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Security management under uncertainty:
from day-ahead planning to intraday operation
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Abstract—In this paper, we propose to analyse the pratical
task of dealing with uncertainty for security management by
Transmission System Operators in the context of day-ahead
planning and intraday operation. We propose a general but
very abstract formalization of this task in the form of a three-
stage decision making problem under uncertainties in the min-
max framework, where the three stages of decision making
correspond respectively to operation planning, preventive control
in operation, and post-contingency emergency control. We then
consider algorithmic solutions for addressing this problem in the
practical context of large scale power systems by proposing a bi-
level linear programming formulation adapted to the case where
security is constrained by power flow limits. This formulation is
illustrated on two case studies corresponding respectively to a
synthetic 7-bus system and the IEEE 30-bus system.

Index Terms—operation planning, intraday operation, security
management under uncertainties, transmission system operator,
worst case analysis, mathematical programming

I. OUTLINE

DAY-AHEAD operational planning as well as intraday
operation of power systems is affected by an increasing

amount of uncertainty due to the coupling of wind power
intermittency, cross-border interchanges, market clearing, and
load evolution. In this context, a deterministic approach that
consists of forecasting a single best-guess of the system
injections for the next day or hours, and of ensuring system
security along this trajectory only, becomes inappropriate. The
Transmission System Operator (TSO) will rather determine his
strategic decisions by considering a set of scenarios reflecting
his uncertainty and by making sure that under the worst of
these scenarios the system security is still controllable.

In this paper, we analyze the practical problem of security
management in operation planning and intraday operation of
large scale systems, and then formalize it in an abstract and
generic way as a multi-stage decision making problem under
uncertainties. We also propose and illustrate some practically
feasible algorithms to address this problem for large scale
systems. These algorithms are targeted towards solving a set
of manageable subproblems of practical interest.
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II. PRACTICAL STRATEGIES FOR DEALING WITH
UNCERTAINTIES FROM OPERATION PLANNING TO

INTRADAY OPERATION

In the practical context of operation planning and operation
of power systems, decision making is carried out in an iterative
fashion at different timeframes from day-ahead to minutes-
ahead. The objective is to ensure system security at the lowest
possible cost; the strategy to reach this objective is based on
the evaluation of possible future scenarios so as to identify
the most difficult ones and to determine strategic “ahead of
time” decisions enabling operators to cope with these difficult
scenarios during the next periods of time. In this context, a
reasonable and in practice commonly adopted strategy consists
in (i) searching in advance for the potentially most difficult
operating scenarios, and (ii) postponing the commitment of the
most costly actions at the latest possible time. This allows one
to identify in due time possible risks induced by uncertainties,
while taking advantage of the reduction of uncertainty over
time to assess again in due time whether or not some costly
decisions actually need to be implemented.

In day-ahead planning, the focus is on ascertaining whether
in the worst cases (very extreme patterns of power injections
and contingencies that could show up over the next day)
the operator will still have sufficient controllability of the
system to ensure the security of the system by combinations
of preventive/corrective actions. The concept is a ‘look-ahead’
security assessment dealing with uncertainty, aimed at de-
termining whether maintenance actions should be postponed
or accelerated and assessing whether additional Var or MW
reserves should be purchased for the next day. This problem
is most often seen as a feasibility problem rather than an
optimization problem. Indeed, the main problem here is to
verify and make sure that system security is still manageable
for the next day (or for the next hours).

In operation, progressively closer to real-time, the goal is to
postpone to the last moment the implementation of expensive
control actions. The problem becomes an optimization prob-
lem, with the objective to minimize costs of preventive actions
by preparing for corrective (post-contingency) controls.

In emergency mode, subsequently to a contingency, the job
is to apply heroic actions to avoid cascades and subsequent
blackouts. These corrective actions need in practice to be
prepared in advance, and possibly activated automatically,
given the small amount of time available to apply them.

To address these three types of problems coherently at
the different time-frames, engineers establish at each deci-
sion making stage a set of “plausible” scenarios. This set
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of scenarios represents their uncertainties around the best-
guess scenario of future evolution. They exploit them to first
check that enough control resources will be available for the
subsequent stages to cope even with the worst scenarios during
operation, and if this is not the case to decide on the actions
that need to be taken at the current time step.

In the next section we provide an abstract theoretical view
of this decision making problem.

III. ABSTRACT FORMULATION AS A THREE STAGE
DECISION MAKING PROBLEM UNDER UNCERTAINTIES

Figure 1 sketches how day-ahead operation planning under
uncertainty may be formalized in the form of a three stage
sequential decision making problem, where the successive
stages correspond to different decision variables, namely
• up ∈ Up, denotes the strategic planning decisions that

must be taken the day ahead (or possibly postponed) such
as reserve purchase and/or maintenance rescheduling;

• uo ∈ Uo, denotes the preventive control actions that may
be taken in normal operation to ensure security, such as
topology switching, generation rescheduling, Var-control;

• ue ∈ Ue, represents corrective controls that may be
applied in emergency mode, after the occurrence of a
contingency (e.g. fast generation control, load shedding).

In combination with these decision steps, the figure describes
the possible future system states in the form of a tree, where
the successive branchings correspond to the exogenous factors
influencing the system state, namely
• scenarios s ∈ S, where S represents typically the uncer-

tainty about power injections for the next day;
• contingencies c ∈ C, where C typically represents a list

of generator or line trips, defining security criteria.
Once the sets Up, S, Uo, C and Ue are well defined in this
setting, the task of the operation planning engineer is to
choose up ∈ Up such that for each scenario s ∈ S the best
combination of preventive controls uo(up, s) ∈ Uo (dependent
on the decision up and scenario s) and of corrective post-
contingency controls ue(up, s, uo, c) ∈ Ue (also dependent
on the contingency c and on the selected preventive control
uo) lead to an acceptable system performance. This task may
be abstractly formulated as a three-level min-max problem
described by the three equations of Figure 1, where
• the bottom equation models the task of emergency

(post-contingency) control, as a minimization of post-
contingency system degradation (measured by the func-
tion fe) w.r.t. to ue; fe in this equation could incorporate
hard and soft constraints to model the acceptability of
emergency mode behavior of power systems,

• the central equation models preventive control, as a
tradeoff controlled by λe between costs and constraints
of preventive control (measured by function fo) and of
the worst-case post-contingency degradation, and,

• the top equation models the operation planning decision
making problem, in the form of trading off the cost of
strategic decisions up and security of operation under the
worst-case scenario, a tradeoff controlled by λo.

Obviously, the formulation may be rephrased for modeling in-
traday operation, and it could also be extended by introducing
additional intermediate decision steps, but the essence of the
problem is captured by this formalization.

u∗p = arg min
up∈Up

(
fp(up) + λo max

s∈S
f∗o (up, s)

)

f∗o (up, s) = min
uo∈Uo

(
fo(up,s,uo)+λe max

c∈C
f∗e (up,s,uo,c)

)

f∗e (up,s,uo,c) = min
ue∈Ue

fe(up, s, uo, c, ue).

Fig. 1. Schematic overview of the three-stage decision making process under
uncertainties (here applied to day-ahead operation planning)

To precisely define the above problem, the sets Up, Uo, Ue,
the functions fp, fo, fe, and the uncertainty sets C and S
must be chosen. In this context, a main difficulty is to define
the set S of uncertain scenarios to be covered by operation
planning decisions. In the following subsections we focus on
this question and provide some tractable mathematical pro-
gramming formulations addressing it. Our formulations also
aim at formalizing the problem solving strategy of operation
planning engineers. We present them by gradually reducing
the formulation of Figure 1 to simpler subproblems.

IV. PRACTICAL SOLUTION APPROACHES

The abstract formulation of Section III expresses in a
compact and very generic fashion the general problem of
operation planning and intraday operation under uncertainty.
The compact nature of this problem formulation however hides
the huge algorithmic complexity of the underlying family of
optimization problems which, as a matter of fact, are currently
not amenable to an exact solution for large-scale power
systems with realistic computing resources. This formulation
also hides the fact that in practice the a priori specification of
a relevant set S of uncertain scenarios is difficult.

In order to provide computationally realistic approaches,
potentially useful in practice, we propose in the following
subsections adaptations simplifying (or relaxing) the overall
problem, so as to derive scalable optimization strategies that
may help to construct approximate solutions to this overall
problem with reasonable amounts of computing resources, and
help to define appropriate uncertainty sets S.
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A. Day ahead feasibility checking instead of optimization

The first, important, simplification that we propose is to
explicitly reduce the day ahead (upper layer) optimization
problem to a feasibility checking problem rather than an opti-
mization problem. Thus, we propose that instead of searching
for an optimal day ahead decision u∗p as defined in Figure 1, it
is more productive to consider the problem of checking for a
given day ahead decision (say ūp) whether or not the system
security will be manageable for the next day.

In other words, we ask whether or not for all scenarios
s ∈ S, the possible combinations of preventive and corrective
controls enabled by ūp will be sufficient to maintain the
system in acceptable conditions during the next day, even if
they would be very costly. Mathematically, we formulate this
problem in the following way:

max
s

min
u
| δ | (1)

s.t.





s ∈ S

u ∈ (Uo)T × (Uc)T |C|

F (x, u, s) = 0
C(x, u, s) ≤ δL,

where

• for notational simplicity we have dropped the dependence
of the problem on the given value of ūp;

• u ∈ (Uo)T × (Uc)T |C| denotes the vector of preventive
and corrective control decisions, T being the number of
time steps used to model the next day operation and | C |
the number of contingencies;

• x ∈ (X)T × (X)T |C| is a vector of state variables
jointly representing the possible pre-contingency and
post-contingency states of the system at each time step
and for each contingency (X denotes the state space of
the power system);

• the vector function F (x, u, s) models the power balance
equations in the pre-contingency and also in the post-
contingency states implied for each time step by any
element c ∈ C;

• the vector function C(x, u, s) and vector of limits L
model similarly the pre- and post-contingency constraints
that need to be satisfied at every time step, for every
scenario, and for each contingency;

• δ is a vector of “slack” variables ensuring feasibility
of the mathematical problem by multiplying component-
wise the vector of limits L; if some of its components
at the optimum are larger than 1 this means that the
operational problem is not feasible;

• we have, for the sake of simplicity, dropped the dynamic
constraints that link preventive and corrective controls at
different time steps;

• s ∈ S, where S describes the uncertainties about the pos-
sible scenarios. Notice that uncertainties are in practice
described by at set of possible time series ranging over
the considered decision horizon {t ≤ T}.

B. Discussion

This problem formulation1 aims at checking whether for
the given choice of decisions ūp and for any scenario s ∈ S
there would exist combinations of next day preventive and
corrective control actions to ensure security with respect to all
contingencies c ∈ C, given the available control means.

At this stage, it is important to notice that the hard equality
constraints F (x, u, s) = 0, which are imposed in our mathe-
matical problem formulation of Eqn (1), will implicitly restrict
the consideration of the subset S̄(F, Uo, Ue) ⊂ S of scenarios
for which these constraints may be satisfied given the physical
model (defined by the power balance equations F ) and the
hard constraints on control resources defined by Uo and Ue.
Thus, the solutions s∗ defined by Eqn (1) actually correspond
to the most constraining scenarios in S among the subset S̄
of those that are still compatible with the existence of an
equilibrium (pre-contingency, and post-contingency for each
c ∈ C) as imposed by F (x, u, s) = 0.

At first sight, this formulation may seem restrictive and
counterintuitive, since imposing the constraints F (x, u, s) = 0
is tantamount to shadowing the seemingly worst subset of
scenarios out of the optimization problem, i.e. those for which
the basic physical laws can not be respected anymore. On the
contrary, we believe that it is actually very reasonable and, as
a matter of fact, essential to impose these physical feasibility
constraints on the subset of uncertain scenarios that should
be considered in the decision making procedure. Indeed, the
existence of scenarios in S for which the physical model is
not satisfiable would mean that either the physical model F or
the uncertainty set S are to be questioned. Although we will
not pursue along this direction in this paper, let us notice that
it is possible to formulate alternative optimization problems
by removing the inequality constraints C and relaxing the
equality constraints F instead, in order to explicitly check for
the incompatibility of the physical model F and the postulated
uncertainty set S.

On the other hand, the relaxation of the security constraints
C(x, u, s) ≤ L together with the used objective function imply
that, if the optimal values of all components of the vector δ are
not larger than 1, then for all those scenarios in S which are
compatible with the existence of a control strategy ensuring
F (x, u, s) = 0, also the security limits may be respected.
If this is not the case, it means that there exist scenarios
which are not manageable by using solely the preventive and
emergency control resources during the next day; thus the
planning engineer will have to find substitutes for ūp in order
to ensure feasibility of the problem with δ ≤ 1.

The solution of problem (1) provides the most constraining
scenario(s) s∗; they may be used to find alternative decisions
ũp 6= ūp (if δ∗ > 1), or to alert operators. The search for
decisions ũp and operation are greatly facilitated, once the
worst scenarios have been identified.

1To fix ideas, if we consider a power system with on the order of N
elements (lines or nodes), we will have | C |= O(N) and dim(Uo) = O(N)
as well as dim(Uc) = O(N) and dim(X) = O(N). Thus the size of the
space within which the above optimization problem is formulated isO(TN2).
For the sake of simplicity, we will assume in the rest of this paper that T = 1,
and hence drop the time index form our notations.
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C. Problem decomposition

To have a well-conditioned optimization problem, it is a
bad idea to mix different types of constraints for example
overload and voltage constraints that would lead to conflicting
objectives and hence yield multiple local optima of the global
problem defined by equation (1), and among which it would
be very difficult to extract one single meaningful worst-case
scenario s∗ for subsequent decision making.

Thus, in a practical implementation, we suggest to decom-
pose the overall problem into physical subproblems and to
compute separately a set of worst-case scenarios correspond-
ing to these different physical subproblems. Notice that since
we focus on feasibility rather than optimization at this stage,
such a decomposition makes sense. Indeed, if all physical
subproblems are feasible, then the overall problem is feasible
as well. On the other hand, if we identify several subproblems
that need a change of the value ũp to become feasible, we
believe that the problem of finding a single new ũp that
complies with all constraints for all the identified constraining
scenarios is manageable by engineering expertise.

Concerning the set of inequality constraints C(x, u, s) in
Eqn (1), we can as well choose among different options.
Thus, we could reduce δ to a scalar variable in (1) or, for
a given subproblem, restrict the set of constraints to a subset
of constraints that are related to an a priori known weak-point
of the system for that subproblem. In this latter case, we would
model the fact that δ∗ should only be impacted by a single (or
a small number of) a priori given and “comparable” constraints
Ck, by replacing the overall vector of inequality constraints by
some constraints of the type

Ck(x, u, s) ≤ δLk. (2)

The general objective formulated by equation (1) takes into
account a set of contingencies and deals with the computation
of the associated corrective actions. Even with the above sug-
gested reductions, it remains a very huge problem impossible
to solve for large-scale power systems. In the next section we
consider implementations of solution approaches, and to this
end we propose to solve the problem separately for each single
contingency. The results are then the preventive and corrective
actions and most constraining scenario for each contingency. If
several contingencies require preventive actions, we normally
need to compute the common optimal set of preventive actions
but, again, as our main objective is to check the feasibility, we
only need to find a possible common set of preventive actions.

Building on these ideas, we the following section presents a
possible implementation to solve this problem in the restricted
context of line overload constraints.

V. PREVENTIVE/CORRECTIVE ACTIONS ASSOCIATED TO
LINE OVERLOAD PROBLEMS

For line overload problems, it is possible to find a practical
implementation which determines extreme scenarios given the
strategic decisions. The solution strategy that we propose
determines u∗o and u∗e and s∗ for each contingency c in C
with the algorithm given in Table I.

TABLE I
ALGORITHM FOR SEPARATELY COVERING SINGLE CONTINGENCIES

do (for a given contingency c ∈ C):
1) determine a worst case scenario s?

c(ūo) associated to c based on using
only corrective controls (problem (3) with ūo fixed a priori) and its
corresponding value of δ?(c, ūo);

2) if preventive controls changes are required for contingency c (i.e. if
δ?(c, ūo) ≥ 1), determine u?

o(c), u?
e(c), V ?(c), V ?

post(c) s.t. :
• the preventive control change ∆uo = uo − ūo is minimized,
• preventive constraints C(V, uo, s?

c(ūo)) ≤ Lo are enforced,
• emergency constraints Cpost(Vpost, uo, ue, s?

c(ūo)) ≤ Le are
also enforced.

foreach contingency c in C.

where
• Lo, Le denote respectively security thresholds in the preventive state

and in the emergency state. (The system state can remain indefinitely
below limit Lo, and about Te seconds below Le.)

• V , Vpost stand respectively for the complex voltage vectors “before
c and ue”, “after c and ue” and match the nodal power balances
F (V, uo, s) = 0, Fpost(Vpost, uo, ue, s) = 0.

In this procedure, the first step consists of determining for a
contingency c the worst-case scenario by checking whether by
using only emergency control resources the problem is indeed
manageable. We formulate this problem in the following way
as a bi-level mathematical programming problem:

δ?(c, ūo) = max δ (3)

s.t.





s ∈ S

C(V, ūo, s) ≤ Lo

F (V, ūo, s) = 0
δ ≤ δ?

c

(δ?
c , u?

e) = arg min
(δc,ue)

δc

s.t.





ue ∈ Ue

Cpost(Vpost, ūo, ue, s) ≤ δcLe

Fpost(Vpost, ūo, ue, s) = 0.

In problem (3) the preventive control ūo ∈ Uo is a
fixed parameter, and the constraints C(V, ūo, s) ≤ Lo and
F (V, ūo, s) = 0 are imposed over the set of possible scenarios,
thereby restricting them to those that will lead to realistic and
viable pre-contingency states.

If problem (3) leads to a value of δ?(c, ūo) > 1, it means
that for contingency c there are some scenarios for which
security can not be managed only via emergency control.
Adjustment of preventive controls are then computed in the
second step of the algorithm, based on the most constraining
scenario s∗c(ūo) identified at the first step. If during this second
optimization process, the problem is unfeasible (for at least
one contingency), adjustment of strategic decisions up are
required.

Notice that the determination of the worst uncertainty pat-
tern for a contingency requires defining a measure to quantify
the worst operating conditions. A natural choice is to express
the worst operating conditions in terms of the maximum
overall amount of post-contingency constraint violations (e.g.
branch overloads).
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The procedure described in this section decomposes the
security analysis problem under uncertain scenarios into sub-
problems formulated with respect to a single contingency; in-
deed, if at least one of these contingency specific optimization
problems turns out to have no solution combining preventive
and emergency controls covering all uncertain scenarios, it
reveals that day ahead strategic decisions must be taken. In
this paper, for sake of simplicity, we do not consider the
adjustment of preventive controls to the realization of uncertain
scenarios, which would be mandatory in order to claim that
the system state is “safe”. Our definition of safety means
that for all uncertain scenarios, after implementing preventive
and corrective actions, all the constraints are satisfied for all
contingencies.

On the other hand, even if each subproblem posed for each
contingency is found to have a satisfactory solution combining
preventive and emergency controls, it does not yet imply the
existence of a single preventive control decision common to all
preventively feasible (and preventively secure) scenarios that is
able to ensure that for all these scenarios all contingencies may
be covered by their associated emergency control actions. We
leave these two questions of “synchronizing” the preventive
control decisions with uncertainties and contingencies for
future research.

A. Discussion

Each worst-case scenario, regardless of its association to
a contingency, contains a degree of arbitrariness, due to the
choice of the criteria to be maximized. Nevertheless, it is
possible to identify two characteristics that are, arguably,
reasonable and necessary.

Consider the value of the objective function of (3) at the
optimum as determined by the choice of the sets S and Ue;
in general this value should increase with the size of the
uncertainty set S and decrease with the size of the emergency
control action set Ue. More precisely, the following two
properties should hold true:

S′ ⊂ S ⇒ δ∗(S′, Ue) ≤ δ∗(S,Ue), (4)

U ′
e ⊂ Ue ⇒ δ∗(S, U ′

e) ≥ δ∗(S, Ue). (5)

In the most general case (i.e. AC power system model), to
ensure the property (4), we must suppose that a non linear
max/min algorithm can always reach the global optimum. But
this may not even be sufficient to obtain the property (5).
Suppose, for instance, that, for a given s′ ∈ S, the constraint
Fpost(Vpost, u0, ue, s

′) = 0 is feasible for some ue ∈ Ue but
not for any ue ∈ U ′

e. It means that the value s = s′ has never
been considered in the calculation of δ∗(S, U ′

e), so nothing
guarantees that the global optimum δ∗(S, Ue) does not occur
at s = s′ with δ∗(S,U ′

e) < δ∗(S,Ue).
As mentioned in [1], problem (3) describes two decision

makers: the leader who controls the variables δ and s and
the follower who controls the remaining variables. Both have
their own objective function and constraints. The follower’s
decisions depend on the leader’s decisions, but are not re-
strained by the leader’s constraints. It is prohibited for the

leader to make decisions that would violate his constraints,
when combined with the follower’s decisions.

VI. HOW TO FURTHER SIMPLIFY THE PROBLEM ?
When the problem (3) is expressed only through linear

relations (i.e. if functions F and C are obtained from the DC
approximation, and if the set S of scenarios and the set Ue of
possible emergency controls are linearly constrained subsets
of some vector space), it falls in the linear max-min problem
category ([1]) in which the objective function of the follower
is the opposite of that of the leader and in which the second-
level variables do not appear in the first level constraints
C(V, u0, s) ≤ L0 and F (V, u0, s) = 0.

Moreover, two very nice features appear in the linear case.
Indeed, (i) the formulation of (3) makes the follower problem
always feasible and (ii) the global optimum can be obtained
thanks to an equivalence of the optimization problem with
a manageable MILP (Mixed Integer Linear Programming)
problem for which standard solvers do exist. Consequently,
in the linear case the formulation turns as well out to meet the
requirements (4) and (5) discussed above.

Indeed, in the linear case, problem (3) can be generically
written in the following fashion:

max
x,y

c1tx + d1ty

s.t. A1x + B1y ≤ 0,

x ≥ 0,

y ∈ arg max
y

c2tx + d2ty,

s.t. A2x + B2y ≤ 0,

y ≥ 0,

(6)

which is equivalent to the classical linear complementary
problem (7):

max
x̃

c̃ x̃

s.t. Ãx̃ ≤ 0,

Mx̃ + q ≥ 0, x̃ ≥ 0
x̃t(Mx̃ + q) = 0.

(7)

where

x̃ =




x
y
λ


 b̃ = b1 c̃ =




c1

d1

0


 q =




0
−d2

b2


 (8)

Ã =
[
A1 B1 0

]
M =




0 0 0
0 0 B2t

−A2 −B2 0


 (9)

We can solve (7) due to the property: there exist a large
constant L > 0 such that each solution of (7) is a solution
of the MILP problem (10):

max
x̃

c̃ x̃

s.t. Ãx̃ ≤ 0,

x̃ ≥ 0, Mx̃ + q ≥ 0
x̃ ≤ Lu, Mx̃ + q ≤ L(1− u)
u binary vector

(10)
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The matrices A1, A2, B1, B2 and the vectors c1, c2, d1, d2

are detailed in the appendix, where the proof provided by [1]
is summarized.

VII. NUMERICAL SIMULATIONS

To illustrate the ideas exposed in this paper, we use two
examples built with two small transmission networks.

We first consider a simple 7-bus system where the outage of
a line requires both preventive and emergency control actions
in order to cover the worst-case scenario.

Next, we use a modified version of the IEEE 30-bus system,
to illustrate a situation where in the worst-case there exists no
combination of preventive and corrective actions that solve
the problem, thus requiring the call for strategic day ahead
decisions.

A. 7-bus system

Figure 2 shows a simple 7-bus system that we have designed
for the purpose for this paper.

Two generators (labels u1
o and u2

o) are committed to supply
a load (P2). All line current thresholds Lo and Le are respec-
tively fixed to 30 and 40 p.u. There are two phase-shifting
transformers (u1

e and u2
e).

We study a contingency corresponding to the outage of the
dashed line of Fig. 2 with respect to the uncertainties induced
by the power injections s1, . . . , s4. In our simulations the range
of uncertainties is limited only by the set of system constraints
in preventive mode, which implies that the power balance
remains satisfied (i.e. s1 + s2 + s3 + s4 = 0) and that the
permanent power flow limits Lo are respected.

2
s


1

e
u
 2


e
u


3
s
 4
s


1
s

1


o

u


2
P

2

o
u


Fig. 2. 7-bus system with uncertain nodal injections, represented by the
variables s1, s2, s3, s4

In our illustration, we suppose that preventive control deci-
sions u1

o and u2
o correspond to the changes of the two generator

schedules, while the emergency control decisions u1
e and u2

e

correspond to the phase shifts of the two transformers (see
Fig. 2). To construct a base we have determined a configuration
of values si saturating the preventive security constraints. The
corresponding scenario s∗o is given in Table II (we will denote
the associated preventive control settings by ūo).

Table III provides the results (in terms of degree of post-
contingency constraint violations) of three successive simu-
lations. In the first line, we kept ∆uo = 0 (uo frozen to its
value ūo), and ∆ue = 0 (no emergency control resources); the

TABLE II
PREVENTIVELY WORST SCENARIO s∗o

smin smax s1 s2 s3 s4

−103 +103 −40 +66.66 −40 13.33

value of δ reflects the post-contingency constraint violations
for a worst-case scenario s∗1, when preventive controls are
adjusted to cover the worst preventively acceptable scenario
and no emergency control is used later on. In the second
line, we still assume that ∆uo = 0, but allow emergency
controls (phase shifters) to react optimally to scenarios. The
value of δ > 1 shows that the even under emergency control,
there is a scenario s∗2 that is preventively secure but still
leads to unmanageable post-contingency constraints. Finally,
the last line of the table shows the result when the latter
scenario s∗2 is frozen to the value computed at the previous
stage, and when we search for a combination of preventive
and emergency controls to satisfy both preventive and post-
contingency constraints given this scenario, while minimizing
the deviation of uo with respect to ūo. It shows that the
scenario s∗2 may be covered by a combination of preventive
and corrective controls.

We observe that in this problem it was necessary to call for
a combination of preventive and emergency controls to cope
with the worst scenario.

TABLE III
7-BUS SYSTEM: WORST-CASE SITUATION ASSOCIATED TO THE OUTAGE OF

THE DASHED LINE

Maximum flow Preventive actions Corrective actions
δ ∆u1

o ∆u2
o u1

e u2
e

1.137 0 0 0 0
1.087 0 0 +20 −20
1.000 −18.41 +18.41 +20 −20

Phase shifter transformers upper and lower bounds (+20 and
-20 degrees) are all reached on this example, as indicated by
the columns u1

e and u2
e of Table III. The maximum flow values,

before and after outage of the dashed line, occur on the left
horizontal line on Fig. 2.

B. 30-bus system

Our second illustration is based on the IEEE 30-bus system
depicted on Figure 3. We have upgraded the system with three
phase-shifting transformers (PSTs) as shown on the one-line
diagram of Figure 3. Their location is inspired by Reference
[10], which suggests that these are the optimal locations for
placing a small number of PSTs in this system. The three
(identical) PSTs have thus been installed in series with the
lines originally defining the branches 15-18, 10-22 and 24-25.
We supposed that their phase shift ranges for our illustration
should be constrained to +/-20 degrees.

In our analysis, we consider again a single contingency,
namely the outage of line 4-6, and we suppose that security
constraints apply only on the currents of the lines where a PST
is installed, with the limits Lo, Le respectively fixed to the
values 6.0 and 7.2. The uncertainty is modeled by considering
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independent variations of all the loads at all the buses in the
range [-20%,+20%] from their base case value.

We made a first simulation without using any post-
contingency controls while using the possibility to reschedule
generation power in the pre-contingency state. The results are
given in Table IV.

TABLE IV
30-BUS SYSTEM: WORST-CASE SITUATION ASSOCIATED TO THE BRANCH

OUTAGE 4-6 WITHOUT ACTION OF PST

PST post-contingency state
branch flow (p.u.) phase shift (degrees) flow (p.u.)
15− 18 +4.42 0 +9.40
10− 22 +6.00 0 +5.24
24− 25 −3.43 0 +0.28

Fig. 3. Modified IEEE 30-bus system; adapted by adding three phase-shifting
tranformers

These results show that (see first line), in the worst case
the branch 15-18 will be severely overloaded if no post-
contingency controls are solicited.

In order to see whether a combination of preventive and
emergency controls could solve the problem, we applied the
full procedure of Table I to this problem. The resulting
optimum is described in Table V. We observe that the problem
is still ‘infeasible’ since the solution leads to current flows on
branch 15-18 which are still above the acceptable limit of 7.2
(see first line), while the current at the optimum in line 10-22
has been increased with respect to the result of Table IV.

TABLE V
30-BUS SYSTEM: WORST-CASE SITUATION ASSOCIATED TO THE BRANCH

OUTAGE 4-6 WHEN PST ACT

PST post-contingency state
branch flow (p.u.) phase shift (degrees) flow (p.u.)
15− 18 +4.42 +20 +8.35
10− 22 +6.00 −20 +6.74
24− 25 −3.43 +20 −0.49

The latter example provides an illustration of a case where,
without changing the strategic decisions up, it is not possible
to ensure system security for at least one contingency and for
the worst scenario for this contingency.

VIII. RELATED WORKS

So far the worst-case operating conditions of a power
system under operational uncertainty have been tackled in the
literature in the framework of security margins [2], [4], [5],
[3]. These approaches look for computing minimum security
margins under operational uncertainty with respect to either
thermal overload [5], [3] or voltage instability [2], [4], [5].
These approaches belong to the class of min-max optimization
problems since a security margin represents by definition the
maximum value of a so-called loading parameter for a given
path of system evolution.

Ref. [2] computes the closest infeasibility to a given op-
erating point by defining the feasible region in the power
injection space as the set of all power injections for which
the load flow equations have a solution. A minimum margin
is defined and computed using the constrained Fletcher-Powell
minimization. Ref. [4] proposes an iterative and a direct
method to compute the locally closest saddle-node bifurcation
to the current operating point in the load power parameter
space. The Euclidian distance is used to compute the worst-
case load increase causing the system to lose equilibrium.
Ref. [5] extracts information from unstable voltage trajectories,
such as the left eigenvector to the point of collapse, in order
to iteratively “redirect” the worst uncertainty pattern.

The case where the feasible region is bounded by inequality
constraints stemming from branch current limits (instead of
bifurcations as for voltage instability) is considered in [5],
[3]. Ref. [3] proposes a method to find the thermal-constrained
interface maximum transfer capability under the worst scenario
in generation-load space. The min-max interface transfer is
obtained as a bi-level optimization problem whose constrains
are derived from the DC load flow equations. The bi-level
optimization problem is solved by the branch and bound
method. Ref. [5] computes minimal thermal security margins
by using a heuristic enumerative approach which relies on
the sensitivities of branch currents with respect to uncertain
parameters.

IX. CONCLUSION

In this paper we have analyzed the task of dealing with un-
certainties for security management of electric power systems
in an integrated way from day-ahead to real-time, with the
objective of proposing a unified framework and deriving opti-
mization problem formulations to make this problem amenable
to practicable solutions.
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In our understanding, the problem faced by operation
planning engineers is essentially a feasibility problem: they
must check and ascertain the day ahead that the next day
the operators will be able to manage the system security
with the control resources they will dispose of, even in the
worst possible scenario, given a reasonable definition of the
uncertainty set that needs to be covered.

Uncertainty sets, in this context, are composed of combina-
tions of operating scenarios and contingencies. The definition,
in a rational way, of the operating scenarios and the contin-
gencies, that need to be ‘covered’ in power system operation
is a matter of debate, and in this paper we did not intend
to provide any direct guidelines to chose them. Rather, we
have proposed a framework for assessing security and deriving
decision strategies, once these sets are provided.

We have proposed a generic ‘min-max-min’ formulation of
the day-ahead security control problem, which highlights the
role played by uncertain scenarios about operating conditions
that need to be taken into account, as well as the constraints
imposed by contingency sets used to define security of oper-
ation.

Since, with current computational resources and state-of-
the-art optimization methods, this overall problem is not
practically solvable for large scale power systems, we have
proposed in this paper a sequence of problem simplifications
which make it possible to find solutions of very much simpli-
fied versions (e.g. by considering only a single contingency at
the time and by restricting to problems of branch overloads) to
determine a reasonable worst-case scenario and its associated
combination of preventive and emergency controls. While
limited in scope, the resulting algorithms already constitute a
significant progress, since they allow to identify constraining
scenarios for the next day in a systematic way.

We have left open voltage stability and dynamic security
problems and the difficulty of finding a single preventive con-
trol strategy able to cover several contingencies and instability
phenomena.

Future work will be based on looking back at the overall
problem as a huge simultaneous constraint satisfaction prob-
lem over combinations of “scenarios”, “contingencies”, and
constraining power system “elements”.

We indeed believe that looking at this problem in a very
global way may provide new insights and suggest new possible
solution strategies based on the analysis of the correspondingly
very large number of possible problem relaxations.
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APPENDIX A
BILEVEL AND MIXED LINEAR PROBLEM FORMULATIONS

From the definition of problem (3), the unknown vectors of
the BLP problem encompass :
• x, the pre-contingency phase angles and uncertainties ex-

pressed as variations of nodal active loads or generations
• y, the scalar variable δ(= δc), the post-contingency phase

angles and dummy injections representing the phase
shifters

The max/min behaviour is obtained by fixing c1 = c2 = 0
and taking d1 = −d2 such that d1tx = δ. While the leader
constraint A1x ≤ 0 models the pre-contingency nodal power
balances and maintain in absolute value the flows below L0

(without any action of the PST since B1 = 0), the follower
constraint A2x+B2y ≤ 0 models the post-contingency nodal
power balances and the fact that the absolute value of the
flows are lower than δL1. The remaining components of x
and y are positive slack variables used to enforce via the
matrices A1, A2 the validity ranges of angle and active power
quantities. The second-level problem of (6) has been replaced
in (7) by its complementary slackness conditions where the
dual variables are denoted by λ. The strong duality theorem
states that if either the primal or dual problem has a finite
optimal solution so does the other. The specific form of (6)
deduced from (3) makes finite each feasible couple (x,y),
it follows that each optimal solution x̃? is bounded, so the
constant L = max(‖x̃?‖∞, ‖Mx̃?+q‖∞) always exists. If we
denote by ũ? the vector whose the i-th component is equal to
one if x̃?

i > 0 and zero otherwise, (x̃?,ũ?) is a feasible solution
of (10). Conversely, each feasible solution of (10) satisfies
the constraint xt(Mx + q) = 0. It implies that the optimal
objective function values of the problems (6), (7), (10) are
equal when L is large enough ( for instance, L is fixed to 103

in Section VII ).


