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ABSTRACT

In 1987, Franke? introduced a new algorithm for the extrapolation of discrete signals. It
allows the reconstruction and the extrapolation of texture segments on supports where the
contour information is no longer included. This method is called the selective deconvolution
and works as an iterative process using the Fourier transform and it inverse.

In this paper, we study the integration of the selective deconvolution method into a mul-
tiresolution scheme. In a first algorithm, we propose to apply the selective deconvolution
introduced by Franke on each one of the subband signals obtained at the output of an anal-
ysis stage. The goal of this integration is both to gain computation time and to obtain a
multiresolution representation of the texture segment.

Franke proposes the D.F.T. as spectral operator in his algorithm. Actually, more general
spectral operators can also be considered. Therefore, in a second part of this paper, we
study an iterative selective deconvolution method based on a subband decomposition rather

on the D.F.T..

1. INTRODUCTION

In digital processing one often has to deal with the problem of extrapolating a function
f(n) observed over a finite interval only. As a consequence, the given signal samples usually
contain perturbating effects due to the observation equipment. In fact, this corresponds
to a so-called windowing effect, the window being the spatial domain where the signal is
known. Figure 1 states the effect. The left-hand side signal represents a signal observed over
a given spatial segment; the right-hand side signal is the signal extrapolated on the whole
square segment. In this situation, the signal does not longer suffer from the influence of the
triangular window.

Franke showed the influence of the window on the Fourier transform of an original signal
which was a texture. The window introduces a subsequent spectrum dispersion. The ex-
trapolated signal has a more concentrated spectrum. Concentration is better for coding but
also for identification or pattern recognition.

The spectrum of f(n) is obtained by means of an iterative algorithm. The idea of working
with an iterative process directly on the Fourier transform is an old one: Gerchberg® and
Papoulis* suggested an algorithm applicable for a band-limited function. Sabri et al.’ gave
an alternative non-iterative method where the total extrapolation method is reduced to a
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Figure 1: A texture and the corresponding extrapolated signal.

single matrix extrapolation. Unfortunately, it requires the inversion of a matrix that is ill
conditioned in many cases. Another critical assumption is that signal is band-limited. Both
of the precedent methods need to know exactly the cut-off frequency; with a higher or a
lower cut-off frequency, problems like convergence, computation speed, estimation validity,

. are critical. This led Franke to suggest an algorithm (called selective deconvolution) for
textures, signals containing dominant spectral lines. The chosen filter is adaptive and is
intended to detect these dominant lines.

Results are quite satisfactory with this method. The drawback is the important computation
time needed for the calculation of the Fourier transform and the inverse transform.

In the next section, we study the integration of the selective deconvolution method into a
multiresolution scheme. The goal of this integration is to obtain a multiresolution represen-
tation of an extrapolated signal and to achieve a significant computation gain. The method
proposed here consists in applying the selective deconvolution algorithm to each subband
produced by an analysis stage.

The original method proposed by Franke is built around the D.F.T. (Discrete Fourier Trans-
form). The D.F.T. is actually nothing but a particular choice of a spectral operator.

In a next section of this paper, we have built an iterative selective deconvolution method
based on a subband operator rather on the D.F.T.

Results of two implementations illustrate the advantages and the drawbacks of the multires-
olution representation. They are presented in section 4.



Formulation of the extrapolation problem

For commodity we use a one-dimensional notation; the formal extension to picture introduces
no particular difficulty. Let f(n) be the function to extrapolate and y(n) the observed
samples over the domain D,,. The functions f(n) and y(n) are related through the following
expression:

y(n) =w(n)f(n) 0<n<N-1 (1)
where

|1 for neD,CA{0,..,N—-1}

MM—{O if ngD, @)

1s the window.

With the transform formalism, the equation is equivalent to the following convolution:

V(k) = W(E)@ F(k) 0<k<N-1 (3)

As clearly indicated by this last equation, the desired spectrum F(k) is affected by the
window spectrum W(k); it is why a spectral extrapolation technique is also called a “decon-
volution” technique.

2.3ASIC PRINCIPLES

2.1. Tterative extrapolation algorithm

The only way to solve the extrapolation problem with respect to the spectrum analysis is to
proceed iteratively. With a consistent operator O, we may form a list of successive values

s, fi(n), fi1(n), ... obtained by

fira(n) = O[fi(n)] (4)
The classical solutions to the extrapolation problem consider different operators with the
associated questions of convergence and unicity. It is not our concern here.

2.2. Subband representation

We develop a multiresolution version of the iterative operator. The signal f (n) is replaced
by its components ¢1(n), ¢2(n), ..., ¢u(n) forming a complete representation; the operator O
is adapted in consequence for each function ¢;(n).

The multiresolution representation chosen here is the subband representation. Subband
coding has been introduced by Crochiere et al.! for the coding of speech signals. The
signal f(n) is split in different bands by bandpass filters. The output of these filters are
downsampled, generally so as to keep the initial amounts of information. Suppose we have
4 filters. The representation of f(n) in a unique analysis stage decomposition is given by
$1(n), 2(n), d3(n) and da(n) with n € [0, — 1]. This is a 4-band parallel decomposition.
The basic cell can serve again on the 4 signals or on a single one, leading to a parallelor to a
hierarchical system respectively. The spectral analysis performed in this way is particularly



interesting for an effective signal extrapolation problem where the signal is a texture and
regroups parts of its energy in a few bands. Furthermore, the signals to be treated have a
size of %. For deconvolution with the Fourier transform, where the computation complexity
is in N log N, the complexity greatly decreases.

The final signal is reconstructed after applying a modified iterative operator. The subbands
are interpolated by means of zero insertion. Without any iteration, the signal can be made
of perfect reconstruction. We used 8 tap filters from Johnston*. They provide a quasi perfect
reconstruction.

3.THE ITERATIVE PROCESS

The extrapolation efficiency is completely conditioned by the choice of the iterative operator
. Two questions are to be solved: first, which operator form, second, how to adapt
an operator designed for f(n) to the subbands signals ¢;(n). For the form we propose
the selective deconvolution by means of the D.F.T, briefly described below, and next, the
selective deconvolution by means of the subband transform. The adaptation will be discussed
for each one of these two operator forms.

3.1. Selective deconvolution of the subbands by means of the D.F.T.

The iterative process acts as an adaptive filter S(k). At the beginning, the function is equal
to zero for every k. The complete initialization step is then:

fo(n) = y(n)
S(k)=0 Vk

The block diagram of the algorithm is shown in figure 2. At step i 41, the algorithm detects

D.F.T.
fi(n) Fi(k)

Apply the window Adapt S;(k)

D.F.T.7!
sir1(n) ® fi(n) Siv1(k) Fi(k)

Figure 2: Block diagram of the D.F.T.-based selective deconvolution algorithm

the spectral line of F;(k) having the largest magnitude and not considered in an earlier step.
In accordance with Parseval’s theorem, one then expects the error to be minimal. Let k,
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be the selected line (with the symmetrical position when working with real functions). The
filter is modified by
_J b(k—k,) fEk=k,
Sita(k) = { Si(k) elsewhere (5)

So, a supplementary spectral coefficient is added at each iteration. The corresponding es-
timation f;y1(n) results from the inverse transform of S(k)F (k). If the spectral content
of fiy1(n) is enriched, the values of f;11(n) on the D, segment differ form the observed
samples. To achieve the iteration, it is necessary to apply the window by fij1(n) «
[1 — w(n)]fir1(n) + w(n)y(n), after what the function is ready for a further step.

In this paper, we propose to extrapolate the subbands signals ¢;(n), not the original signal.
Filtering and downsampling y(n) or f(n) is easy to do in accordance with the signal theory.
It is not the case for the window function. The signal w(n) is a binary function. For con-
venience, we conserve a binary signal by downsampling and tresholding the filtered window.
In counterpart, it introduces an insignificant aliasing in the extrapolated signals.

The transform implemented by Franke is the Fourier transform. Other transforms as the
discrete cosine transform suit as well.

3.2. Subband-based selective deconvolution

For an efficient extrapolation, the iterative algorithm must act as a global operator, which
means that it affects the whole domain. The Fourier transform meets this requirement, but
a subband transform does not. Indeed, the last one combines spatial and local localization.
But, when the subband size is half the filter size, the synthesis filter operates as a global
operator. This led us to try a subband-based iterative process. The way to proceed is:

e to analyse the signal into subbands,

e to select a coefficient in a subband; this coefficient may not have been considered in a
previous step iteration,

e to pass the resulting signal through the synthesis stage, and
e to apply the window.

The corresponding block diagram is drawn in figure 3, where SB stands for subband trans-
form, k is a vector containing the subband number a,nd the position of the sample inside this
subband.

Because the selection is made in the spatial domain, all coefficients must be selected, one by
one.



SB

fi(n) Fi(k)
Apply the window Adapt Si(g)
SB™*
si1(n) ® filn) Siva(k) Fi(k)

Figure 3: Block diagram of the subband-based selective deconvolution algorithm
4. RESULTS

4.1. Selective deconvolution of the subbands by means of the D.F.T.

An implemented 4-stage hierarchical selective deconvolution (with a Fourier transform) al-
gorithm is shown in figure 4; it is applied on an 8-bit picture of size 128x128. The upper
left picture is the original signal. The extrapolated signal is drawned on its right. The
corresponding multiresolution representations form the lower part of the figure. As it can
be seen, each subband has been extrapolated correctly. The reconstruction method is de-
tailed in figure 5. The lower resolution signals are first put together, and so on till the full
resolution.

For texture signals, the amount of spectral coefficients to be selected is very low, about
10% is large enough for an excellent extrapolation. In a multiresolution representation, the
coefficients are spread over all subbands according a semi-static, semi-dynamic criterion.
Half the total amount of coefficients (the static one) is distributed in proportion to the
subband sizes. The rest follows an energy criterion: the ratio of spectral lines to be selected
in a band is the same as the ratio of the energy contained in each subband.

The performance of different combinations of the simple selection strategy and different
multiresolution representation are compiled in table 1. The first row indicates the total
number of coefficients selected during the iterative process. The second row represents the
mean of the absolute errors on the window (E,,), on the complement of D, (Eyc) and on
the whole picture (E). Figure 5 was produced with 4 stages and 200 coefficients (only 2%
of the spectrum size).

The time for the precedent experiments is given in table 2. There is a big difference between
the real selective deconvolution (0 decomposition stage) and a multiresolution representation
for results that are not discernible from the original.



Coefficient | Error Decomposition stages
amount | type 0 [ 1 ] 2 ] 38 | 4

30 Eu 10.67 | 14.82 | 15.91 | 17.08 | 17.04
Eye | 12.67 | 15.20 | 16.90 | 18.08 | 18.03

E 11.89 | 15.01 | 16.40 | 17.57 | 17.53

60 E. 2.02 | 833 | 9.04 | 9.85 | 9.87
B 2.65 | 8.64 | 9.87 | 12.31 | 12.29

E 240 | 8.48 | 9.46 | 11.08 | 11.07

100 Euw 0.5 | 213 | 263 | 3.70 | 3.63
Euwe 0.5 | 231 | 417 | 7.70 | 7.69

E 0.5 | 222 | 340 | 569 | 5.65

200 Ey 0.5 | 1.06 | 1.50 | 2.52 | 2.40
| 0.5 | 197 | 3.83 | 7.06 | 7.02

E 0.5 | 1.562 | 2.66 | 4.78 | 4.70

300 Ew 0.5 | 1.11 | 1.50 | 2.46 | 2.52
Be 0.5 | 253 | 415 | 7.18 | 7.14

E 0.5 1.82 | 2.82 | 4.80 | 4.68

600 Ew 0.5 | 1.13 | 1.55 | 2.44 | 2.28
Ewe 0.5 | 3.27 | 470 | 7.62 | 7.59

E 0.5 220 | 3.12 | 5.02 | 4.92

1000 Ey 0.5 | 1.13 | 1.57 | 2.44 | 2.32
Ewe 0.5 | 3.62 | 500 | 7.88 | 7.84

E 0.5 | 237 | 3.28 | 515 | 5.06

Table 1: Means of absolute errors.

4.2. Subband-based selective deconvolution

Figure 6 was computed with a parallel subband representation and a subband iterative
scheme. Although the results show the interest of this extrapolation technique, there are
still questions to be answered like the filter choice, the way of selecting coefficient, ... for
better extrapolation results.

5.CONCLUSION

The concept of a multiresolution iterative operator is a helpful one for signal extrapolation. It
decreases the computation time, gives a spectral analysis for coding or recognition purposes,
and enhances the class of extrapolation operators. Results confirm the importance of the
multiresolution representation for a D.F.T.-based selective deconvolution. We showed it
is theoretically possible to achieve an extrapolation with a subband-based deconvolution
algorithm.

Further works will concern the determination of an optimal strategy for spreading the amount
of spectral lines to be conserved in every subband.
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Coefficient Decomposition stages
amount 0|1|2|3|4

30 184 | 38 | 33 | 32 | 32
60 264 | 62 | 44 | 44 | 44
100 408 | 91 | 63 | 60 | 63

200 802 | 164 | 109 | 104 | 106
300 1194 | 241 | 149 | 148 | 146
600 2372 | 457 | 285 | 276 | 273
1000 3556 | 678 | 415 | 402 | 395

Table 2: Computation time in seconds for the D.F.T.-based selective deconvolution in a

hierarchical subband representation.
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Figure 4: Illustration of the hierarchical selective deconvolution algorithm. The signals are
in order: y(n), f(n), and the subband decompositions of these signals.



Figure 5: Progressive reconstruction of the subband representation. The last picture contains
the extrapolated signal.
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Figure 6: Illustration of the reconstruction steps of a parallel subband representation with
an iterative subband scheme. The last row shows y(n) and f(n).
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