

TECHNICAL CHALLENGES IN CHOLESTEROL REMOVAL FROM DAIRY PRODUCTS Malik, P; Danthine, S; Paul, A; Blecker, C*

Food Science and Formulation Unit, Gembloux Agro-BioTech, University of Liege, Belgium

	INTRODUCTION				
TO REMOVE	LESTEROL	Reduce risk of diseases related to high cholesterol products	 Cardio Vascular Disea Cardio Vascular Disea in Type 2 Diabetes Type 2 Diabetes 		
NEED	CHO	Valorization of Dairy By- Products	Buttermilk Powder (R source of MFGM)	ich	
 Milk Fat Globule Membrane (MFGM) constitutes 2-6% of Fat globule Milk Fat Globule Membrane has around 2% cholesterol 					
Dieta	Dietary Cholesterol Intake Level Recommendation by WHO: < 300				

mg/ day

Dairy Cholesterol Benefits of removing Products content/ 100 g cholesterol **Fat Rich Dairy Products** 219 mg Butter **Low Cholesterol Products** 230-286 mg Butter oil Increase in market for health Cream 110 mg conscious consumers cheese **Industrial By-Products Exploring potential use in** Buttermilk 80 mg health food industry powder **Extend application in** pharmaceutical industry Liposome preparation

1. Most suitable method to remove cholesterol from dairy products :

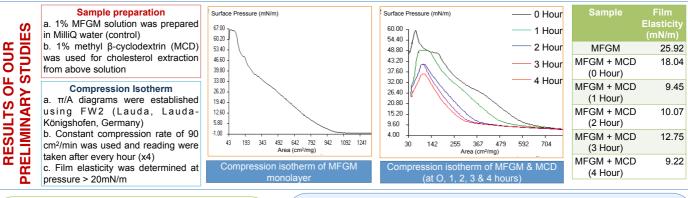
Studying the effect of cholesterol removal on suface properties -

Interfacial measurements, Study of monolayers, Interfacial rheology,

properties- Droplet size distribution, emulsion stability, microscopic

techno-functional

Role of cholesterol in membrane can be studied by:


Studying effect of cholesterol removal on

examination, viscosity, foaming properties

BENEFITS OF REMOVING CHOLESTEROL

COMPARISON OF DIFFERENT METHODS TO REMOVE CHOLESTEROL					
PROCESS	% REMOVAL	APPLICABILITY/ CHALLENGES			
Physical					
Vacuum Steam Distillation	75-93%	Formation of toxic oxidation products			
Short Path Molecular Distillation	70-90%	Low Molecular weight Triglycerides & flavor compounds distill out			
Supercritical Fluid Extraction	90-95%	Remove lipid-soluble components, flavor & nutritional components			
Biological					
Cholesterol Reductase	Upto 50%	Coprostanol is formed (poorly absorbed by humans)			
Cholesterol Oxidase	Upto 50%	Quality of milk is maintained (oxidation product- 4-cholesten-3-one)			
Complexation					
Saponin, digitonin, cyclodextrin	Upto 90%	Does not affect components of MFGM apart from cholesterol.			
Observices (Alex evideble for will, and will, and will,					

Chemical (Not suitable for milk and milk products)

FUTURE PROSPECT

2.

a.

b.

Complexation Process

Zeta potential

CONCLUSION

- 1. Film elasticity measures resistance to change in film area.
- Film elasticity of the MFGM-BCD film was found to decrease with time. Thus, removal of cholesterol reduces resistance to mechanical disturbances which is required for good foam and emulsion stability.

For more information contact at priyanka.malik@student.ulg.ac.be