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Abstract

A generalized iterative algorithm for spectral
signal deconvolution is presented in this paper.
It works for signals characterized by a small
number of spectral components. The algorithm
combines the selective deconvolution which is
an iterative spectral deconvolution technique
and a subband decomposition. It offers a new
way for finding optimal methods of spatial ex-
trapolation and leads to important computa-
tion savings.

1 Introduction

Situations occur where spectral information is
corrupted by the observation equipment. To
analyze the signal correctly it is necessary to
remove this perturbating effect. Figure 1 shows
an example: a textured signal is only known on
a support, called window in this text, having
the form of character D. This is the “windowing
effect”.

For spectral analysis the window has to be reg-
ular (rectangular, ...) and this is actually not
the case. In order to remove the windowing ef-
fect, the basic idea is to extrapolate the spatial
window content to a regular net. The corre-
sponding extrapolated image is given in figure
1 on the right. No further window information
is present.

In the same way the extrapolated signal spec-
trum reflects only the textured spectrum. We
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Figure 1. The right-hand side image results
from the removal of the disturbating window
effect.

develop next a consistent extrapolation algo-
rithm.

2 Model

For simplicity we adopt a one-dimensional for-
mulation.

Let y(n) be the observed signal samples. y(n)
results from “windowing” the true samples

f(n):
y(n) = w(n)f(n)

with the window

1 if

w(n) = { 0 for
(2)

E, is the window support. This means that
the window is equal to 1 on this support.

In spectral terms the extrapolation problem is
equivalent to a discrete deconvolution

Yk)=Wk)@F(k) 0<k<N-1

0<n<N-1

(1)

neE, C{0,...N -1}
nzFE,

(3)
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because the desired spectrum F(k) is affected
by W(k) due to the window.

In the digital case the extrapolation problem
can be solved by iteration. With an operator
0, a list of function values ..., fi(n), fi+1(n), ...
is constructed iteratively using

fis1(n) = O fi(n) (4)
The limit f.(n) tends to f(n). Papoulis [1]
proposed a now well-studied algorithm for
band-limited signals, which is a strong restric-
tion. Franke [3] added the idea of adaptive
filtering but the computation complexity in-
creased strongly. Moreover convergence and
uniqueness of the solution are not guaranteed.
The same goals can be achieved with a gradient
based algorithm as established by Docampo-
Ameodo [2]. But this algorithm introduces con-
vergence troubles.

The proposed algorithm generalizes classical
methods. It is composed of a succession of dif-
ferent operators we are going to discuss now.

2.1 Components
2.1.1 Direct and Inverse transform

If the signal under analysis is known to be re-
constructed with a small amount of transform
coefficients, the principal operator to include
is a transform operator and the inverse opera-
tion. The operator is for example the discrete
Fourier transform (D.F.T.) or the discrete co-
sine transform (D.C.T.). The direct transform
and its inverse will be noted respectively by M
and M™%,

2.1.2 Filtering

Applying the direct and the inverse transform
leads to the original signal. For deconvolution
purposes it is necessary to filter the signal in
order to progressively separate noise and in-
formation signals. The filtering operation per-
forms a modification of the transform data.
Let IT be the filtering operator. Reading from
right to left, the signal obtained after filtering
is M~1IIM f(n).

2.1.3 Down and up-sampling

All the suggested deconvolution techniques
work with the full resolution. Most signals
concentrate the spectral energy in a limited
bandwidth. It is true for image signals. If we
could use this a priori information the compu-
tation time would certainly be drastically re-
duced. The algorithm described below contains
a data reduction by down-sampling. The down-
sampling operator keeps every second sample:
(1 2]£(5) = f(2)) for 5 € [0,(N/2) - 1]. The
corresponding dual operator is up-sampling.
The up-sampling noted [1 2] inserts zeros be-
tween samples.

2.1.4 Windowing operator

The last operator to be introduced is the win-
dowing operation, noted D. It consists in plac-
ing the original samples on the window domain.
In other terms,

if nekEy,
if n¢gkE,

y(n)

7(n) ®)

Dif(n)] = {

2.2 Generalized iterative deconvo-
lution algorithm

The combination of the introduced operators
conducts to a general iterative extrapolation al-
gorithm:

fix1(n) = Ofi(n) (6)

where

O = DM M2 M1 2]M™ISM[| 2 M~ ' THiM
(7)

fo{n) = y(n) (8)
The role of M~ M and M1, M is to con-

trol aliasing difficulties during down and up-
sampling operations.

The utilization of operator S is a idea of
Franke. He chose the algorithm O =
DM ~'SM where S selects some coefficients in
an adaptive way acting on the transform. At
each step the operator conserves a supplemen-
tary coefficient which has not been selected be-
fore. This means that, if k, is the new selected

and
0<1< o0,



coefficient,

1 if k=k,

sik) if kzk O

S«‘H(k) = {

The added coefficient is for example the one
having the largest magnitude and not selected
before. As usual for iterative algorithms, the
convergence must be established analytically.
In his demonstration, Franke does not take
into account that the selection function S(k)
is modified at each step.

The convergence of our general algorithm is not
always assured. But in the practical case of real
signals with dominant spectral lines it can be
proven [4] that it converges and the solution is
unique.

The algorithm of Papoulis corresponds in fact
to D = M~'TIM where Il is a cut-off frequency
filter.

So most of the existing algorithms correspond
to particular forms of equation 7. But this
equation also leads to new strategies like the
following example.

3 Illustration - A new ex-
trapolation scheme: one-
step subband decomposi-
tion with separate band de-
convolution

The complete generalized algorithm makes no
use of computation time reductions. But if
the iterative work is done on the central part
M~1SM only completed with a windowing op-
erator D similar to D, the calculation time is
reduced by a factor 4 for an image. We have
then the following algorithm, where u(n) and
v(n) are intermediary functions and where the
second equation only is iterative:

uo(n) = [l 2]M'MiMy(n)

viy1(n) = DM 1SMui(n)
v(n) = DM“‘H;M[T 2]u(n),~_..°°

v(n) is not the desired function f(n). The fre-
quency content of v(n) is fixed by the two filters
I1; and H,.
The new concept introduced is that of hierar-
chical decomposition. With an adequate choice

of subband filters there is perfect reconstruc-
tion and the kernel equation works at reduced
resolution. Using the linearity property of
spectral decompositions we extrapolate inde-
pendently the four bands v(n) calculated with
four distinct filter pairs Iy, Il; and group them
again at the end. Figure 2 illustrates the global
strategy. ‘A supplementary step is taken in this
example. The number of iterations and in fact
the number of spectral lines retained in each
band is directly proportional to the energy con-
tained in the band. Other selecting strategies
may also be imagined.

4 Conclusion

A general spectral deconvolution algorithm is
introduced. It groups together most of the ex-
isting algorithms and allows the synthesis of
new strategies based on the utilization of a pri-
ori information of any kind and even on phys-
ical notion like energy. In addition, the intro-
duction of multi-resolution operations permits
important computation savings.
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Figure 2: One-step subband decomposition with separate band deconvolutions.

The signal shown in figure 1 has been processed. The first row gives the 2-D subbands at the
output of the synthesis stage.

The second row presents the corresponding extrapolated subbands (at the output of the synthesis
stage). The lower right part of the images show the amount and positions of selected spectral
lines (white pixels). The number of spectral lines which were chosen is proportional to the
energy present in the given band. The total number of conserved spectral lines is equal to the
quarter of the original pixel number. When summing the four subband signals, we obtain the
right-hand side image of figure 1 which is quite satisfactory.



