multifunctional MYC gene.

The c-FOS gene was first described as the cellular homolog of the viral oncogene causing
murine osteosarcoma [116], while gene knock-out mice suffered from severe defects in bone
development and haematopoiesis [117]. First microgravity experiments in murine carcinoma
cells revealed a decreased induction of c-Fos and its heterodimeric partner c-Jun by growth fac-
tors [118, 119]. Decreased c-Fos expression in microgravity was also observed in osteoblastic
cells [120, 121], while exposure to intense hypergravity (50-90g) caused an increased expres-
sion of c-Fos and Egr1 [122]. More moderate hypergravity conditions (3g) also revealed rapid
(36 min) induction of c-Fos expression in osteoblasts [123], while both hypergravity loading
and unloading caused increased expression in rat brains [124, 125]. This latter c-Fos induction
was then considered as an indicator for neural activity in specific brain regions, in particular
those related to vestibular sensing and processing [126-128]. Here, we show that exposure of
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zebrafish embryos to 3g hypergravity during the first 5-6 days of development leads to in-
creased expression of fos, as part of a regulatory network composed of 6 other genes (fosb, egrl,
ednl, socs3a, gadd45b, klf2a) that are induced in 3g conditions. Among these, the fos homolog
fosb and the Zn-finger transcription factor gene egrl belong to the immediate-early class of
genes that are rapidly induced by growth factors. In mouse, FosB knock-out leads to behavioral
defects [129], while Egr1 null mice display sterility, impaired growth and pituitary develop-
ment [130, 131]. Egrl was also rapidly induced in osteoblast cells upon mechanical stress

[132]. In zebrafish [133], egr] was shown to be part of a regulatory cascade controlling cartilage
development [134] that is induced by Fgf signaling [135]. Edn1 is a vasoconstrictor peptide
whose absence causes elevated blood pressure and craniofacial abnormalities [136] in mouse,
while a zebrafish edn] mutant displayed mainly defects in cranial cartilage development [7,
137]. Socs3 is a suppressor of cytokine signaling; in mouse it was shown to inhibit placental
and fetal liver erythropoiesis [138], while a zebrafish mutant in the paralog socs3a was deficient
in hair cell development and regeneration in the inner ear and the lateral line neuromasts
[139]. Gadd45b is a factor causing growth arrest upon DNA-damage, but also involved in he-
matopoiesis and immune response [140]. Finally, loss of the KIf2 gene in mouse causes defects
in vascular, skeletal and craniofacial development and in erythropoiesis [141], while a zebrafish
klf2a mutant displayed impaired cardiac valve development due to a deficient response to
blood flow [142]. KIf2a was further shown to be required for nitric oxyde (NO) synthesis dur-
ing artery and hematopoietic stem cell development [143], a process that is also highly involved
in bone development [144-146]. Taken together, the network formed by these seven genes that
are up-regulated in 3g conditions carries the potential to affect most processes that are known
to be influenced by gravitational changes; from vestibular gravity sensing to hematopoiesis, im-
mune response, vascular system and finally the skeletal system as was illustrated here. More-
over, this network is activated not only in larvae grown at 3g relative to larvae grown at 1g for 6
days, but also relative to larvae grown at 3g for 5 days and then returned to 1g for only one day
(Figs 10 and 11). Increased expression of this gene network appears to be specific for hyper-
gravity, while expression rapidly returns to normal after 1 day at 1g.

Five genes could be connected to this regulatory network that were specifically up-regulated
(MVP, HBE1, SOX10, LGALS3BP) or down-regulated (HES5) after return to 1g conditions for
1 day (Fig 11). In mouse, Sox10 knock-out leads to neurological defects [147], while sox10 mu-
tant zebrafish are deficient in melanocyte pigmentation and inner ear development [148-150].
Similarly, Hes5 was shown to regulate neurogenesis [151], but also human cartilage differentia-
tion under the control of Notch signaling [152]. Lgals3bp was shown to play a role in immune
response and cell adhesion [153]. HBE1 codes for one of the embryonic hemoglobins, suggest-
ing alterations in oxygen transport under different gravity conditions. MVP is a component of
the ribonucleoprotein "vault” structures involved in nucleo-cytoplasmic transport and signal
transduction [154]. Interestingly, loss of function studies for Mvp in zebrafish revealed defects
in brain development and the response to mechanical stimulus (touch) [155]. The precise role
of these genes in detection of decreased gravity and signal transmission to other physiological
systems remains to be established.

Comparison of the 1g>3g and the 3g>1g experiments revealed the increased expression in
hypergravity of two regulatory genes, SOX3 and HEY1, which both may play a role in bone de-
velopment and/or homeostasis [81, 82], while HBE1 and SLC15A1 were down-regulated at 3g.
Interestingly, only HBEI is also regulated in the 3g>>axe experiment, further supporting a gen-
eral effect on oxygen transport, while only GADD45B expression was affected in all 3g experi-
ments. None of the other genes composing the common regulatory network in "relative
microgravity" was affected in the 1g>3g experiment. Actually, the overall effect of 1 day expo-
sure to 3g was surprisingly small at the genome level, compared to the other hypergravity
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experiments (Tables S11, S13-S15), a result that is reminiscent of that observed previously in
mammalian renal cells [156]. This observation suggests that the "Reduced Gravity Paradigm" is
not simply a reversed hypergravity experiment, but rather that it represents a specific experi-
mental condition. Future experiments will reveal whether this approach may be considered as
a good approximation of microgravity.

In conclusion, we present an approach to objectively characterize cranial skeletal develop-
ment in zebrafish larvae by morphometric image analysis and used this method to further
characterize the effects of VitD3 and PTH on cartilage and bone formation. We have followed
the expression of selected bone-related genes during 5 days of VitD3 or PTH treatment and an-
alyzed whole genome gene expression after 1-day treatment. We have compared and correlated
these results to the effects of hypergravity exposure on cranial skeleton formation. Finally, we
have implemented a new type of hypergravity experiment, the "Reduced Gravity Paradigm”,
which allowed identification of a regulatory network of seven genes that are up-regulated in 3g,
as well as several genes whose expression is rapidly modified when switching between 1g and
3g regimes. Future investigations will reveal whether these gene regulations are specific for par-
ticular organ systems and how they contribute to the overall physiological adaptation to altered
gravitational environments.

Supporting Information

S1 Fig. Morphometric analysis of cartilage staining after 5 days chemical treatments. The
distances are measured in pixels. Mean + SD and t-test analysis were calculated for each mea-
sure on at least 20 individuals. * p < 0.05 and ***p < 0.001. (A, C) Distance after VitD3 treat-
ment. (B, D) Distance after PTH treatment. Abbreviations as in 1. A) Morphometric analysis
in VitD3-treated larvae cartilage revealed an increase of the distance between articulation (ar)
"up" and "down", leading to a broader jaw as compared to untreated animals, while (A, C) all
the other distances remained unchanged. B) Morphometric cartilage analysis of larvae treated
with PTH for 5 days revealed a significant increase in length of the ceratohyal cartilages only
(D).

(JPG)

S2 Fig. Gene pathways affected after VitD3 treatment between 5-6dpf. Genes filtered ac-
cording to the described function for their human homologs using IPA in muscle or bone func-
tion. Genes up-regulated (red), down-regulated (green), (*) indicates that the gene is
represented by two or more probes on the microarray.

(JPG)

S3 Fig. Changes in the extent of bone formation in hypergravity experiments. Bone devel-
opment is classified for each element into different categories: Absent (no structure present;
red), early ossification (beginning of the bone ossification; yellow), advanced ossification (the
structure is present and already developed as the control; green) and over ossification (the
structure is more developed compared to the control; purple). Cumulated frequencies in % are
represented for each element. As no significant difference was observed for paired structures
between left and right (up and down), their scores have been combined. Statistical analysis was
performed by X? of Pearson and a logistic regression. (A) Cumulated frequency after 3g be-
tween 5-9dpf. (B) Cumulated frequency at 6dpf in the larvae left for 6 days at 3g, or the "rela-
tive microgravity" experiments (3g-axe and 3g>1g) relative to the 1g control. For abbreviations
see legend to 1.

(JPG)
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S4 Fig. Regulatory networks related to different tissues after 3g hypergravity between
5-6dpf. Genes filtered according to the described function for their human homologs using
IPA in bone, muscle, or cardiovascular system function. Genes up-regulated (red), down-
regulated (green), (*) indicates that the gene is represented by two or more probes on the mi-
croarray.

(JPG)

S5 Fig. Network of genes affected in "relative microgravity" experiments. A network was
constructed using the genes common to any two of the three experiments. The color overlay in-
dicates the fold change in each experiment (1g, 3g>1g and 3g>axe) relative to the 3g sample
taken as control. Genes up-regulated (red), down-regulated (green), (*) indicates that the gene
is represented by two or more probes on the microarray.

(JPG)

S6 Fig. Tissue-specific networks of genes affected in "relative microgravity" experiments.
Networks were constructed using the genes common to any two of the three experiments and
filtered according to the described function for their human homologs using IPA in bone,
muscle or cardiovascular system function. The color overlay indicates the fold change in the 1g
experiment (1g, 3g>1g and 3g>>axe) relative to the 3g sample taken as control. Genes up-regu-
lated (red), down-regulated (green), (*) indicates that the gene is represented by two or more
probes on the microarray.

(JPG)

S7 Fig. Network of genes affected in "relative microgravity" and 3g between 5-6dpf
(1g>3g) experiments. A network was constructed using the genes common to the 3g>1g and
1g>3g experiments. The color overlay indicates the fold change in each experiment relative to
the respective control: control is 1g for the 1g>3g, and 3g for the 3g>1g experiment. Genes
up-regulated (red), down-regulated (green), (*) indicates that the gene is represented by two or
more probes on the microarray.

(JPG)

S1 Table. List of oligonucleotides used for RT-qPCR experiments.
(DOCX)

$2 Table. Ossification scores for individual bone elements in control and 5 days VitD3--
treated larvae. (A) The bone structures distributed in 2 categories (early and advanced ossifica-
tion) (B) The bone structures distributed in 3 categories (early, advanced and over ossification)
(DOCX)

§3 Table. Ossification scores for individual bone elements in control and 5 days PTH-treat-
ed larvae. (A) The bone structures distributed in 2 categories (early and advanced ossification)
(B) The bone structures distributed in 3 categories (absent, early and advanced ossification)
(DOCX)

S$4 Table. Genes affected in larvae treated with VitD3 between 5-6dpf relative to control.
The indicates the human homolog of the gene, its "Entrez" gene name, the log ratio of VitD3--
treated larvae compared to control, the presence of duplicate probes on the microarray (D) and
the type of protein it encodes. Genes are arranged according to their type and in alphabetical
order.

(DOCX)

S5 Table. Biological functions associated to genes affected by VitD3. Ingenuity Pathway
Analysis of the list of genes affected at 6dpf after VitD3 treatment for 24 hours. Columns
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indicate respectively the function, the range of p-values (significance) associated to various
sub-functions, and the number of genes concerned (N).
(DOCX)

S6 Table. Genes affected in larvae treated with PTH between 5-6dpf relative to control. The
table indicates the human homolog of the gene, its "Entrez" gene name, the log ratio of PTH-
treated larvae compared to control, the presence of duplicate probes on the microarray (D) and
the type of protein it encodes. Genes are arranged according to their type and in alphabetical
order.

(DOCX)

S7 Table. Biological functions associated to genes affected by PTH. Ingenuity Pathway Anal-
ysis of the list of genes affected at 6dpf after PTH treatment for 24 hours. Columns indicate re-
spectively the function, the range of p-values (significance) associated to various sub-functions,
and the number of genes concerned (N).

(DOCX)

S8 Table. Ossification scores for individual bone elements in control and 3g-treated larvae
between days 5-6dpf. The fraction (in %) of larvae presenting the indicated score for each ele-
ment is given, together with the statistical evaluation of a significant difference compared to
control. (A) The bone structures distributed in 2 categories (early and advanced ossification)
(B) The bone structures distributed in 3 categories (absent, early and advanced ossification)
(DOCX)

S9 Table. Genes affected in larvae placed at 3g between 5 and 6dpf (1g>3g) relative to con-
trol. The indicates the human homolog of the gene, its "Entrez" gene name, the log ratio com-
pared to larvae kept at 1g between 0 and 6dpf, the presence of duplicate probes on the
microarray (D) and the type of protein it encodes. Genes are arranged according to their type
and in alphabetical order.

(DOC)

$10 Table. Comparison of fold change values from the microarray dataset with those ob-
served by RT-qPCR for larvae placed at 3g between 5 and 6dpf (1g>3g) relative to control.
The fold change and statistical significance (p-values) are given from the microarray data and
the RT-qPCR confirmation experiments.

(DOCX)

S11 Table. Biological functions associated to genes affected by hypergravity between
5-6dpf (1g>3g). Ingenuity Pathway Analysis of the list of genes affected at 6dpf after 3g
hypergravity treatment for 24 hours (1g>3g). Columns indicate respectively the category of
function, the range of p-values (significance) associated to various sub-functions, and the num-
ber of genes concerned.

(DOCX)

$12 Table. Ossification scores for individual bone elements in larvae placed at 1g or 3g for
6 days or returned to 1g the last day. The fraction (in %) of larvae presenting the indicated
score for each element is given, together with the statistical evaluation of a significant difference
compared to control. (A) The bone structures distributed in 2 categories (early and advanced
ossification) (B) The bone structures distributed in 3 categories (absent, early and advanced os-
sification)

(DOCX)
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$13 Table. Genes affected in larvae left at 1g relative to those left at 3g for 6 days. The indi-
cates the human homolog of the gene, its "Entrez" gene name, the log ratio of (1g) larvae com-
pared to larvae kept at 3g between 0 and 6dpf, the presence of duplicate probes on the
microarray (D) and the type of protein it encodes. Genes are arranged according to their type
and in alphabetical order.

(DOCX)

$14 Table. Genes affected in larvae returned to 1g on the axis of the centrifuge between day
5-6dpf (3g>axe) relative to those left at 3g for 6 days. The indicates the human homolog of
the gene, its "Entrez" gene name, the log ratio of (3g>axe) larvae compared to larvae kept at 3g
between 0 and 6dpf, the presence of duplicate probes on the microarray (D) and the type of
protein it encodes. Genes are arranged according to their type and in alphabetical order.
(DOCX)

S15 Table. Genes affected in larvae returned to 1g outside of the centrifuge between day
5-6dpf (3g>1g) relative to those left at 3g for 6 days. The indicates the human homolog of
the gene, its "Entrez" gene name, the log ratio of (3g>1g) larvae compared to larvae kept at 3g
between 0 and 6dpf, the presence of duplicate probes on the microarray (D) and the type of
protein it encodes. Genes are arranged according to their type and in alphabetical order.
(DOCX)

$16 Table. Comparison of fold change (FC) values from the microarray dataset with those
observed by RT-qPCR in the "relative microgravity" experiments. The fold change and sta-
tistical significance (p-values) are given from the microarray data and the RT-qPCR confirma-
tion experiments. In the 3g>axe experiment, the human KLF2 gene in S12 is actually the kIf2b
zebrafish ortholog, in contrast to the klf2a ortholog shown here.

(DOCX)

$17 Table. Heat map representation of gene regulation in the different conditions. The
gene symbol and name is given, as well as the log(fold-change) values in the different experi-
ments. Induction values are underlined in red (>1) or orange (between 0.378 and 1), repres-
sion values are underlined in blue (-0.378/-1) or green (<-1).

(DOCX)

S$18 Table. Heat map representation of canonical pathways affected in the different condi-
tions. The corresponding—Log(p-value) obtained in IPA analysis was used for classification
and are coded by underlining: red means >3, orange between 1 and 3, and yellow means <1.
(DOCX)

S19 Table. Heat map representation of biological functions affected in the different condi-
tions. The corresponding—Log(p-value) obtained in IPA analysis was used for classification
and are coded by underlining: red means >4, orange between 1 and 3, and yellow means <1.
(DOCX)
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