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Abstract

When applying a multiscale approach, the material behavior at the macro-scale can be obtained from
an homogenization scheme. To this end, at each integration-point of the macro-structure, the macro-
stress tensor is related to the macro-strain tensor through the resolution of a micro-scale boundary
value problem. At the micro-level, the macro-point is viewed as the center of a Representative Volume
Element (RVE). However, to be representative, the micro-volume-element should have a size much
bigger than the micro-structure size.

When considering structures of reduced sizes, such as micro-electro-mechanical systems (MEMS), as
the size of the devices is only one or two orders of magnitude higher than the size of their micro-
structure, i.e. their grain size, the structural properties exhibit a scatter at the macro-scale. The
representativity of the micro-scale volume element is lost and Statistical Volume Elements (SVE)
should be considered in order to account for the micro-structural uncertainties. These uncertainties
should then be propagated to the macro-scale in order to predict the device properties in a probabilistic
way. In this work we propose a non-deterministic multi-scale approach [1] for poly-silicon MEMS
resonators.

A set of SVEs is first generated under the form of Voronöı tessellations with a random orientation
assigned for each silicon grain of each SVE. The resolution of each micro-scale boundary problem is
performed by recourse to the computational homogenization framework, e.g. [2], leading to meso-scale
material properties under the form of a linear material tensor for each SVE. Applying a Monte-Carlo
procedure allows a distribution of this material tensor to be determined at the meso-scale. The
correlation between the meso-scale material tensors of two SVEs separated by a given distance can
also be evaluated.

A generator of the meso-scale material tensor is then implemented using the spectral method [3]. The
generator [1] accounts for a lower bound [4] of the meso-scale material tensor in order to ensure the
existence of the second-order moment of the Frobenius norm of the tensor inverse [5].

A macro-scale finite element model of the beam resonator can now be achieved using regular finite-
element, i.e. not conforming with the grains, and the material tensor at each Gauss point is obtained
using the meso-scale generator, which accounts for the spatial correlation. A Monte-Carlo method is
then used at the macro-scale to predict the probabilistic behavior of the MEMS resonator.

As an example the beam resonator illustrated in Fig. 1(a) is made of poly-silicon, and each grain
has a random orientation. Solving the problem with a full direct numerical simulation combined to
a Monte-Carlo method allows the probability density function to be computed as illustrated in Fig.
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(b) Probability distribution

Figure 1: Non deterministic prediction of the first resonance frequency of a beam resonator (a) Finite element
model (FEM) of the beam resonator. (b) Probability density function obtained using a Monte-Carlo method
with a random grain distribution.

1(b). However this methodology is computationally expensive due to the number of degrees of freedom
required to study one sample. The proposed non-deterministic multi-scale strategy allows reducing this
computational cost as the Monte-Carlo processes are applied on much smaller finite-element models.

The method can also be applied in the context of fracture of thin poly-silicon film [6]. In this case,
a set of meso-scopic cohesive laws can be obtained at the meso-scale from the resolution of different
SVEs. The meso-scopic cohesive laws are obtained for each RVE from the finite element resolution
of the Voronöı tessellations using the method proposed in [7]. The resulting statistical values for the
critical energy release rate and for the critical strength can then be used for macro-scale simulations.
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