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When placed onto a vibrating liquid bath, a droplet may adopt a permanent bouncing behav-
ior, depending on both the forcing frequency and the forcing amplitude. The relationship between
the droplet deformations and the bouncing mechanism is studied experimentally and theoretically
through an asymmetric and dissipative bouncing spring model. Antiresonance phenomena are ev-
idenced. Experiments and theoretical predictions show that both resonance at specific frequencies
and antiresonance at Rayleigh frequencies play crucial roles in the bouncing mechanism. In partic-
ular, we show that they could be exploited for bouncing droplet size selection.

PACS numbers: 47.55.D-, 47.55.dr, 46.40.Ff, 47.85.-g

INTRODUCTION

Bouncing Droplets (BD) on vibrated liquid interfaces
attract much attention because of their peculiar prop-
erties [1]. Thanks to the air layer that separates the
droplet from the vibrated surface, the droplet is allowed
to bounce vertically upon the liquid without coalescing.
Nevertheless, the perpetual bouncing behavior is possi-
ble under some conditions concerning the acceleration of
the surface. This condition reads Γ > Γth where Γ is
the ratio between the acceleration of the surface and the
acceleration due to gravity, Γth being a given threshold
to reach that may depend on the frequency of oscilla-
tion [1, 2]. BD have the great advantage to transport
some quantities of liquid without chemical contamina-
tion [3, 4]. Moreover, BD may be either fragmented [5]
or used to create controlled microemulsions [6]. It was
therefore suggested that those droplets may be used in
some microfluidics applications [7]. Depending on the de-
formability of both droplet and liquid surface, different
dynamics are expected as depicted in the work of Ter-
wagne et al. [8]. As shown in the latter article, four main
regimes are distinguished from each other through the
Ohnesorge numbers of the droplet and the liquid bath.
The definition of the Ohnesorge number reads

Oh = ν
√

ρ/2aσ, (1)

where ν is the kinetic viscosity if the fluid, ρ its density
and a the typical length scale. An Ohnesorge number
greater than unity corresponds to a system where damp-
ing is more important than capillary effect and thus the
deformability can be neglected between two impacts. De-
formability therefore takes place when this number is less
than unity. In this article, we will focus on the regime
where OhBath > 1 and OhDrop < 1. Especially, we will fo-
cus on BD deformations and their link with the bouncing
dynamics without considering lubrification or wave prop-
agation on the liquid surface. For this purpose, we inves-
tigate the BD dynamics experimentally and we propose
a simple model consisting in an Asymmetric Bouncing

FIG. 1. BD for frequency f = 50 Hz, radius a = 0.76 mm and
viscosity ν = 5 cSt. One observes that the droplet adopts pe-
riodically oblate and prolate shapes. Note that the deforma-
tion may be for instance asymmetric when the droplet takes
off as denoted with a white arrow.

Spring (ABS). Resonance and antiresonance behaviors
are evidenced and rationalized. The latter effect being
observed in system made of coupled oscillators [9] and in
the case of Fano resonance [10]. From the particular fea-
tures of both resonance and antiresonance, we propose a
way to select bouncing droplet size. Since the concept
we provide is general, we expect this model and its sub-
sequent behaviors to be applicable to a broad range of
elastic bouncing objects.

EXPERIMENTAL SETUP

The experimental setup consists in a container filled
with highly viscous silicone oil (Dow Corning 200 Fluid,

Droplet viscosity ν (cSt) 5 20 50

Surface tension σ (N/m) 1.97 10−2 2.06 10−2 2.08 10−2

Density ρ (kg/m3) 910 949 960
Ohnesorge number OhDrop 0.024 0.096 0.240

Dissipation ξ 0.241 0.253 0.330
Mass distribution µ 0.651 0.701 0.751

TABLE I. Parameters relative to the silicon oils used in our
experiments. The four first rows contain the fluid proper-
ties while the last two rows contain the ξ and µ parameters
obtained from experimentrs and from Eq.(11) and Eq.(12) .
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ν=1000 cSt) in order to inhibit the surface deformations
(OhBath ≈ 65). Droplets of viscosity ranging from 5 to 50
cSt are created with a needle. The information relative
to the silicon oils for droplets are summed up in Table I.
The container is vertically shaken with a pulsation ω and
an amplitude A. The maximum acceleration normalized
by the gravity, Γ=Aω2/g, is accurately measured with an
accelerometer. Figure 1 presents snapshots of a typical
bounce for a frequency f = 50 Hz. One observes large
deformations of the droplet which experiences periodic
changes from oblate to prolate shapes. Moreover, as
the droplet detaches from the interface on the crest
of each oscillation, some asymmetry in its shape is
generated, the top of the droplet being wider than
its bottom. This observation is pointed by a white
arrow on Fig.1. The above observations suggest that
droplet deformations superimpose with the periodic forc-
ing from the surface, as proposed in earlier works [11, 12].

RESULTS

Let us consider the plots of Fig.2. This figure presents
the bouncing threshold Γth, in a logarithmic scale, as
a function of the dimensionless forcing frequency Ω2,
as defined later by Eq.(3). By means of this frequency,
for each viscosity, droplets of different radii, mass and
density can be compared onto a single curve. For each
curve, resonant behavior is observed near Ω2=0.5. For
the resonant frequencies of Fig.2, the droplet bounces
onto the surface for Γth < 1; i.e. for a maximal accel-
eration below g. Indeed, in order to overcome gravity,
the droplet stores elastic energy into its deformation
and uses this energy for taking off [11]. Although
resonance in BD dynamics has already been studied,
others features of those curves have not been analyzed.
One remarks that, for specific frequencies Ω2 ≈ 1.15, the
threshold reaches a maximum. The bouncing threshold
in this case can be 20 times higher than the threshold at
the resonance. The maxima in the bouncing thresholds
correspond to an antiresonance and will be discussed in
the following sections.

MODEL

In order to model the curves of Fig.2, let us focus
on the droplet shapes. The natural shape oscillations
of a droplet have been described, in the linear regime,
by Prosperetti [13] with a series of spherical harmonics,
reading

R(θ, φ) = a+

+∞
∑

ℓ=1

ℓ−1
∑

m=−ℓ+1

cℓY
m
ℓ (θ, φ). (2)
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FIG. 2. (Color online) Bouncing threshold (logarithmic scale)
as a function of the dimensionless Rayleigh frequency Ω2 for
droplets of different viscosities: (a) 5cSt, (b) 20 cSt and (c)
50cSt. Black dots represents the exprimental data. The
curves corresponds to anaytical models. Dotted grey: Couder
model [1], Dashed orange: Eichwald model [18], Plain red: our
ABS model capturing two extrema while Eichwald captures
only resonant behaviors.

The natural Rayleigh frequency ωℓ [14] of each ℓ mode
defines a dimensionless frequency Ωℓ given by

Ωℓ = ω/ωℓ =
√

a3ρω2/σ
√

1/ℓ(ℓ− 1)(ℓ+ 2), (3)

The parameter ℓ denotes the characteristic number of the
considered spherical harmonic. Please note that because
of the radius a in (3), the droplets of different radii can
experience different values of Ωl for a given set of parame-
ters. This observation is the key ingredient of the droplet
filter described at the end of this article. By considering
that the Y 2

0 axis-symmetric mode dominates others in
average during the bouncing dynamics, as observed in
our experiments (cf. Fig.1), one can write the droplet
radius as the following decomposition

R(θ, φ) ≈ a
[

1 + δY 0
2 (θ, φ)

]

, (4)

where δ measures the maximum Y 0
2 deformation. Two

pictures of deformed droplets are shown in Fig.3(a)
and (b). Those pictures are superposed to theoretical
results (grid shapes). They are characterized by oblate
(δ = −0.318) and prolate shapes (δ = 0.437).
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FIG. 3. (Color Online)(a) Droplet deformed with δ = −0.318
resulting in an oblate shaped droplet. The left side is the
experimental picture, the right one being the Prosperetti
model.(b) Prolate shaped droplet with δ = 0.437. The value
of δ in each case has been obtained by fitting the shape of
the droplet. (c) Evolution of the relative surface energy for a
droplet deformed with the Y

0
2 spherical harmonic, E0 being

the energy of an undeformed droplet (in black dots). The
plain curve is a guide to the eyes showing the parabolic be-
havior. The horizontal axis measures the deformation δ. Note
also the asymmetric shape of the curve for large δ.

Computing the surface of the droplet under the
appearance of the Y 0

2 spherical harmonic with the
constraint of constant volume leads to the plot of
Fig.3(c), showing the evolution of the relative surface
energy ∆E/E0 with respect to δ, E0 being the surface
energy of an undeformed droplet. One observes that
∆E/E0 ∝ δ2 in a large interval of δ values. The droplet
can therefore be considered as a linear spring while
bouncing freely upon the surface. This observation is
consistent with previous conclusions made in several
articles [11, 12, 15] and does not contradict the ones
obtained by Molacek et al. or Chevy et al. [16] where
some logarithmic spring aims to model the interaction
between the droplet and the liquid surface rather than
the droplet itself. In conclusion, both descriptions could
be seen as complementary.

Based on the above observations, one needs to in-
troduce elasticity, as shown in the previous paragraph,
asymmetry, as seen on Fig.1 but also damping in or-
der to model the BD dynamics. Considering the axis-
symmetric Y 2

0 harmonics, we model the droplet as two
different masses m1 and m2 linked together by a hookian
spring (stiffness k and natural length L) and by a linear

FIG. 4. Numerical and experimental spatio-temporal dia-
grams for BD with ν = 5 cSt (in arbitrary units). The
white region in the exprimental diagrams represents the mo-
tion of the liquid surface while the black region corresponds
to the droplet elongation. The grey curve in numerical sim-
ulation is for the elongation of the spring. The white line
drawn in the spring motion represents its center of mass. The
numerical parameters are the one indicated on Table I. (a)
Resonant ABS/BD. (b) Antiresonant ABS/BD. One observes
in (a) the propulsion of the spring/droplet at the maximum
height of the surface motion. (b) The phase opposition of
the spring/droplet elongation with the surface oscillation at
antiresonance is illustrated.

damper (dissipation β). The masses m1 and m2 can be
different in order to account for the asymmetric shapes
observed during takes-off on Fig.1. The spring is used to
give some stiffness in order to reproduce resonance and
energy storage, more specifically, this stiffness should be
linked to the droplet surface tension. The damper cap-
tures the dissipation within the droplet when it oscil-
lates. We expect this coefficient to take into account dis-
sipation in the droplet, in the bath and in the air layer.
The whole object bounces onto a rigid plate oscillating
at the liquid surface amplitude A and angular frequency
ω. The plate is chosen to be rigid since the bath be-
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neath the droplet has an Ohnesorge number around 65.
Between two successive impacts, the ABS is only sub-
mitted to gravity g. Note that this model is unidimen-
sional because of the Y 0

2 axial symmetry. The dynamic
of such an object has been described in previous article
[17] in the symmetric case. Defining the mass distribu-
tion µ = m1/(m1 + m2), the spring natural frequency

ω0 =
√

k/(m1 +m2), the damper dissipation coefficient
ξ = β/2ω0(m1 +m2) and Ω0 = ω/ω0 the dimensionless
oscillation frequency, Γ = Aω2/g the dimensionless sur-
face acceleration, φ = ωt the dimensionless time, l = L/A
the dimensionless natural length and α = z/A the dimen-
sionless height, Newton’s second law of motion reads























αp(φ) = cos(φ),

α̈1 +
2ξ (α̇1 − α̇2)

Ω0µ
+

(α1 − α2 − l)

Ω2
0µ

+
1

Γ
= 0,

α̈2 −
2ξ (α̇1 − α̇2)

Ω0(1− µ)
−

(α1 − α2 − l)

Ω2
0(1− µ)

+
1

Γ
= n2(φ).

(5)
The subscripts p, 1 and 2 are relative to the plate, the up-
per mass and the lower mass respectively. The dot above
the symbols denotes the dimensionless time derivative,
and n2 is the dimensionless normal reaction. In the same
way than Eichwald in [18], the analytic expression of the
bouncing threshold can be found and reads

Γth(Ω0) =

√

(1 − µΩ2
0)

2 + (2ξΩ0)2

(1− (1− µ)µΩ2
0)

2 + (2ξΩ0)2
. (6)

Because Ω0 6= Ω2, the latter frequency describing the
free oscillations of the droplet, one has to find the equiv-
alent of this frequency in the ABS case. For this pur-
pose, we consider the equation describing the evolution
of ∆α = α1 − α2 − l from the set of equations (5). This
yields to

∆̈α+
2ξ∆̇α

Ω0µ(1− µ)
+

∆α

Ω2
0µ(1− µ)

= 0 (7)

The frequency describing the free oscillation of the ABS,
and thus the equivalent of the Rayleigh frequency, is
Ω2 = Ω0

√

µ(1− µ). With this new definition, the ABS
bouncing threshold reads

Γth(Ω2) =

√

√

√

√

(1−
Ω2

2

1−µ
)2 + (2ξΩ2)2

(1− Ω2
2)

2 + (2ξΩ2)2
. (8)

This bouncing threshold exhibits two extrema in the
range Ω2 > 0 which can be obtained by canceling the
derivative of Γth(Ω2) with respect to Ω2. We obtain

ΩMax =

√

√

µ2 + 8(µ− 2)(µ− 1)ξ2 − µ+ 2

4(µ− 2)ξ2 + 2
(9)

ΩMin =

√

−
√

µ2 + 8(µ− 2)(µ− 1)ξ2 − µ+ 2

4(µ− 2)ξ2 + 2
(10)

Those expressions thus leads to the maximum, i.e. the
anti-resonance, and minimum, i.e. the resonance, of the
bouncing threshold presented on figure 2. Knowing the
experimental frequencies at which resonance and antires-
onance occur, one can inverse the relations (9) and (10)
in order to obtain ξ and µ; this will calibrate our ABS
model.

µ =
2Ω2

MaxΩ
2
Min − Ω2

Max − Ω2
Min

Ω2
MaxΩ

2
Min − Ω2

Max − Ω2
Min

(11)

ξ =

√

Ω2
Max − 1

√

1− Ω2
Min

√

2Ω2
Max + 2Ω2

Min

(12)

The values of µ and ξ related to the plots of Fig. 2 are
given in Table I and correspond to the values used in our
simulations, the corresponding bouncing threshold are
shown with plain curves on Fig.2. In order to compare
our ABS model with existing models, we propose in
dot-dashed curves the model of Eichwald [18] and in
dotted curve the model of Couder [1]. The first model
only describes the deformation of the bath and not those
of the droplet and the second only takes into account the
lubrication of the air layer. We observe that the ABS
model reproduces both the maximum and the minimum
of the bouncing threshold where Couder’s model does not
show any extrema and Eichwald’s model only reproduces
the minimum. As a conclusion, one understand that
antiresonance in the bouncing droplet dynamics is pos-
sible only by considering the deformation of the droplet.
Resonance is also captured. Furthermore, one observes
that, only knowing the values of ΩMax and ΩMin, the
model can be calibrated a posteriori and that the results
are in a good agreement with experimental data: at low
viscosity (Fig.2(a)), the ABS model coincides correctly
with the data. At higher viscosity, the model tends to
over-estimate the resonant behavior. Indeed, one could
discuss the range of validity of the model. Because
the model has been developed under the assumption
OhDrop < 1, the ABS model is not able to capture the
dynamics of droplet above this limit. As pointed out
by Gilet et al. in [2], at high droplet viscosity, the de-
formation effects are overcome by the air layer dynamics.

Let us focus on the resonant and antiresonant behav-
iors. Resonance corresponds to large deformation of the
droplet. The potential energy stored in this way helps
the droplet to take-off at low values of Γth. The dynam-
ics in this case is illustrated on fig.4 with spatio-temporal
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diagrams in the case of a 5cSt droplet. The bottom one
corresponds to numerical simulations while the top one
corresponds to experimental results. One observes that,
despite the simplicity of the model, the calibration of
the model made through the knowledge of ΩMax and
ΩMin leads to a good agreement. Antiresonance appears
for Ω2 ≃ 1, i.e. the resonant frequency of the free-
droplet. In this case, the droplet/ABS oscillates with a
phase shift of π with the oscillation of the bath. As a
consequence, the elastic properties and the propulsion
provided by the bath are always against each other lead-
ing to a high bouncing threshold. Fig.4 also shows the
comparison between experimental and numerical spatio-
temporal diagrams. Once again, the comparison shows a
good agreement between the model and the experiments.

Resonance and antiresonance may find applications in
various situations. As a example, we propose to create a
droplet size “filter”. For this purpose, one has to observe
that the size of a droplet is directly related to its natural
Rayleigh frequency (cf. Eq.(3)). By this means, for a
given frequency of oscillation ω, droplets of different
sizes can experience different behaviors: resonance (for
Ω ≈ 0.5) antiresonance (for Ω ≈ 1) or anything between.
Especially, small droplets would experience resonance
and large droplets would experience antiresonance. The
droplet size selector works as follows: The BD is driven
at a high acceleration Γ much higher than the bouncing
threshold Γth for any frequency. When the amplitude of
vibration decreases, the acceleration could be lower than
the antiresonant droplet condition. In such a situation,
all droplets bounce except the ones having a specific size,
those experiencing antiresonance. This corresponds to
a band-stop filter. This is shown in the supplementary
movie attached to this article. The typical time required
for the antiresonant droplet to coalesce is the time
required to drain the air layer [19], which is typically one
hundred bounces. While reducing again the amplitude
of vibration, until reaching the lowest value of the
threshold, one may only keep the resonant droplets and
thus creates a band-pass filter. A specific droplet size
is therefore selected. We tested this procedure over a
broad range of droplet sizes and we typically obtained a
droplet diameter with a precision of 20 microns. This
accurate technique opens new perspectives because it
could be exploited for improving experiments [11] for
which droplet size is a dominant parameter.

CONCLUSION

In this article, we have developed a simple linear
model consisting in a asymmetric bouncing spring for
droplet bouncing on a liquid surface in the regime
OhBath > 1 and OhDrop < 1. We have shown that the

model gives good quantitative results through the only
knowledge of ΩMin and ΩMax. Indeed, once the model
calibrated on the experimental data, it reproduces the
droplet bouncing threshold and gives resonant and
antiresonant features. Thus, we expect the ABS model
to be a useful tool to study a broad case of dynamics.
Finally, we showed that resonance and antiresonance
could both be used in order to create a droplet size
filter which might be of some interest in microfluidic
experiments.
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