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Following a recent proposal of L. Wang and D. Babikov [J. Chem. Phys. 137, 064301 (2012)],
we theoretically illustrate the possibility of using the motional states of a Cd+ ion trapped in a
slightly anharmonic potential to simulate the single-particle time-dependent Schrödinger equation.
The simulated wave packet is discretized on a spatial grid and the grid points are mapped on
the ion motional states which define the qubit network. The localization probability at each grid
point is obtained from the population in the corresponding motional state. The quantum gate is
the elementary evolution operator corresponding to the time-dependent Schrödinger equation of
the simulated system. The corresponding matrix can be estimated by any numerical algorithm. The
radio-frequency field which is able to drive this unitary transformation among the qubit states of the
ion is obtained by multi-target optimal control theory. The ion is assumed to be cooled in the ground
motional state, and the preliminary step consists in initializing the qubits with the amplitudes of the
initial simulated wave packet. The time evolution of the localization probability at the grids points is
then obtained by successive applications of the gate and reading out the motional state population.
The gate field is always identical for a given simulated potential, only the field preparing the initial
wave packet has to be optimized for different simulations. We check the stability of the simulation
against decoherence due to fluctuating electric fields in the trap electrodes by applying dissipative
Lindblad dynamics. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4916355]

I. INTRODUCTION

Over the last years, many works have addressed quan-
tum information processing.1,2 A quantum computer encodes
information in states of quantum bits or qubits, i.e., two-
state systems which preserve superpositions of values 0 or 1
unlike classical bits and can manage several tasks in paral-
lel. On a more concrete level, an ideal physical system for
computing is isolated from the environment and the states are
controlled by fields in order to induce the quantum gate unitary
transformations. The coupling with the surroundings is estab-
lished during the readout process. As predicted by Feynman,3

quantum computers could be used as quantum simulators
to solve stationary4–9 or non stationary10–13 quantum prob-
lems by simulating them with a controllable experimental
setup which allows one to reproduce the dynamics of a given
Hamiltonian. Several physical supports have been proposed
to encode qubits:14 photons,15 spin states using nuclear mag-
netic resonance (NMR) technology,16 quantum dots,17 atoms,18

molecular rovibrational levels of polyatomic or diatomic mole-
cules,19–47 ultracold polar molecules,48–57 or a juxtaposition
of different types of systems.58 In the current work, we focus
on trapped ions59–64 which remain one of the most attractive
candidates due to the long coherence time scales and the possi-
bility of exploiting the strong Coulomb interaction.65 Ultra
cold atomic ions with a single outer electron can be trapped in a
linear radio frequency Paul trap. Here, we consider the 111Cd+

ion. The original scheme of information processing using cold
trapped ions is to encode the qubit states onto two stable
electronic states which can be coupled to the translational
states in the trap.59,64 To improve the fidelity of the gates based
on the electronic transitions, it has also been suggested to
use an architecture based on an anharmonic quartic trap that
could experimentally be realized with a five-segment electrode
geometry.66 Instead of encoding into electronic qubits, it has
furthermore been proposed to proceed with the motional states
of such an anharmonic trap.67–69 The anharmonicity along the
axial direction renders the states energetically non-equidistant
and allows one to address the different transitions among
the computational basis states. The gates are then driven by
electric fields in the radio frequency (rf ) range.70 This scheme
becomes analog to the control of the vibrational states of a
diatomic molecule but in a completely different spectral range.
Wang and Babikov69 have recently numerically simulated a
four-qubit Shor’s algorithm driven by rf pulses obtained by
multi-target optimal control theory (MTOCT). In this work,
we also use the motional states of an anharmonic ion trap to
implement the gate corresponding to the elementary evolution
operator of a one-dimensional Schrödinger equation. Numer-
ical algorithms to solve the time-dependent Schrödinger equa-
tion (TDSE) usually involve a space and time discretization.
The simulator maps the resulting spatial grid points on the
selected qubit states.2,71 In the time domain, an initial proposal
focuses on the Split Operator (SO) formalism72 which involves

0021-9606/2015/142(13)/134304/9/$30.00 142, 134304-1 © 2015 AIP Publishing LLC
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simple elementary gates as phase shift and quantum Fourier
Transform (QFT).71 However, a compromise must be made
between the simplicity of the gates and their number so it
would be better to use fewer gates and therefore, a larger time
interval. This strategy has also been adopted in a recent NMR
experimental application of a quantum dynamics simulator
with three qubits in the case of an isomerization described by a
one-dimensional double well.73,74 The gate matrix could then
be calculated by any algorithm, for instance, the Chebychev
recursion.75 The present work and the NMR experiment are
both Born-Oppenheimer type problems focusing on the nu-
clear dynamics in a single electronic potential energy curve.
The possibility of simulating the full nuclear and electronic
dynamics using large scale quantum computers built thanks
to trapped ions has also been proposed recently.10 Finally, the
stability of the optimal electric fields driving the elementary
evolution is checked by performing dissipative dynamics in
order to consider fluctuations in the trap potential due to
external fields generated by dipoles in the electrodes.76–80

This paper is organized as follows. In Sec. II, we describe
the model of the anharmonic trap and the dissipative approach.
The quantum dynamics simulator is described in Sec. III. The
optimal control equations are briefly described in Sec. IV. The
results are presented in Secs. V and VI concludes.

II. ION TRAP MODEL

We consider a single 111Cd+ ion in a Paul trap. Its axial
harmonic frequency is ν = ω/2π = 2.77 MHz.81,82 Follow-
ing the proposal of Babikov and coworkers,67–69 the trapping
potential is assumed to be slightly anharmonic to break the
regular energy spacing between the states. The axial coordinate
is denoted z and the field-free Hamiltonian reads

H0 = −
~2

2m
∂2

∂z2 + q
(

k
2

z2 +
k ′

4!
z4

)
= − ~

2

2m
∂2

∂z2 + qW (z),
(1)

where m and q are the mass and charge of the ion, respectively.
The force constant corresponding to a frequency ν = 2.77
MHz is k = 3.5828 × 10−14 a.u., and we choose k ′ = 3.5828
× 10−18 a.u. to model the anharmonic contribution. This value
for the anharmonicity k ′ is slightly larger than the one consid-
ered in the Zhao Babikov model. It has been chosen to ensure
convergence of the dynamical basis set which contains 32
eigenstates. However, our simulation involves only 16 states.
The eigenstates are obtained by diagonalizing the Hamiltonian
H0 in a basis set of 50 harmonic oscillator eigenfunctions.83

The control of the dynamics is carried out by coupling the
system with an electric field assumed to be independent of the
axial coordinate z. The Hamiltonian is then

H(t) = H0 − qzE(t) (2)

and its evolution is described by the TDSE,

i~
∂

∂t
Φ(z, t) = H(t)Φ(z, t), (3)

where Φ(z, t) is the wave function of the ion. In the dissipative
dynamics, we replace the wave function by the matrix ρ(t) of

the density operator,

ρ̂(t) = |Φ(t)⟩ ⟨Φ(t)| . (4)

In order to take into account the perturbation due to fluctuating
fields on the trap electrodes,76–80 we performed simulations
following the Lindblad formalism84–86 in which the system
density matrix evolves according to the master equation,

∂ρ(t)
∂t
= − i
~
[H(t), ρ(t)] + LDρ(t) (5)

with

LDρ(t) =


jk

(
Ljkρ(t)L†jk −

1
2


ρ(t),L†jkLjk


+

)
, (6)

where [., .]+ denotes the anticommutator. The Lindblad opera-
tors Ljk are written phenomenologically as transition operators
among the eigenstates of the field-free Hamiltonian H0,86

Ljk =
√
γjk | j⟩ ⟨k | (7)

and γjk is the transition rate. Since the coupling is due to
external fields generated by fluctuating dipoles in the trap elec-
trodes, we assume that the rate depends on the dipole transition
moments µjk = q ⟨ j | z |k⟩ and we set

γjk = κ
�
µjk

�
. (8)

This κ parameter has been calibrated to still obtain good results
for the simulation despite the dissipation and this allows us to
estimate the relevant minimum average heating time γ̄−1 for a
given pulse duration and a given simulation.

III. QUANTUM DYNAMICS SIMULATION

To illustrate the quantum dynamics simulator, we consider
a one-dimensional model for a particle of mass ms in an arbi-
trary potential V (x). The Hamiltonian of the simulated system
is denoted Hs while the field-free Hamiltonian of the simulator
is H0 [Eq. (1)]. One has

Hs = −
~2

2ms

∂2

∂x2 + V (x). (9)

The aim of the quantum simulator is to obtain the wave func-
tion ψ(x, t) starting from any initial condition ψ(x, t = 0) for a
given potential V (x). The numerical algorithms implemented
on classical computers usually discretize the spatial coordinate
x and the time t. In Cartesian coordinates, ψ(x, t) is described
on an equally spaced grid with an interval ∆x = L/N , where
L = xmax − xmin is the grid length and N is the number of
points. Each grid point is given by

x j = xmin + ( j + 1)∆x, (10)

where j = 0, . . . ,N − 1. In the time domain, the propagation is
divided into Np steps such that

tpropagation = Np∆t . (11)

When the potential energy does not depend on time, the final
wave function ψ(x, tpropagation) can be obtained by the iterative
application of the elementary evolution operator Us(∆t) start-
ing from the initial condition

ψ(x,Np∆t) = Us(∆t) · · ·Us(∆t)ψ(x, t = 0). (12)
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On a grid with N points, Us(∆t) is a N × N unitary matrix
which defines the gate of the simulator. Experimentally, it is
more interesting to reduce the number of pulses and thus, to
choose a relatively large ∆t in order to perform the simulation
involving Np∆t with a small Np. Some algorithms such as
the Chebychev recursion75 are adapted to large time inter-
vals. However, we choose, here, the split operator algorithm72

which requires a small time step δt to be accurate up to terms
of order δt3. As the chosen time interval ∆t is too large to
directly express Us(∆t) following the split operator algorithm
with a small error, we divided it in K smaller time intervals
δt = ∆t/K . The transformation matrix is then given by

Us(∆t) = Us(Kδt) = (Us(δt))K . (13)

Now, we can calculate Us(δt) by

Us(δt) = e−
i
~V

δt
2 QFT†e−

i
~TδtQFTe−

i
~V

δt
2 . (14)

As already suggested,2,10,11,71,73,74 the split operator algorithm
is particularly suited for inducing the elementary evolution by
simple gates such as QFT1 and controlled phase-shift gates.
The QFT gate changes the position representation to the mo-
mentum representation. The exponential operators are diag-
onal in the basis sets in which they act so that the transfor-
mation consists only in modifying the phase of each basis
state. The phases are changed simultaneously for all the states
belonging to the evolving superposition. It is interesting to
note that an algorithm based on the Walsh functions88 has
recently been proposed to implement diagonal unitary trans-
formation.89 In principle, the resources needed to compute
using a SO scheme should depend on the number of time steps
and grid points in a polynomial way, while the corresponding
classical resources would increase exponentially. However,
the decomposition of the SO in each transformation into five
elementary gates may cause the accumulation of experimental
errors and increase decoherence as already discussed in the
experiment.73,74 As suggested in this work, it is more efficient
to directly optimize the field steering Us(∆t) and, by doing so,
to perform the optimization of a “black box” for a given time
interval. The corresponding unitary matrix only depends on the
potential and the particle mass but remains the same for the
simulation of any initial condition ψ(x, t = 0).

The wave function ψ(x, t = 0) discretized on the N grid
points is encoded in N states of the quantum simulator. Each
qubit basis state corresponds here to a motional eigenvector
χ j(z) of the Hamiltonian H0 [Eq. (1)]. This means that ψ(x, t
= 0) is mapped on the wave function Φ(z, t = 0) of the ion
expressed in the eigen basis set,

Φ(z, t = 0) =
N−1

j=0
cj(t = 0)χ j(z). (15)

The localization probability
�
ψ(x j, t = 0)�2 at grid point x j are

thus mapped on the population
�
cj(t)�2 in the qubit state by

taking into account the normalization condition
�
ψ(x j, t = 0)�2↔ �

cj(t = 0)�2/∆x. (16)

The rf field is optimized to induce the unitary transformation
Us(∆t) among the eigenstates of the ion at the end of the pulse,
where t = tpulse. The pulse duration is mainly determined by

energy spacing in the selected computational basis set. The
simulator wave packet evolves by successive applications of
the evolution operator U(tpulse) containing the gate field E(t),

Φ(z,Nptpulse) = U(tpulse) · · ·U(tpulse)Φ(z, t = 0).
(17)

The total duration of the simulation with the time dependent
Hamiltonian H(t) [Eq. (2)] is thus

tsimulation = Nptpulse (18)

and the localization probability can be obtained after the lth
pulse by the relation

�
ψ(x j, l∆t)�2↔ �

cj(t = ltpulse)�2/∆x. (19)

IV. OPTIMAL FIELD DESIGN

The target unitary transformation is now denoted Us ≡ Us

(∆t) [Eqs. (13) and (14)], where we dropped the chosen time
interval. The optimal field E(t) must induce the transformation
among the qubit states after the time tpulse. The field E(t) is de-
signed by the MTOCT.20 At the end of lth pulse, the amplitudes
of the basis states must be c

�
ltpulse

�
= Usc

�(l − 1) tpulse
�

at an
arbitrary phase which must be the same for all the transitions.
The evolution operator of the simulator with the optimum field
is U(tpulse). The gate performance must then measure by a
phase sensitive quantity. We use the fidelity90,91 built from
the overlap between each target state US | j⟩ and the corre-
sponding final state obtained by the controlUP(tpulse) | j⟩, where
UP(tpulse) = PU(tpulse)P and P projects on the N states

F =
����
N

j=1



US j | UP(tpulse) j

�����
2
/N2

=
�
Tr

�
Us
†UP(tpulse)��2/N2. (20)

The optimal field is obtained by maximizing a functional based
on an objective and constraints to limit the total integrated
intensity and to ensure that the Schrödinger equation is satis-
fied during the process.92 Several possibilities differing by the
choice of the objective have been discussed in the literature. A
first proposal is based on the fidelity [Eq. (14)]44,90,91,93

JF =
�
Tr

�
Us
†UP(tpulse)��2 −

 tpulse

0
α(t)E2(t)dt

− 2ℜe
N

j=1
⟨ j |Us

†UP(tpulse) | j⟩

×
N

k=1

 tpulse

0
⟨λk(t)| ∂t + i

~
H(t) |k(t)⟩ dt


, (21)

whereα(t) = α0/sin2(πt/tpulse) and λk(t) is the Lagrange multi-
plier for the Schrödinger equation constraint. The | j⟩ states
are the qubit basis state. An other strategy is to use the sum
of transition probabilities between each basis state | j⟩ and the
target Us | j⟩,24,31

JP =
N+1

j=1

�⟨ j |Us
†UP(tpulse) | j⟩�2 −

 tpulse

0
α(t)E2(t)dt

− 2ℜe
N+1

j=1
⟨ j |Us

†UP(tpulse) | j⟩

×
 tpulse

0



λ j(t)� ∂

∂t
+

i
~

H(t) | j(t)⟩ dt

, (22)
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where a supplementary transition involving an initial super-
posed state has to be added in order to ensure a good phase
control so that the gate is valid for any superposition,

2−N/2
N

j=1
| j⟩ → 2−N/2

N

j=1
Us | j⟩ eiφ, (23)

where φ is a single phase taking any value between 0 and 2π.
Variation with respect to



λ j

�
leads to an evolution equation

with an initial condition | j⟩, and the variation of | j⟩ gives
an equation with the target state Us | j⟩ as a final condition.
Depending on the strategy, N or N + 1 forward and backward
propagations are thus required. The field is built from a contri-
bution of all the wave packets and is given by

EF(t) = − 1
α(t)ℑm

×
N

j=1



λ j(t) | j(t)�

N

k=1
⟨λk(t)| µ |k(t)⟩



(24)

for the functional JF [Eq. (21)] and by

EP(t) = − 1
α(t)ℑm

N+1

j=1



λ j(t) | j(t)� 
λ j(t)� µ | j(t)⟩



(25)

for the functional JP [Eq. (22)]. The MTOCT equations are
solved by the Rabitz iterative monotonous convergent algo-
rithm.92 At each iteration step i, the field is obtained by E(i)
= E(i−1) + ∆E(i),where∆E(i) is estimated from Eq. (24) or (25).

To include decoherence effects, we use the extension of
the monotonically convergent algorithm to treat the system
with dissipation.94 The wave functions | j(t)⟩ and

�
λ j(t)� are

replaced by the density matrices ρ j(t) and η j(t), respectively. In

the superoperator notation, one writes
�
ρ j(t)��, �η j(t)�� and the

scalar product becomes



η j(t)|ρ j(t)�� = Tr

(
η†j(t)ρ j(t)

)
. The

forward and backward propagations are carried out using the
Lindblad master equation [Eq. (4)]. The expression of the field
becomes

EF(t) = − 1
α(t)ℑm

N

j=1




η j(t) | ρ j(t)��

×
N

k=1
⟨⟨ηk(t)| M |ρk(t)⟩⟩


(26)

and

EP(t)=− 1
α(t)ℑm

N+1

N




η j(t)|ρ j(t)�� 

η j(t)�M �

ρ j(t)��

,

(27)

where in the superoperator notation, M
�
ρ j(t)�� = �

µρ j(t)��
−
�
ρ j(t)µ��.

V. RESULTS

In the present application, we choose a very simple poten-
tial to ensure correct dynamics with only 16 grid points. The
qubit basis states consist of the 16 lowest motional eigenstates
of the trap and we adopt a dynamical basis containing 32
eigenstates. Convergence in this basis set has been checked.
The parameters of the simulated problem are ms = 1 a.u. and
V (x) = x2/2, i.e., a harmonic potential with frequency ω = 1
a.u. The corresponding period is 2π a.u. Figures 1(a) and
1(c) show the anharmonic potential W (z) of the ion [Eq. (1)]
and the simulated harmonic potential V (x) [Eq. (9)]. Figure 1
illustrates the mapping between the simulated wave function

FIG. 1. Mapping in the TDSE simulator. Panel (a): harmonic (dashes) and anharmonic (full line) potentials of the Cd+ ion trap and the superposed state
Φ(z, t = 0) with initial amplitudes c j(t = 0)=√∆xψ(x j, t = 0) in the j th motional eigenstate of the ion. The eigenenergies are indicated by arrows. Panel (b):
population

�
c j(t = 0)�2 in the qubit states | j⟩. Panel (c): simulated system with a harmonic potential V (x) and initial localization probability

�
ψ(x j, t = 0)�2.
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FIG. 2. Evolution of the square modulus of the motional wave function
|Φ(z, t)|2 after successive applications (l = 1, . . .,10) of the rf pulse driving
the Us gate for the simulation of a coherent Gaussian wave packet in a
harmonic potential (see Fig. 3(a)). The legend gives the pulse number. The
wave function for t = 0 (red thick curve) is prepared by the initialization pulse
so that c j(t = 0)/√∆x =ψ(x j, t = 0). The applied field is EP(t) [Eq. (25)].

at the grid points and the amplitude of the qubit states, i.e., in
the motional eigenstates of the ion.

We simulate the propagation of Gaussian wave packets

ψ(x, t = 0) = (σ/π)1/4 exp

−(x − x0)2/2σ


. (28)

The spatial grid extends from xmin = −4 a.u. to xmax = 4 a.u.
and the 16 grid points are given by Eq. (10). We want to
simulate a complete oscillation of the Gaussian wave packet
with Np = 10 rf spots. This means that the unitary transfor-
mation corresponds, here, to Us(∆t) with ∆t = 2π/10 a.u. As
it has been explained in Sec. III, we have divided this time
interval by K to ensure a good accuracy of the split oper-
ator. In consequence, we numerically built the matrix Us(∆t)
= (Us(δt))K with δt = 2π/100 a.u. and K = 10. The field driv-
ing the gate Us(∆t) is obtained by MTOCT with a guess field
composed of 28 frequencies that correspond to 15 transitions
with a variation of the motional quantum number ∆v = ±1 and
13 transitions with ∆v = ±3. The initial amplitude is fixed to
1.945 × 10−13 a.u., i.e., 0.1 V m−1, for each frequency. The
duration of the rf field is tpulse = 96 µs and the time step for
the propagation is 960 ps. The penalty factor is α0 = 1015 a.u.
for JP and α0 = 4 × 1015 a.u. for JF. The fields that do not
include dissipation have been optimized up to a fidelity of
0.999 99. With such a high fidelity, the results of the simulation
are similar whether we apply the field EF(t) [Eq. (24)] or
EP(t) [Eq. (25)]. Convergence requires about 1500 iterations.
The propagation of the dynamical equations is carried out in
the interaction representation by the fourth order Runge-Kutta
method.95

A. Simulation without dissipation

We first simulate the propagation of a coherent Gaussian
wave packet, i.e., the ground vibrational state withσ = ~/msω
= 1 a.u. and an equilibrium position x0 = −0.75 a.u. (see Fig.
1). The ion is assumed to be in the ground motional state χ0(z)
and we optimize a field for the initialization of the propaga-
tion at t = 0. The target is then the ionic initial wave packet
Φ(z, t = 0) = N−1

j=0 cj(t = 0)χ j(z) for which the amplitudes

are given by cj(t = 0) = ψ(x j, t = 0)√∆x. The square modulus
of this initial simulator wave packet is the bold red curve in
Fig. 2. The evolution of |Φ(z, t)|2 after successive applications
of U(tpulse) with the field EP(t) [Eq. (25)] is shown in Fig. 2.
The fidelity being 0.999 99, similar results are obtained with
EF(t) [Eq. (24)]. The rf pulse drives the Us transformation at
the end of the pulse. One observes the expected periodicity�
Φ
�
z, t = (0 + l)t f ��2 = �

Φ
�
z, t = (10 − l)t f ��2 with l = 0, . . . ,4

in agreement with the corresponding periodic dynamics of the
simulated coherent wave packet.

Figure 3 compares the results of the simulation (discrete
markers) with the exact evolution of the simulated wave packet
ψ(x, t) (continuous lines) for t = l∆t and l = 0, . . . ,10. The
eigenstate populations of the simulator after the lth pulse are
mapped on the localization probability of the simulated sys-
tem

�
cj(t = l∆t)�2/∆x ↔ �

ψ(x j, t = l∆t)�2. Fig. 3(a) shows the
evolution of the coherent state withσ = 1 a.u. and with conser-
vation of the initial shape. Fig. 3(b) gives the breathing of
a Gaussian packet with σ = 0.5 a.u. This illustrates that the
optimal field executes the transformation Us(∆t) for any initial
wave packet. Only the initialization step requires a new opti-
mization.

FIG. 3. Exact evolution of Gaussian wave packets (continuous lines) and
results obtained from the mapping

�
ψ(x j, t)�2↔ �

c j(t)�2/∆x with the pop-
ulations of the ion eigenstates (markers) after application of the l th pulse.
The legend gives the number l of the pulse. One observes the expected
periodicity |ψ (x, t = (0+ l)∆t)|2= |ψ (x, t = (10− l)∆t)|2. Panel (a): coherent
wave packet withσ = 1 a.u.; panel (b):σ = 0.5 a.u. The applied field is EP(t)
[Eq. (25)].
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FIG. 4. Optimum fields and their spectrum |S(ν)|2 in arbitrary units for the preparation step and the simulation of the elementary transformationUs(∆t). Panels
(a) and (b): preparation of the initial wave packet Φ(z, t = 0) for the simulation of the coherent Gaussian (σ = 1 a.u.); panels (c) and (d): field EF(t) [Eq. (24)];
panels (e) and (f): field EF(t) after filtering of the background and reoptimization; and panels (g) and (h): field EP(t) [Eq. (25)].

Optimum fields and their Fourier transform |S(ν)|2 in arbi-
trary units are shown in Fig. 4. The field for the preparation
of the ion wave packet Φ(z, t = 0) simulating the coherent
Gaussian case (σ = 1 a.u.) is displayed in Fig. 4(a) and its
Fourier transform in Fig. 4(b) (this case is illustrated in Fig.
1). Figs. 4(c) and 4(d) show the gate optimum field EF(t) [Eq.
(24)] and its spectrum. The background at high frequencies
has been filtered. The fidelity decreases from 0.999 99 to 0.97,
but a new optimization allows us to reach 0.999 99 again. The
new EF(t) field after filtering and reoptimization is shown in
Fig. 4(e) and its spectrum in Fig. 4(f). One observes that the
control has found a new mechanism involving mainly the high
frequencies and the noise remains very small. The optimization
with the other functional EP(t) [Eq. (25)] is shown in Fig. 4(g).
One sees in Fig. 4(h) that this procedure directly gives a simple
spectrum and thus does not require a filtering. The maximum
amplitude of the field is larger than that of the guess field but
remains acceptable since it does not exceed 1.5 V m−1. The
Fourier transform remains very simple. We find the transitions
of the guess field with slightly different intensities (they were
equal in the trial field). The frequencies correspond to the
transition ∆ν = ±1 below 5 MHz and ∆ν = ±3 above 10 MHz.
An increasing energy gap is observed due to the anharmonicity
of the symmetrical potential (see Fig. 1 for the lowest states).

B. Simulation with dissipation

The stability of the simulator against decoherence is now
examined by performing Lindblad dissipative dynamics with
the fields presented in Fig. 4. We aim at estimating the order of
magnitude of the mean heating rate while preserving relevant
information about the simulated dynamics. Fig. 5 illustrates
the results for a strong dissipation κ = 5 × 10−18 a.u. [Eq. (8)]
leading to a mean characteristic heating time γ̄−1 = 55 ms

while the propagation time is about 1 ms. The average rate γ̄ is
taken over all the transitions with ∆ν = ±1, ±3. An increasing
discrepancy is observed between the expected wave packet
and the simulated points, after the application of a number of
rf pulses. In particular, the periodicity |ψ(x, t = (0 + l)∆t)|2
= |ψ(x, t = (10 − l)∆t)|2 is not strictly respected anymore.
However, the qualitative behavior of the wave packet is still
reasonably described.

The evolution of the fidelity [Eq. (20)] during the simu-
lation is given in Fig. 6 for three values of the decoherence
strength κ [Eq. (8)]: κ = 10−17 a.u. or γ̄−1 = 11 ms, κ = 5
× 10−18 a.u. or γ̄−1 = 55 ms, and κ = 10−18 a.u. or γ̄−1 = 110
ms. The gate field is calculated using EF(t) [Eq. (24)] (dashed
lines) or EP(t) [Eq. (25)] (full lines). Note that the two EF(t)

FIG. 5. Simulation in presence of dissipation due to fluctuating electric
fields. Exact evolution of the coherent wave packet (σ = 1 a.u.) (continu-
ous lines) and results obtained from the populations of the ion eigenstates
(markers) during the Lindblad dynamics with κ = 5×10−18 a.u. [Eq. (8)]
(γ̄−1= 55 ms) after application of the l th pulse. The legend gives the number
l of the pulse. The applied field is EP(t) [Eq. (25)].
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FIG. 6. Evolution of the fidelity [Eq. (20)] during the simulation of the coher-
ent wave packet (σ = 1 a.u.) for different values of the decoherence strength
[Eq. (8)] with the gate field calculated by EF(t) [Eq. (24)] (dashed lines)
or EP(t) [Eq. (25)] (full lines). The characteristic decoherence lifetimes
are γ̄−1= 11 ms (κ = 10−17), γ̄−1= 55 ms (κ = 5×10−18), and γ̄−1= 110 ms
(κ = 10−18).

fields without (Fig. 4(c)) and with filtering and reoptimization
(Fig. 4(e)) give the same results up to the fourth significant
digit. The initial fidelity is that after the preparation step which
is carried out also with dissipation. One observes that the EF(t)
field is slightly more sensitive to decoherence than EP(t). This
is due to the mechanism induced by EF(t) which involves
higher frequencies transitions. The parameter κmust obviously
remain smaller than 10−18 a.u. and thus γ̄−1 > 110 ms, to
maintain a very high fidelity for a propagation of 1 ms. This
corresponds to the usual expected decoherence time in an ion
trap.14

Fig. 7 shows the evolution of the mean position of the ion
⟨z(t)⟩ (Fig. 7(a)) and of the simulated coherent wave packet
⟨x(t)⟩ (Fig. 7(b)) without dissipation (blue full lines) and with
different heating rates (dashed lines) after the successive appli-
cations of the gate field calculated by EP(t) [Eq. (25)] (full

FIG. 7. Evolution of the mean position of the ion ⟨z(t)⟩ (panel (a)) [Eq.
(3)] and of the mean position of the coherent wave packet ⟨x(t)⟩ (panel
(b)) without decoherence (κ = 0) and for different values of the decoher-
ence strength [Eq. (8)]. The field is calculated using EP(t) [Eq. (25)]. The
characteristic decoherence lifetimes are γ̄−1= 11 ms (κ = 10−17), γ̄−1= 55 ms
(κ = 5×10−18), and γ̄−1= 110 ms (κ = 10−18).

lines). During the initialization step, the average position ⟨z(t)⟩
increases from the equilibrium position (z = 0) of the trap to

FIG. 8. Fourier transform |S(ν)|2 of the gate field EP(t) [Eq. (27)] optimized with dissipation (panel (a)) and the difference with the Fourier transform of the
field optimized without dissipation (see Fig. 4(f)) (panel (b)). The dissipation parameter is κ = 10−18 a.u. or γ̄−1= 110 ms.
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a value of z = 114.8 a.u. (6.074 nm). During the successive
interactions with the rf pulses, the periodic behavior character-
istic of the decoherence-free case (blue full curve in Fig. 7(a))
is more and more altered, but the qualitative behavior remains
acceptable. The aftereffect of the decoherence on the average
position of the simulated coherent wave packet is shown in
Fig. 7(b). The error increases from 1% after the first pulse to
16% at the end of the simulation for the most dissipative case
κ = 10−17 a.u. (γ̄−1 = 11 ms).

C. Optimization of a field with dissipation

We have also optimized a field in presence of dissipation
[Eq. (27)] to mimic an experimental condition where dissi-
pation should be active during feedback loops. The tested
cases are κ = 5 × 10−18 a.u. or γ̄−1 = 55 ms and κ = 10−18 a.u.
or γ̄−1 = 110 ms. As expected, convergence is slow and the
computation in density matrix is very time consuming. About
700 iterations require 1 month of CPU time on one processor
(Intel(R) Xeon(R) CPU E5649 with frequency 2.53 GHz, and
6 GB of RAM) and the fidelities obtained are 99.35% and
99.87%, respectively. The Fourier transform of the field EP(t)
calculated by Eq. (27) and the difference with the field calcu-
lated without dissipation (Fig. 4(f)) are shown in Fig. 8. For
the most favorable case, κ = 10−18 a.u. The control modifies
more strongly the frequencies corresponding to ∆ν = ±3 and
provides a spectrum with more background. Once more, the
field amplitudes do not exceed 1.5 V m−1.

VI. CONCLUDING REMARKS

This work was stimulated by the recent experimental im-
plementation of a TDSE simulator in NMR73 and by the prom-
ising advancement of trapped-ion technologies. Following the
numerical simulation of the Shor algorithm in an anharmonic
trap by encoding information in the motional ionic states,69

we have explored the same architecture to consider the TDSE
simulator. This completes this previous work by two points.
The TDSE simulation involves concatenation of several pulses
and therefore, a very strict control of the gate phase. Moreover,
we check the robustness against decoherence. The TDSE uni-
tary transformation corresponds to the evolution for a given
time step. To calculate this unitary matrix, we adopt the split
operator strategy among other possibilities whereas we use a
“black box” approach for the optimization of the correspond-
ing gate pulse. This means that we do not optimize a pulse
for each elementary gate of the split operator algorithm since
this would require a very large number of gates and therefore,
would increase the decoherence. Note that both phase shift
transformations of the split operator sequence should be opti-
mized for a given potential or a given mass. Only the quantum
Fourier transform can be optimized once. Instead, we optimize
a “black box” for a given time interval but this implies at least
one computation of the matrix by any numerical algorithm.
However, this gate remains identical for any initial condition
ψ(x, t = 0).

The fields obtained through optimal control remain very
realistic. Their Fourier transform involves few frequencies in
the rf domain. We have compared two strategies already dis-

cussed in the literature in order to ensure a good control of
the gate phase.24,90,91,93 Their convergence rate is similar and
both lead to a very high fidelity. Only their spectrum is slightly
different, indicating that different mechanisms are found by the
control. This can affect the robustness against decoherence.

We also explored the decoherence time still allowing rele-
vant results. In this case, it needs to be longer than about
γ̄−1 = 110 ms for a simulation of about 1 ms. We have used
a crude model to simulate decoherence from heating. More
sophisticated works should use the spectral density relative to a
given architecture.77–80 We could have taken other decoherence
phenomena58 into account, but this should not change the
qualitative behavior observed in this work.

However, some qualitative insights into the dynamics can
still be obtained even if the periodic behavior characteristic
of the decoherence-free case is less and less preserved after
successive applications of the pulse. The benchmark case of the
harmonic potential should allow to test the decoherence since
due to the very high fidelity of the optimum field, the phases
at the end of the simulation are well described. One really
obtains the prepared wave packet at a common arbitrary phase
and the application of the reverse preparation field should give
the ground motional state with a probability of one without
dissipation. It is obvious that, in a general case, the goal is to get
insights into the wave packet dynamics during its evolution and
that the readout is a crucial step. Since the early works in this
field, the manipulation of the motional states in order to create
and read out different types of states has been examined.96–98

Note that the target is mainly the localization probability of
the evolving wave packet at the grid points since the control
provides the unitary transformation with a global arbitrary
phase so that the measure of the motional state population is
sufficient. Such manipulation and population readout of the
motional states of a single ion in a harmonic or anharmonic
trap have been recently discussed in the context of verification
of quantum thermodynamics.99

Finally, we have showed in this paper that the system
is suitable to build a simulator of the elementary evolution
operator for decoherence times larger than the simulation time
by about a factor 102. In order to construct an efficient and
competitive simulator, it is obvious that scalability should be
addressed. It is not conceivable to increase the number of qubits
with a single ion. More dimensions100 or more ions in the
trap101 in order to perform calculations with more points, and
thus, more qubits have to be considered. The scheme involv-
ing only the two lowest motional states on each ion seems a
promising perspective by manipulating cat states.102,103
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