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Abstract 

Stainless steel bioreactors increasingly give way to their disposable counterparts in 

pharma research as no cleaning or sterilisation is required. This led company ATMI 

LifeSciences to develop the “NucleoTM”. Original in design, this disposable bioreactor 

comprises a rectangular parallelepiped plastic bag stirred by a paddle revolving in elliptic 

pendulum motion. Studies covering this bioreactor showed good homogeneity of culture 

medium as well as good productivity for animal cell cultures. To further explain these good 

performances, the flow inside the “NucleoTM” must be resolved.  This paper focuses on the 

mean flow description, computed from stereo-PIV measurements performed in 20 vertical 

covering the whole volume of a 50 dm³ NucleoTM bioreactor.  As the flow is already turbulent 

in the chosen agitation conditions, its dimensionless mean velocity field does not vary with the 

paddle rotational speed. Mean flow pattern exhibits an axial symmetry – same flow is observed 

in opposite quarters of the tank – and can be described as a three-dimensional helix coiled on 

itself to form a distorted horizontal torus which covers the whole tank volume. Mean velocity is 

on average twice higher in the cone swept by the paddle and its two horizontal components are 

twice the vertical one. However, mean velocity remains significant everywhere and, in 

particular, no stagnant area is observed in tank corners. Above outcomes thus confirm previous 

studies observations. 
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1. Introduction 

In recent years, a significant shift towards disposable bioreactors occurred in pharma 

research. Dedicated to one animal cell culture, they usually comprise a closed and sterile plastic 

bag attached to a steel structure and equipped with connections for introducing culture medium 

and various probes. As their use brings many benefits, they have been gradually replacing their 

steel counterparts [1]. The most obvious advantage is removing two costly steps, i.e. washing 

and sterilisation between production campaigns, which in turn reduces global environmental 

impact in spite of higher solid waste [2]. Other major strategic advantages are a significant 

reduction in time required to build and validate a new production facility together with higher 

flexibility in the production capacity [2].  

Recognizing high potential in this market, many companies developed disposable 

bioreactors, such as the SUB (Hyclone), the Xcellerex (XDR) or the BioStat STR (Sartorius 

Stedim) amongst stirred versions, which hold to the conventional geometry of steel devices. 

Others have original design.  It is the case of the disposable bioreactor studied in this paper, the 

NucleoTM bioreactor commercialized by ATMI LifeSciences.  As illustrated in Figure 1, device 

comprises a rectangular parallelepiped plastic bag stirred by a paddle integrated in the bag and 

covered by the same multilayer polymer. When oxygen supply is required, a sparger is fitted at 

the lower end of the blade. The bag rests in a stainless steel frame. The blade is connected to 

the motor through a metal rod which fits into the hollow axis of the blade. The blade is inclined 

at 13.5° with respect to the vertical and therefore draws an elliptical pendulum trajectory in the 

vessel, as illustrated in Figure 2. The motion of the paddle through the bag can be visualized in 

the video available on the electronic version of this paper.  The bag is equipped with several 

disposable sensors (pH, dissolved O2, etc.) and with several sterile connections to enable gas 

injection and exhaust, to add the culture medium or for sampling. 

 
Figure 1: Design of the NucleoTM  disposable bioreactor. 
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This original stirred bioreactor is a joint development by companies ATMI 

LifeSciences, Pierre Guerrin and Artelis, which aims at a better answer to specific requirements 

of animal cell culture. Indeed, as other microorganisms, animal cells require a constant 

physico-chemical environment, which means good homogenisation and aeration of the culture 

medium. However, unlike bacteria or yeast, animal cells do not possess a rigid cell wall but a 

fragile plasma membrane, which leads to consider them as particularly shear-sensitive. 

Mechanical constraints generated inside the culture medium due to its mixing and aeration 

must thus be as small as possible [3] [4]. Fulfilling these two opposite requirements becomes 

even more of a challenge in anchorage-dependent cell culture, i.e. when cells are fixed on the 

surface of microcarriers. So as to maximize surface available for cell development, the latter 

must remain in complete suspension in the culture medium but will also collide with each 

other, thus creating additional mechanical constraints.  

Studies show that the NucleoTM, thanks to its original design, reconciles (i) liquid and 

solid homogenisation and (ii) minimising mechanical constraints on cells. As a matter of fact, 

even at low paddle motion (i.e., 30~40 rpm), good homogeneity of the culture medium, total 

dispersion of the gas phase and effective suspension of microcarriers are observed [5][6][7][8]. 

Efficient animal cell culture was also showed in this bioreactor for free suspended cells [9] as 

well as anchorage-dependent cells [10]. Furthermore, as research performed by Goedde et al. 

[9] highlights, cell concentration and secreted protein production are at least 30% higher with 

the NucleoTM disposable bioreactor, as opposed to conventional steel stirred bioreactors under 

equivalent operating conditions.  

Although above performances were experimentally observed, their theoretical basis has 

yet to be clarified further. Also, the US Food and Drug Administration promotes an approach 

labelled “Quality by design” [11] in characterising new biotechnological processes. Per said 

approach, new processes should no longer be developed empirically but on the basis of robust 

models which represent as closely as possible the physics, the chemistry and the biology 

involved in the process. 

A key step in the development of such a model for the NucleoTM disposable bioreactor 

is to get a detailed description of the flow produced by the elliptic pendulum motion of the 

paddle in the rectangular parallelepiped bag filled with medium culture. Recent flow studies 

inside other disposable bioreactors show the industrial and scientific interest for this 

information. Therefore, Nienow et al. [12] have studied by MRF RANS simulation the flow 

inside ambrTM (TAP Biosystem) which is microscale (15 cm³) rectangular parallelepiped 

bioreactor mixed by Elephant Ear impeller.  Odeleye et al. [13] investigated by PIV. the flow  
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in MobiusTM Cell Ready 3 dm³ Bioreactor (Merck Millipore), which looks like a traditional 

unbaffled stirred tank mixed by a marine propeller.  Kaiser et al. [14] simulated, by MRF 

RANS approach, the flow in BIOSTAT® STR 50 dm³ (Sartorius Stedim) and Univessel® 2 dm³ 

(Sartorius Stedim); these both disposable bioreactors are mixed by one Elephant Ear impeller 

and one Rushton turbine. The first disposable bioreactor has however a particular bottom shape 

while the second disposable bioreactor looks like traditional baffled bioreactor. To mention a 

last example, Shipman et al. [15] studied par PIV the flow in an oscillatory flow mixer 

consisting of a pair of flexible chambers connected by a perforated plate.  Even if the scientific 

literature on the subject is continuously increasing, to the authors’ best knowledge, no study 

describing the flow in an equivalent configuration as NucleoTM disposable bioreactor was 

published to date. Some publications consider hydrodynamics inside cubic tanks mixed by a 

conventional impeller, such as a Rushton turbine [16] [17]. Others describe hydrodynamics 

generated by a pendulum agitator but in these studies, the agitator is moving back and forth 

[18] and does not draw an elliptic trajectory.  

To fill the gap and get relevant information, stereo-PIV measurements were performed 

in 20 vertical planes covering the whole volume of a 50 dm³ NucleoTM disposable bioreactor. 

The flow generated by the paddle motion was characterised for three agitation speeds. Due to 

the original configuration of the bioreactor, figuring out the exact structure of the flow can be 

challenging. Current study hence aims at a detailed description of the mean flow within the 

NucleoTM bioreactor, which will also help explain performances highlighted in previous studies 

for the bioreactor.  

2. Equipment and methods 

2.1  NucleoTM bioreactor design and agitation conditions 

This study covers hydrodynamics inside a 50 dm³ NucleoTM bioreactor – device is also 

available in 25 dm³, 250 dm³, 600 dm³ and 1200 dm³ versions. Stereo-PIV is an optical 

technique, so tank and its contents must be transparent. For this reason, the plastic bag of the 

NucleoTM bioreactor is replaced with a same size transparent Plexiglas tank (Table 1).  

 
Table 1: Dimensions of the 50 dm³ NucleoTM  bioreactor. 
 

Bag volume: 50 dm³ Paddle length: 350 mm 
Bag length: 430 mm Paddle width: 140 mm 
Bag width: 330 mm Paddle inclination: 13.5 ° 
Bag height: 350 mm Gap with bag bottom: 25 mm  
Coefficient of occupancy: 80% Liquid height: 280 mm 
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The tank is filled with 40 dm³ of liquid because 80% of the total bag volume corresponds to the 

maximum coefficient of occupancy usable in animal cell culture. Water is used as a 

(transparent) liquid model because it shows rheological properties quite similar to culture 

medium. Three paddle rotational speeds were selected: the first one, equal to 40 rpm, 

corresponds to the standard condition prescribed for animal cell culture in the 50 dm³ NucleoTM 

bioreactor [10]. The two other paddle rotational speeds, equal to 30 rpm and 65 rpm, 

respectively, are selected in order to appreciate the influence of this parameter on 

hydrodynamics in the bioreactor. 

2.2 Definition of the paddle tip speed and the Reynolds Number  

To compute the paddle tip speed and the Reynolds number, characteristic length must 

be defined. In standard stirred tanks, characteristic length is the impeller diameter, as this 

length corresponds to the diameter of the cylindrical area covered by the rotating impeller 

blades. Characteristic length definition is less straightforward for the NucleoTM bioreactor 

because the paddle is wide and its external tip draws an ellipse during its rotation (Figure 2). 

By analogy with definition adopted in standard tanks, we decide to choose, as characteristic 

length, the size of the major axis A of the elliptical trajectory drawn by the external tip of the 

paddle during its rotation. This characteristic length equals 260 mm. The paddle tip speed Vtip 

and the Reynolds number Re are thus defined by equations (1) and (2): 

 ���� = �.�. 	 (1) 

 
� = �.
.��
�  (2) 

Their respective values are indicated in Table 2 for the three agitation speeds used in current 

study. Water density ρ and dynamic viscosity µ, used to compute the Reynolds number Re, are 

equal to 1000 kg.m-3 and to 1.10-3 Pa.s, respectively.  

 

Table 2: Linear velocity observed at outside tip of the paddle (localized by the white dot on Figure 2) and 
Reynolds number of the flow for paddle rotational speeds used herein.  
 

paddle rotational speed (rpm) paddle tip speed (m.s-1) Reynolds number(-) 
30 rpm 0.42 m/s 36 450 
40 rpm 0.56 m/s 48 600 
65 rpm 0.91 m/s 78 975 
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Figure 2: Paddle tip position sequence (white lines) during its rotation, observed through tank bottom. 
White arrows show direction of paddle displacement in each tank corner. Grey arrow materializes major 
semi-axis of ellipse swept by the paddle.  
 

2.3 PIV apparatus, parameters and processing 

Stereo-PIV is an optical technique which allows measurement of three components of 

liquid velocity in a bioreactor plane illuminated by a laser sheet. This technique is based on the 

stereovision principle, just like human vision. Two cameras placed at different angles measure 

displacement of tracer particles in the plane illuminated by the laser sheet. Data collected by 

both cameras is then combined to obtain the three velocity components at each point in the 

measurement plane. More information on the stereo-PIV principle can be found in [19].  

The stereo-PIV system used in this study is brought to market by Dantec Dynamics 

(Denmark). As illustrated in Figure 3, experimental set-up and data acquisition system include:  

- A laser Nd-YAG (New Wave Gemini Solo II-30, 532 nm, 2x30 mJ) attached to a sliding 

rail. This double cavity laser lights up a 3 mm thick plane which may be horizontal or 

vertical;   

-  Two Hi/Sense cameras (1280×1024 pixels, 4 Hz) placed at the two ends of a one meter 

aluminium profile. Each camera is fitted with a Nikon lens (AF Micro Nikkor 60 mm 

F2.8D) and a Scheimpflug mount. Scheimpflug mount allows camera rotation while lens 

remains motionless. This mount is necessary to bring all illumination plane points into 

focus. Experimentally, a 1.5° angle between camera and lens allows reaching this goal. 

Angle between the two cameras optical axes equals 40°.  

- A “timer box” device which synchronizes laser pulsation and camera recording.  

- A computer for raw data storage and Dynamic Studio (version 2.30) processing.  
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Figure 3: Stereo-PIV apparatus schematic view. 

 

 
Figure 4 A: Vertical planes selected for stereo-PIV 
measurements.  

Figure 4 B: Horizontal planes selected for 2D PIV 
measurements. 

 

 Stereo-PIV measurements are performed in 20 vertical planes spaced out by 20 mm. As 

shown in Figure 4 A, distance between first plane and tank front wall equals 17 mm. 2D PIV 

measurements are also done in 10 horizontal planes (Figure 4 B) in order to validate out-of-

plane velocity component Vz estimated by stereo-PIV in vertical planes. Only one camera is 

used for 2D PIV measurements, with optical axis perpendicular to the laser plane. Therefore, 

only velocity components Vx and Vz are measured. As clearance under tank does not allow 

fitting a PIV camera, a 45° tilted mirror is placed under the tank for 2D PIV measurements 

(Figure 3). Conventions used throughout this paper for x, y and z axes orientation and 

components Vx, Vy, and Vz of the velocity vector are specified in Figure 4.  

Both for 2D and stereo-PIV measurements, flow is seeded with fluorescent polymer 

particles (Rhodamine B), whose diameter ranges between 20 and 50 µm and whose density 
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equals 1190 kg.m-3. Particle positions are recorded at 4 Hz on 300 image pairs. Time interval 

between images of a pair is set between 300 and 7000 µs, depending on paddle rotational speed 

and numerical processing applied to raw images. For 2D PIV measurements, an instantaneous 

velocity field is extracted from each image pair by dividing the two images into interrogations 

areas of 32×32 pixels² with 16 pixels overlap and by applying a cross correlation function in 

these areas. The spatial resolution of these 2D velocity fields equals 7 mm. For stereo-PIV 

measurements, an adaptive correlation function is separately applied on images recorded by 

each camera. Initial and final interrogation areas cover 64×64 pixels2 and 16×16 pixels2, 

respectively, with 50% overlap in both cases. Stereo instantaneous velocity fields are then 

reconstructed from instantaneous velocity fields obtained for each camera and from a 

polynomial model which accounts for camera orientation and distance relative to measurement 

plane. For each vertical measurement plane, polynomial model parameters were estimated by 

placing a 5 mm square grid pattern in the plane, with 2 mm black dots where lines intersect. To 

obtain a 1 mm spatial resolution velocity field with a camera sensor size equal to 

1024×1208 pixels², stereo-PIV measurements must be performed in two steps to cover the 

whole liquid height. For these two steps, cameras were successively focused on rectangular 

areas illustrated in Figure 4 A (areas 1 and 2).  

Mean velocity field is then computed from the 300 instantaneous velocity fields.  

However, paddle leaves a shadow on image when crossing the laser plane. Velocity vectors 

computed in this shadow area are mostly irrelevant. Shadow area is therefore identified in each 

image to define a mask applied to each instantaneous velocity field. Irrelevant instantaneous 

velocity vectors are thus excluded from mean velocity field computation.  

3. Results and discussion 

3.1 Mean flow pattern 

 Due to the elliptical trajectory drawn by the paddle during its rotation, a symmetry 

inside the mean velocity flow is expected.  To identify this symmetry is interesting to 

determine the minimal part of the tank which is representative of the whole flow and may be 

thus used to analyse the mean velocity field. Figure 2 shows rotating paddle position sequence 

when observed through tank bottom and reveals paddle tip does not remain parallel to tank side 

during rotation. Therefore, mean velocity flow has no rotational symmetry. Nevertheless, 

analysis of horizontal 2D mean velocity fields does highlight symmetrical flow in tank opposite 

quarters.  Figure 5 illustrates this central axis symmetry through a horizontal cross-section of 

mean velocity field at 10 mm from tank bottom. Background grey levels (see colour scale) 
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show values of the modulus of velocity components Vx and Vz normalized by paddle tip speed: 

���� + ��� ����� 	. Black arrows indicate velocity vectors orientation. Velocity orientation 

highlights central axis symmetry while velocity magnitude distribution shows slightly smaller 

values for tank left side, which results from laser placement to the right of the tank during 

horizontal 2D PIV measurement. Indeed, tank left side is frequently shadowed by paddle. Mean 

velocity field in tank left side is therefore computed from less instantaneous velocity vectors, as 

irrelevant (shadowed) ones are systematically excluded by processing described in last 

paragraph of section 2.3. As this discrepancy arises from data processing itself, it may be 

concluded to symmetrical flow in tank opposite quarters and the mean velocity fields can thus 

be only analyzed in the half right part of it.  

 
Figure 5: 2D mean velocity field obtained in the horizontal plane localized at 10 mm from the bottom tank 
when the paddle rotates at 40 rpm. For the picture clarity, one vector on two is plotted. Black lines and 
Symbols A, B, C, D locate vertical measurement planes corresponding to stereo PIV measurements of the 
Figure 8.   
 

Mean flow pattern can schematically be described as a three-dimensional helix coiled 

on itself to form a distorted horizontal torus (Figure 6). Helix loops are revealed through 

vertical stereo mean velocity fields analysis while torus outline can be observed through 

horizontal 2D mean velocity fields. Figures 7 A-D display vertical stereo mean velocity fields 

in tank right half. As illustrated in Figure 5, measurement planes in Figures 7 A and 7 B are 

adjacent to front and back tank walls (z=17 mm and 397 mm, respectively) while measurement 

planes in Figures 7 C and 7 D are centred in front and back quarters of tank right half 

(z =137 mm and 317 mm, respectively). Vertical velocity vectors in these figures show that, on 

average, fluid particles go up along the tank wall and go down in the area swept by the paddle, 

therefore drawing helix loops. Horizontal 2D mean velocity fields in Figure 5 (y=10 mm) and 
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Figures 8 A-B (y = 100 mm) show clockwise rotation of liquid flow around tank centre. 

Moreover, Figures 8 A and B, where background grey levels relate to intensity of velocity 

components Vx and Vz, respectively, highlight that these components exhibit maximum values 

in specific and different areas (see boxes). Each part of the tank is thus characterized by a 

specific flow direction which corresponds to paddle displacement main orientation in each area 

(Figure 2).  

 
Figure 6: Schematic representation of mean flow pattern followed by fluid particles inside tank. 
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Figure 7: Vertical stereo mean velocity fields in the half right part of the tank (i.e the right image boundary 
corresponds to the tank wall and the left one is the center of the tank).  The background color is the 

normalized velocity vector magnitude ���2 + ��2 + ��2 ����� 	when the paddle rotates at 40 rpm.  The 

arrows are the projection of the velocity vectors in the measurement plane localized (A) 17 mm (B) 397 mm 
(C) 137 mm (D) 317 mm from the front tank wall. For picture clarty, one vector on ten is plotted.  
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Figure 8: Spatial distribution of the normalized velocity component �� � !"⁄ (Fig 10A) and of the normalized 
velocity component �$ � !"⁄  (Fig 10 B).  The paddle rotational speed is 40 rpm and the measurement plan is 
distant to 100 mm from the tank bottom. For picture clarty, one vector on two is plotted.  
 

3.2 Spatial distribution of mean velocity components 

 Mean flow inside the NucleoTM bioreactor is therefore fully three-dimensional. 

Moreover, no stagnant area is observed in tank corners, unlike suggested by its rectangular 

parallelepiped shape. Mean flow in right front and back corners is illustrated in Figures 9 A-B 

and Figures 10 A-B, respectively. Background grey levels on these figures relate to intensity of 

velocity components belonging to measurement plane (���2 + ��2 ����� , Figure A) and of 

velocity component normal to measurement plane (�� ����⁄ , Figure B), respectively. In each 

tank corner, flow is not stagnant because fluid particles have minimum mean velocities as high 

as 5% of paddle tip speed Vtip (5% of 560 mm/s). Also, flow is mainly oriented according to z 

axis in tank right front corner, while it is mainly oriented according to x axis in tank right back 

corner. These flow orientations in each corner are again in accordance with paddle main 

displacement direction near these corners (Figure 2).  

 
Figure 9: (A) Spatial distribution of the modulus of velocity components Vx and Vy divided by the paddle tip 

speed���% + �&% � !"�  (B) Absolute value of the normalized z-velocity component |�$| � !"⁄  in the front right 

corner of the tank (z=17 mm) for the paddle speed equals 40 rpm. For picture clarty, one vector on ten is 
plotted 
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Figure 10 : (A) Spatial distribution of the modulus of velocity components Vx and Vy divided by the paddle 

tip speed���% + �&% � !"�  (B) Absolute value of the normalized  z-velocity component |�$| � !"⁄  in the back 

right corner of the tank (z=397 mm) for the paddle speed equals 40 rpm. For picture clarty, one vector on 
ten is plotted.   

 

Figure 11: Profile for spatial average of normalized mean velocity magnitude (���2 + ��2 + ��2 ����� ) 

measured in tangential (Fig. 11 A), horizontal (Fig. 11 B) and vertical (Fig. 11 C) planes, respectively.  
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Although flow is not stagnant in tank corners, mean velocity is clearly higher in cone 

swept by the paddle, as illustrated in Figures 11 A-C, where each point shows an average value 

of normalised mean velocity ���� + �(� + ��� ����� 	 in a tank plane (A = tangential plane, 

B = horizontal plane, C = vertical plane). Each profile corresponds to average values measured 

in a series of parallel planes. In the x-direction (from left to right), paddle swept an area 

extending up to a 80 mm maximum distance from tank centre. As shown in Figure 11 A, 

normalised mean velocity is 1.5 to 2 times higher in this area. In the y direction (from bottom to 

top), normalised mean velocity gradually decreases as distance from tank bottom increases, 

until reaching a minimum and stable value when y exceeds 150 mm (Figure 11 B). This profile 

in two parts is due to the paddle specific shape (Figure 1), which consists in a wide trapezoidal 

blade in its lower part and a straight narrow shaft in its upper part. In z direction (from front to 

back), normalised mean velocity increases from tank walls to tank centre (Figure 11 C), except 

for a small decrease in measurement plane at tank middle length (z = 217 mm; tank 

length = 430 mm). This singularity arises from the fact that each mean velocity field is 

computed from instantaneous velocity fields recorded for all paddle positions. As illustrated in 

Figure 12 A, paddle sweeps tank middle from left to right or right to left depending on its 

position. In median vertical measurement plane (z = 217 mm), some instantaneous velocity 

fields thus have vectors oriented to the left (Figure 12 B) and others have vectors oriented to 

the right (Figure 12 C). When mean velocity field is computed from an arithmetic mean, 

magnitudes of these opposite vectors partly neutralize each other. Apart from above singularity, 

main conclusion is that mean velocity average magnitude is almost twice higher in area swept 

by the paddle. 

 
Figure 12: (A) Paddle sweeps tank median plane from left to right and from right to left depending on its 
position. (B) Instantaneous velocity field obtained in this median plane (z = 217 mm). This instantaneous 
velocity field corresponds to area 2 of stereo PIV measurement. Paddle is in tank front half. Flow is mainly 
oriented from left to right. (C) Instantaneous velocity field obtained when paddle is in tank back half, 
opposite to position in Figure 12 B. Flow is mainly oriented from right to left. For picture clarty, one vector 
on ten is plotted.  
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3.3 Numerical distribution of mean velocity components 

In addition to mean flow spatial distribution, numerical distribution is showed in 

Figure 13, with distribution percentiles listed in Table 3. These figures are worked out from 

mean stereo velocity fields measured in 20 vertical planes. Therefore, these numerical 

distributions do not correspond to volume percentage relative to the whole tank volume. They 

actually correspond to a surface percentage. However, as the 20 vertical planes are equally 

distributed along tank volume, numerical distributions worked out based on these planes should 

properly approximate real distribution, i.e. distribution that would be computed if data was 

available for the whole tank. Mean flow numerical distribution (Figure 13-A) exhibits two 

maxima, the main one for abscissa 0.08 Vtip and the second one for abscissa 0.3 Vtip. As 

discussed in section 3.2, these values correspond to ranges encountered outside and inside 

paddle swept volume. Despite these two ranges of values, mean velocity numerical distribution 

remains quite narrow, as 95% of measurement planes total surface has a velocity ranging from 

0 to 0.43 Vtip. Distributions for x- y- z- velocity components are drawn considering their 

absolute values so as to ease comparison. Two kinds of distributions are obtained: on the one 

hand, Vx and Vz velocity components distributions which exhibit similar shapes except for 

highest values (Figures 13 B and D) and, on the other hand, Vy velocity component distribution 

which is comparatively twice narrower (Figure 13 C). As a consequence, flow is more 

intensive in the horizontal direction compared to the vertical one. Nevertheless, even if Vy 

velocity component distribution is narrow, its range of values remains significant when 

compared to tank size. For instance, a fluid particle moving at median velocity (0.038 Vtip) 

takes on average 13 s to travel a distance equal to liquid height (280 mm) with paddle rotating 

at 40 rpm. Therefore, flow can still be considered as fully three-dimensional with a preferential 

orientation inside horizontal planes. 

Table 3: Percentiles of normalized mean velocity numerical distribution (-) and of normalized Vx, Vy, Vz 
velocity components absolute value (-). 

 P25 P50 P75 P90 P99 

���� + �(� + ��� �����  0.075 0.117 0.218 0.346 0.831 

|��| ����⁄  0.027 0.057 0.110 0.211 0.314 
)�() �����  0.019 0.038 0.067 0.095 0.144 
|��| ����⁄  0.026 0.060 0.140 0.268 0.816 
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Figure 13: (A) Normalized mean velocity numerical distribution in 20 vertical measurement planes (B-C-D) 
Normalized Vx, Vy, Vz-velocity components absolute value distribution.  
 
 

Flow inside tank should be turbulent, as Reynolds number values Re (Table 2) 

computed for agitation conditions (30 rpm, 40 rpm and 65 rpm respectively) used in current 

study significantly exceed 10 000. Hypothesis is confirmed by analysis of the stereo mean 

velocity flow measured at the above paddle rotational speeds. Indeed, as shown in 

Figures 11 A-C, mean normalised velocity profiles computed for the three agitation conditions 

overlap perfectly. Independence between these dimensionless velocity fields and paddle 

rotational speed is a fundamental feature of turbulent flow. In other words, all observations 

relating to mean flow structure remain valid for any paddle rotational speed, provided that this 

speed is high enough to maintain flow turbulence. 

3.4 Comparison of the flow structure generated in NucleoTM bioreactor with conventional 

baffled and unbaffled stirred bioreactor used for animal cell culture  

 The flow generated inside the NucleoTM bioreactor shares some characteristics with 

those produced in conventional baffled and unbaffled stirred bioreactor.  Indeed, as shown by 

the works of Collignon et al. [20], Zhu et al. [21] , for instance, which described by PIV the 

mean flow inside conventional baffled stirred bioreactor mixed by axial propeller as Elephant 

Ear impeller, the flow is turbulent and its dimensionless velocity field is independent of the 

impeller rotational speed as in the NucleoTM bioreactor.  Moreover, the mean velocity is either 

higher in the area next to the propeller and is smaller in the rest of the tank.  However, the 

mean velocity seems more homogeneously distributed in the NucleoTM than in conventional 
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baffled stirred bioreactor thanks to the large area of the tank swept by the paddle.   Finally, the 

previous numerical comparison of velocity components Vx , Vy ,Vz distribution (section 3.3) 

highlights the flow structure in the NucleoTM bioreactor is an hybrid between the flow structure 

inside convention baffled and unbaffled stirred bioreactor.  Indeed, as shown by works of 

Alcamo et al. [22], the flow in unbaffled stirred tank is more intensive in horizontal direction 

than in vertical one while, in baffled stirred tank, it is more intensive in vertical direction than 

in horizontal one.  In the NucleoTM bioreactor, it is twice intensive in horizontal direction than 

in vertical one however this latter remains significant. This hybrid behaviour is due to the 

rectangular parallelepiped shape of the tank where the corners partially play the baffle role.  As 

many disposable bioreactors are not equipped with baffles for reasons of easy manufacturing 

plastic bags, this hybrid behaviour combined with a more or less homogeneous distributions of 

the velocity field give an advantage to NucleoTM bioreactor, especially in process where solid 

phase must be kept in suspension, as in the culture of anchorage dependant animal cell on 

microcarriers.   

4. Conclusion 

 Current study offers unprecedented mean flow characterisation for the original design 

of the NucleoTM bioreactor and further explains performances experimentally observed in 

previous studies for mixing, solid suspension and animal cell culture. Characterized flow 

pattern can be described as a three-dimensional helix coiled on itself to form a distorted 

horizontal torus which covers the whole tank volume. Despite mean velocity values twice 

higher in cone swept by paddle and horizontal velocity components twice the vertical one, 

mean velocity remains significant everywhere and no stagnant area is observed in tank corners. 

Moreover, flow turbulence is reached even at low impeller rotational speeds, which means 

enhanced mixing capacity and invariance of the dimensionless mean velocity field per paddle 

rotational speed. All observations performed in current study therefore remain valid for other 

paddle rotational speeds.  

 This unprecedented study of hydrodynamics in the NucleoTM bioreactor paves the way 

for ample further research. Firstly, as the flow is turbulent, it should be very interesting to study 

the spatial and numerical distribution of quantities associated to the turbulence and computed 

from the time fluctuating component of the velocity, as the turbulent kinetic energy k and its 

dissipation rate ε. Mechanical constraints inside the flow could be evaluated from these 

turbulent proprieties and compared to those obtained in conventional bioreactors, so as to better 

clarify why cell concentration and secreted proteins production are significantly higher in the 
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NucleoTM bioreactor [9]. Secondly, all PIV experimental data offer quite useful resources for 

the validation of CFD simulations, the latter offers the advantage to quantify the 3D flow is in 

the whole tank volume. Finally, a complementary Lagrange approach could be superimposed 

on the Euler approach adopted in current study, as the cartography of the mean velocity field 

has been established. A Lagrange approach, which consists in tracing one particle in the tank, 

could give information on the local environment (concentration, mechanical constraints, etc.) 

met by an animal cell, as a function of time. Frequency, duration and level of mechanical 

constraints, for instance, could be computed and compared with outcomes in conventional 

bioreactors.  

Notations 

A  major axis size for ellipse drawn by paddle external tip  

k  turbulent kinetic energy (m².s-2) 

N  paddle rotational speed (rpm) 

Re  Reynolds number (-) 

Vtip  linear velocity at paddle external tip (m.s1) 

Vx, Vy, Vz  Velocity components along x, y and z axes, respectively 

x,y,z  Cartesian axes aligned along vessel walls 

 

ε  dissipation rate of kinetic energy (m2.s-3) 

µ  dynamic viscosity (Pa.s) 

ρ  fluid density (kg.m-3) 

 

rpm  rotation per minute 

PIV   Particle Image Velocimetry 
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