Efficient Finite Element Assembly of High Order Whitney
Forms

Nicolas Marsic and Christophe Geuzaine

Department of Electrical Engineering and Computer Science, University of Liege

Abstract

This paper presents an efficient method for the finite element assembly of high or-
der Whitney elements. We start by reviewing the classical assembly technique and by
highlighting the most time consuming part. Then, we show how this classical approach
can be reformulated into a computationally efficient matrix-matrix product. We also ad-
dress the global orientation problem of the vector valued basis functions. We conclude by
presenting numerical results for a three dimensional wave propagation problem.

1 Introduction

There is a growing consensus in the finite element community that state of the art low order
finite element technology requires, and will continue to require, too extensive computational
resources to provide the necessary resolution for complex simulations, even at the rate of
computational power increase [1]. The requirement for precise resolution naturally leads us
to consider methods with a higher order of grid convergence than the classical second order
provided by most industrial grade codes. In particular, for high frequency time harmonic
electromagnetic simulations, high order schemes allow to efficiently resolve the rapid small
scale spatial oscillations of the solution and allow to alleviate the pollution effect [2, 3].

Mixed finite elements are extensively used to model electromagnetic wave propagation
problems, and several high order extensions have been proposed in the literature [4, 5, 6, 7, 8].
As for standard Lagrange elements, though, the computational cost of solving the linear
system of equations rapidly becomes overshadowed by the cost of assembling the finite element
matrix as the order of the basis functions increases [9]. The aim of this paper is to solve
this problem by reformulating the assembly procedure into a computationally more efficient
procedure.

The paper is organized as follows. In section 2 we start by reviewing the classical assembly
technique and by highlighting the most time consuming part. We then propose in section 3 a
reformulation of the assembly procedure in terms of computationally efficient matrix-matrix
products. We also address in section 4 the basis orientation problem. We conclude by
presenting numerical results for a three dimensional wave propagation problem in section 5.

2 Classical finite element assembly procedure

Let us start by considering the time harmonic behavior of the electric field e(z,y, z) in a non-
dissipative bounded domain Q(z,y, z), with Dirichlet boundary conditions on its boundary.
From Maxwell’s equations, the electric field can be obtained by solving the following weak
formulation [10]: find e(z,y, z) € He(curl, Q) such that:

/Q (v, curle>T(curlfj>dQ — k2 /Q (sre)T(fJ)dQ —0, V& e Hy(curl,Q), (1)

where v, (x,y, z) is the relative reluctivity tensor, ,(z,y, z) is the relative electric permittivity
tensor, and k is the wavenumber. The non-homogeneous (resp. homogeneous) Dirichlet
boundary condition is taken into account in the curl-conforming vector space H.(curl, ()
(resp. Ho(curl,©Q2)). All the developments hereafter could be applied in a more general setting
(e.g. with source terms, dissipation or different boundary conditions), but we consider (1) for
simplicity.

Then, two levels of discretization are applied. First, the studied domain Q(z,y,z) is
meshed into simple elements Q°(z,y, z) (triangles or quadrangles in 2D; tetrahedra, hexahe-
dra, prisms or pyramids in 3D). Moreover, a mapping between each mesh element Q¢(x, y, z)
and a reference element w(u, v, w) is defined with an associated Jacobian matrix J¢(u, v, w).
Finally, the solution e(z, y, z) is approximated in a finite dimensional curl-conforming! poly-
nomial function space B(w), piece-wise defined on the elements [4, 5, 6, 7, 8]. The size of this
space increases with the order of the polynomial approximation.

The matrix form of the resulting discretized harmonic problem can then be obtained by
computing the following elementary terms [10]:

e __ T€e 2 e
Tij=1ij; — k" Kijs (2)
where
e, = / (1/ Jecurlfi>T< I curlfj> det J¢dw
W), UM det Je det Je ’

3)
o NT /o7
Ko, = /w (378" (377 8) det 3° do,
with £, f/ € B(w). Each T:; is giving the contribution of the degree of freedom (DOF) i and
j of the mesh element €.

With these expressions, the classical finite element (FE) assembly algorithm is quite sim-
ple. It consists in iterating on every mesh element, computing the integrals (3) for every pair
of DOFs ¢ and j using a numerical quadrature rule, and adding the result in a global finite
element matrix. Figure 1 illustrates this procedure in pseudo code.

It is worth noticing that the impact on the computation time of increasing the basis order
is twofold:

1. each element will have more DOFs, thus increasing the number of 7;% to compute;

!'Note that all what follows can be easily applied to other kinds of high order Whitney forms, i.e. standard
conforming elements, div-conforming elements or discontinuous elements. The curl-conforming case exhibits
all the important properties of the general assembly procedure.

for e in [1, size(element)]
dof [] = takeDof (e);

i in [1, size(dof)]
j in [1, size(dof)]

globall globalld (dof[il);
globalJ = globalld(dof[jl);

// A: Finite Element Global Matriz //
Algloball, globalJ] += feTerm(e, i, j);

feTerm(e, i, j)
return quadrature(lﬁj) - k2 x guadrature(Kﬁj);

Figure 1: Classical assembly algorithm.

2. the numerical quadrature will require more points, thus slowing down the evaluation of
each T

These two phenomena will substantially increase the assembly time of the FE linear system.
To give some order of magnitude, Table 1 shows the number of Kf, terms needed for a
tetrahedral finite element.

Curl-conforming basis order | 1 2 3 4
Number of integration points | 4 11 | 24 43
Number of K7 ; terms 144 | 900 | 3600 | 11025

Table 1: Number of K ; terms and required integration points for a tetrahedral finite element.

3 Efficient assembly procedure using matrix operations

The key idea of a fast assembly procedure is to compute all the 7;6] terms using matrix-matrix
products, as proposed in [9, 11] for discontinuous Galerkin schemes using high order nodal
Lagrange elements.

Indeed, matrix operations exhibit an excellent cache reuse, and are standardized in the
Basic Linear Algebra Subprograms (BLAS) interface [12, 13]. Moreover, highly optimized and
parallel implementations are available for modern multi-core architectures (e.g. MKL [14],
OpenBLAS [15], ATLAS [16]).

In order to use this approach, the integrals of (3) have to be rewritten. These developments
are detailed below.

3.1 Matrix version of Ii‘fj

Let us start by simplifying the Z7 ; integral:

Ze / (V J° curl fi>T (J° curl fj) det J°d
— ——— w,
b w det Je det Je

T

= /; v, J¢ curl f* Jécurlf’ |dw.
wdetJe ~—~—

Ke

For convenience, the product of the reluctivity tensor v, and the Jacobian matrix J€ is defined
as the matrix K¢ Now, let us express the matrix-vector products in a per element fashion.
The notation A, denotes the element at row number ¢ and column number b of matrix A,
and the notation b, refers to the element a of vector b. Matrices are of dimension 3 x 3 and
vectors of dimension 3 x 1. We have:

1 (S)
Iie,j = LW;(; bcurlb ><Z Curlcf]> dw,

3 3 3
/ZzzdetJe abJac curly f? curl, £/ dw.

a=1b=1c=1

Then, the integral can be computed using a numerical quadrature. The notation wg, de-
notes the ¢'"" integration weight, and the notation 04‘ means that « is evaluated at the g'P
integration point. The total number of integration point is denoted by G. We get:

JE

a,c
g g

curl,, £ ’
g

Dle, {i,],
where the operations {-,-} and {-,-,-} take two (or three) indices and combine them into a

new unique one. Figure 2 illustrates this operation.

From equation (4), we can notice that each Zf ; term is an element of a matrix D at line
e and column {i,7}. Moreover, this matrix D is constructed by the product of two other

matrices, B and C, defined as follow:

3
B[€7 {gv ba C}} = dt],:]e Z K;,b ngic g’
e g a=1 (5)
C[{g,b,c},{i,j}} = wgcurlbfi‘ Curlcfj‘ .
g g

It is worth noticing that matrix B is storing only mesh (i.e. metric) dependent data, while
matrix C does not. The latter is defined only on the reference space w.

Figure 2 illustrates the structure of matrices B and C.

gth point i*® function

£i+1
o
.
.

e element | I | N | W00 upulufun b=1)ec=2

g point
o
1
¥
o
Il
0

Figure 2: Structure of matrices B and C for the computation of Zf .

3.2 Matrix version of Kf;

We can apply the same procedure with the ICZ-CJ- integral. As previously, we start by defin-

ing a new matrix L¢ " as the product of the relative permittivity tensor and the inverted,
transposed Jacobian matrix. Then, the matrix-vector products are expressed in a per element

way:

g, = /(ereTf’) (JeTfJ) det J¢ dw,
k w \ Y———

Le T
3 3 . 3
= /Z (ZLZ}) fé) (Z J fg> det J¢ dw,
“a=1 \b=1 c=1

Ley JE. fi 7 det J€ dw.

I
£
NES
NES
[M] e

This integral is evaluated using a numerical quadrature:

G 3 3 3 o o
Ky o= w3 3 Ty | i

fo
g

12
g

det J¢
g

’
g

o
g

1z
g

G 3 3
- ZZZ(detJe ZLZ})T‘J{CT
9.1 g

)

= G{e, {Z,j}}
From equation (6) we recover a result analog to equation (4): each K7 ; is an element at line

e and column {i,j} of a matrix G. This matrix is constructed by the product of E and F,
defined as follow:

E[e, {g,0, c}} = detJ®

3 T T
e e

E :La,b ‘ Ja,c)
9.1 g 9

Fl{g.b,ch.{i.j}| = wyfi

12
g

g

Finally, as for the 77 ; term, one matrix is mesh dependent and the other is not.

3.3 Efficient assembly algorithm

With the matrix computations of the elementary integrals Z;; and /Cij, we can now pro-
pose a new assembly algorithm as displayed on Figure 3. The main difference compared to
the classical algorithm is the implementation of feTerm(): in the classical approach it was
computing the integrals Z¢; and K7 ; on the fly, while in the new approach it fetches the
precomputed integrals. It is worth mentioning that the construction of the metric-dependent
matrices requires a loop on every mesh element.

B[]1[] = computeB(); // Requires a loop on every mesh element
C[][] = computeC(); // Does not require a loop on every mesh element
D [][] B * C;

E[]J[] = computeE(); // Requires a loop on every mesh element
F[1[] = computeF(); // Does not require a loop on every mesh element
G[1I[] E * F;

for e in [1, size(element)]

dof [1] = takeDof (e);

in [1, size(dof)]
in [1, size(dof)]
globall = globalIld(dof[il]);

globalJ = globalIld(dof[jl);

H
)
L I
()

// A: Finite Element Global Matriz //
Algloball, globalJ] += feTerm(e, i, j);

feTerm(e, i, j)
return D[e] [combineIndex (i, j)] - k> * G[el[combineIndex (i, j)l;

Figure 3: New assembly algorithm.

4 Global orientation of the basis functions

As showed in section 3, the matrices C and F in, respectively, equations (5) and (7), are
defined by the basis functions in the reference element. Thus we need to know the basis
functions before iterating on the mesh elements. With classical Lagrange basis functions, this
doesn’t lead to any problem, since the basis functions in the reference element do not depend
in any way on the mesh elements.

However, this is not the case with more general basis functions. Let us compare for
instance a Lagrange basis and a Legendre basis on a one dimensional line element. The two
bases are of order 3. Figure 4 illustrates the two edge-based functions of each basis. This
figure shows also two situations: in the first one, the line element is oriented from left to
right, and from right to left in the second case. It can be directly seen from Figure 4 that
the Lagrange basis functions can be permuted depending on the line orientation, while the
Legendre functions cannot. It can be argued that the Legendre functions can be multiplied
by —1 depending on the parity and the line orientation: unfortunately, this is not true for
the three dimensional case [17].

With the classical assembly procedure, this orientation problem can be easily solved: when
iterating on the elements, the edges and faces orientations can be analysed on the fly. Then,
the correctly oriented basis functions can be chosen and fed to the feTerm() function [18].
However, with the matrix approach, the basis functions used in C and F of (5) and (7) have
to be known before iterating on the elements. Moreover, they can be different from element
to element when using non-Lagrange functions.

Lagrange Legendre
fo fi fo fi

Right — Left -\//<\ /\‘\) _‘/

Figure 4: A one dimensional comparison of an ordre 3 Lagrange basis and Legendre basis
(edge contribution only).

Orientation

5
i

To overcome this situation, we need to sort the elements with respect to the orientation
of their edges and faces. Then, a set of matrices B, C, D, E, F and G can be computed
for every group of elements sharing the same orientation, and thus the same oriented basis
functions. A general and automatic procedure to handle the orientation is proposed hereafter.

4.1 Permutation tree to represent orientations

We assume that every vertex of the mesh is given a unique number, called vertex number. A
mesh element is represented by an ordered vertex number sequence, i.e. a vector of vertex
numbers. For instance, the sequence s = [42,17,16,21] corresponds to the mesh element
composed by the vertices 42, 17, 16 and 21.

The orientation of a mesh element is specified through its vertex numbers. For instance,
the positive orientation of an edge is conventionally from the vertex with the smallest number
towards the vertex with the largest number. Practical orientation rules (based on vertex
numbers) for edges, triangular faces and quadrangular faces can be found in [8].

Let us consider the simplest case of a mesh element 2¢ composed of V' vertices in the set
Y ={0,1,...,V —1}. This particular element is then one of the V! possible permutations of
the set V. A tree structure can be used to represent those permutations. This permutation
tree has the following properties:

1. the tree has a depth of V;
2. a node at depth d has V — d children?;

3. each node has a label between 0 and V — 1, with the exception of the root, that stays
unlabeled;

4. sibling nodes have strictly different labels;

5. a node cannot be given a label already taken by one of its ancestors;

2The depth of the root node is equal to 0.

6. the descendants of a node are sorted with increasing labels;

7. a leaf can be tagged.

With this structure, the ordered sequence of labels on a path from the root to a leaf is a
possible permutation of the set V. Moreover, this structure has exactly V! possible paths
that leads to different label sequences. Thus, this tree spans all the possible permutations of
the set V.

This tree structure can be also used as a permutation dictionary: a given permuted
sequence can be matched to a path in the tree, and thus to a leaf tag. A sequence s corresponds
to the path traveling (in order) through the nodes labeled s(1), s(2), ..., s(V). Moreover,
using property 7, the ending node of the path can be associated to a tag. Thus, this structure
is a dictionary, where a permuted sequence is a key that maps to a user-defined value. The
matching time scales in Vlogy V. Indeed, we need to go through the V nodes of a path.
And at each level, the next node can be found by a dichotomic search that scales in log, V.
This dichotomic approach is allowed thanks to property number 6. Figure 5 illustrates the
permutation tree structure in the quadrangular case: that is with V = {0, 1,2, 3}.

4.2 Generation of all possible orientations

The permutation tree structure can be used to generate every possible orientation. The
simplest solution is to consider each vertex permutation as a new orientation. However, the
number of orientations will grow as V!. For instance, with this strategy, 40320 (i.e. 8!)
orientations must be considered for a hexahedron.

To overcome this factorial growth, mappings can be computed between vertex permuta-
tions sharing the same edge connectivity: this leads to a splitting of the permutations into
connectivity groups. Only one member of each group is then required to define the orienta-
tion, since the other members can be mapped onto the reference one (through univoque, and
thus invertible, map). The orientation algorithm then reduces to:

1. generate the permutation tree associated to an element type (e.g. triangle, hexahe-
drom, ...);

2. group every vertex permutations into connectivity groups;

3. give a unique tag to every group;

4. tag every leaf with the connectivity group associated to the path ending at this node;
5. select one permutation (i.e. one leaf of the permutation tree) in every connectivity

group as reference.

It is worth noticing that step 2 is time consuming, since it requires to compare the con-
nectivity of all the vertex permutations. However, it only needs to be applied (offline) once
per element type, and the resulting tree can be reused.

Figure 5 illustrates a permutation tree for a quadrangular element type, that has been
tagged with its connectivity groups. Figure 6 shows the oriented reference permutations

proposed by the tree. It is worth noticing that it is impossible to map these quadrangles on
each other.

3 ——(2 ——3 [1,0,3,2]
2 ——(3 ——3 [1,0,2,3]
2 ——(1 ———3 [0,3,2,1]
1 —2 ——3 [0,3,1,2]
3 —(1 ———3 [0,2,3,1]
1 —(3 — [0,2,1,3]
3 —(2 ——3 [0,1,3,2]
2 —(3 — [0,1,2,3]

(=]

w

»

fun

2/1—0—>[3,2,1,0]
~—
/ 0 —1 — 3.2,0,1]
5 1/2—0—>[3,1,2,0]
\
\ 0—2 —> [3,1,0,2]
5 — 12— —> o2
\
1 ——(2 ——3 [3,0,1,2]
3/1—0—>[2,3,1,0]
\
/ 0 —(1 ——> [2,3,0,1]
5 1/3—0—>[2,1,3.o]
\
Vertex number \ 0 = 3 =—3 [2,1,0,3]
/ 0/3—1—)[2,0,3,11
\
1 —(3 ——> [2,0,1,3]
[...] Permutation
g —2—0—> 32,0
\
/ 0 —(2 —> [1,3,0,2]
O Leaf tag { 5 - 3 = 0 = [1,2,3,0]
~—
\ 0 —(8 — [1.2,0,3]
—
~—
—
/ B
0— 2
\ B
-
~—

Figure 5: Permutation tree for the quadrangular case.
—< 2
—>—1

Figure 6: The three possible orientations for a quadrangle, as proposed by the tree of Figure 5.

O D w
O =
— ——w
N —€— —

+
+

O 2w

4.3 Finding the orientation associated to a mesh element

Once a permutation tree is available for each type of element present in the mesh, every mesh
element can be mapped to one connectivity group. Indeed, the orientation rules depend only
on the bigger/smaller relations among the vertex numbers of a mesh element, and not on
their actual value. Thus, from any mesh element, it is possible to find an equivalent element
composed by vertex numbers in V. Doing so, the orientation of a mesh element can be found
efficiently. Algorithmicaly, we get:

10

1. get an equivalent (from the orientation point of view) element composed by vertex
numbers in V;

2. use the permutation tree to match the new vertex number sequence with a leaf tag;
3. the connectivity tag of the leaf defines the orientation of the given mesh element;

4. map the mesh element onto the reference member of the connectivity group.

It is also worth remembering that the matching procedure scales in V' log, V.

For each connectivity group and element type, it is then possible to compute the matrices
C and F. Matrices B and E are metric-dependent, and contain per-element entries, for each
connectivity group and element type. The Jacobian matrices involved in the computation
of B and E are obtained by composition of two mappings: one from the actual connectivity
group member to the reference member, and one from the reference member to the actual
mesh element.

Table 2 shows the number of possible orientations for different element types.

Element type | Number of vertices | Number of possible orientations
Line 2 1

Triangle 3 1

Quadrangle 4 3

Tetrahedron | 4 1

Pyramid) 15

Prism 6 60

Hexahedron | 8 840

Table 2: Number of possible orientations for common element types.

5 Results

In this section, a comparison of the classical FE assembly approach and the matrix approach
is presented. Practically, two codes are compared. These two versions are sharing the same
implementation, except for the function feTerm(): one is using the classical version presented
on Figure 1, and the other is using the new version on Figure 3.

The test case consists in a propagation problem into a curved wave guide meshed with
6950 curved tetrahedra. A constant source is imposed at one end, and a perfect reflector
at the other end. The simulations are run on a Intel Xeon E5645 with 6 threads for both
the classical and the matrix versions. The latter uses the OpenBLAS [15] implementation of
BLAS. The assembly time is recorded for an increasing basis order. The results are depicted
on Figure 7. It can be directly seen that the new proposed assembly procedure outperforms
the classical one, and that the speedup increases with the order of the basis functions. For
instance, for 6-th order basis functions (1097824 unknowns), the speedup reaches 18.

An other interesting comparison is the ratio between the time spend assembling the matrix
and the time spent solving the FE linear system. The latter is computed using the direct

11

r . . 5 r . . . - 20
o 10 k [1 Matrix L 116
¢ s {14 T
2 102 i 1 }g 5
>) - —
2 !
e - 18 8
g 101 I:I s 16 &
n
< : I 14
. 12
100 = - . 10
Basis order [f] Basis order [f]

Figure 7: Assembly time and speedup for the classical and matrix assembly procedures.

solver MUMPS [19, 20] with 1 MPI process and 6 threads. Figure 8 displays the two timings
with 4-th order basis functions (386960 unknowns). It is worth noticing that for the classical

100 I Assembly time ||
90 | [_1Solver time i
80
70 |
60
50 |-
40 |-
30
20 |-
10 |-

Classical Matrix

Time [s]

Figure 8: Time spent assembling the FE matrix and solving the FE linear system for the two
assembly approaches using 4-th order basis functions.

assembly technique, the time spent assembling the FE system exceeds the time required to
solve it. This not the case anymore using the matrix approach.

One last test is the memory impact of the two versions. If we compare the maximum
amount of resident memory needed by the two implementations, we end up with relatively
close values. Actually, in order to have a fair comparison, the two implementations are
pre-evaluating and storing the Jacobian matrices. This explains the above results, since
the Jacobian matrices are dominating the memory impact. To give some order of magnitude,
with 6-th order basis functions, the maximum resident memory needed by the classical version
is 21 GB and 28 GB for the matrix version.

6 Conclusion

In this work, we presented an efficient finite element assembly procedure for high order Whit-
ney forms, and in particular high order curl-conforming elements. This objective was reached
by using computationally efficient matrix-matrix products. Since non-Lagrange elements are

12

used, the orientation of the vector-valued basis functions was treated. Moreover, the classical
on the fly orienting procedure is not compatible with the matrix-matrix assembly. Thus an a
priori solution was developed. A computationally efficient permutation tree structure enables
the implementation of an orientation dictionary. This approach leads to both the generation
of all possible orientations, and a fast matching between a mesh element and its orientation.

Acknowledgments

This work was supported in part by the Belgian Science Policy Office under grant IAP P7/02
and the Walloon Region under grant WIST3 DOMHEX. N. Marsic is a fellowship beneficiary
with the Belgian Research Training Fund for Industry and Agriculture (FRIA).

References

1]

P. E. Vincent and A. Jameson, “Facilitating the adoption of unstructured high-order
methods amongst a wider community of fluid dynamicists,” Mathematical Modelling of
Natural Phenomena, vol. 6, pp. 97-140, 2011.

F. Thlenburg and I. Babuska, “Finite element solution of the Helmholtz equation with
high wave number part I: The h-version of the FEM,” Computers & Mathematics with
Applications, vol. 30, no. 9, pp. 9 — 37, 1995.

F. Thlenburg and I. Babuska, “Finite element solution of the Helmholtz equation with
high wave number part II: The h-p version of the FEM,” SIAM Journal on Numerical
Analysis, vol. 34, no. 1, pp. 315-358, 1997.

J. P. Webb and B. Forghani, “Hierarchal scalar and vector tetrahedra,” IEEE Transac-
tions on Magnetics, vol. 29, no. 2, pp. 1495-1498, 1993.

T. V. Yioultsis and T. D. Tsiboukis, “A fully explicit Whitney element-time domain
scheme with higher order vector finite elements for three-dimensional high frequency
problems,” IEEE Transactions on Magnetics, vol. 34, no. 5, pp. 3288-3291, 1998.

C. Geuzaine, “High order hybrid finite element schemes for Maxwell’s equations taking
thin structures and global quantities into account,” PhD thesis, Université de Liege,
Belgium, Dec. 2001.

A. Bossavit, “Generating Whitney forms of polynomial degree one and higher,” IEEFE
Transactions on Magnetics, vol. 38, pp. 341-344, Mar 2002.

S. Zaglmayr, “High order finite element methods for electromagnetic field computation,”
PhD thesis, Johannes Kepler Universitat, Austria, Aug. 2006.

K. Hillewaert, “Exploiting data locality in the DGM discretisation for optimal efficiency,”
in ADIGMA - A European Initiative on the Development of Adaptive Higher-Order Vari-
ational Methods for Aerospace Applications (N. Kroll, H. Bieler, H. Deconinck, V. Couail-
lier, H. Ven, and K. Sgrensen, eds.), vol. 113 of Notes on Numerical Fluid Mechanics and
Multidisciplinary Design, pp. 11-23, Springer Berlin Heidelberg, 2010.

13

[10]

[11]

[12]

A. Bossavit, Computational Electromagnetism: Variational Formulations, Complemen-
tarity, Fdge Elements. Academic Press, 1998.

J. Lambrechts, “Finite element methods for coastal flows: Application to the great barrier
reef,” PhD thesis, Université catholique de Louvain, Belgium, Mar. 2011.

L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Heroux,
L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and R. C. Whaley,
“An updated set of Basic Linear Algebra Subprograms (BLAS),” ACM Transactions on
Mathematical Software, vol. 28, pp. 135-151, June 2002.

B. Kéagstrom, P. Ling, and C. V. Loan, “GEMM-based level 3 BLAS: high-performance
model implementations and performance evaluation benchmark,” ACM Transactions on
Mathematical Software, vol. 24, pp. 268-302, Sept. 1998.

Intel Corporation, Reference Manual for Intel Math Kernel Library.

7. Xianyi, W. Qian, and Z. Yunquan, “Model-driven level 3 BLAS performance opti-
mization on Loongson 3A processor,” in Parallel and Distributed Systems (ICPADS),
2012 IEEE 18th International Conference on, pp. 684—691, Dec. 2012.

R. C. Whaley and A. Petitet, “Minimizing development and maintenance costs in
supporting persistently optimized BLAS,” Software: Practice and Ezperience, vol. 35,
pp- 101-121, Feb. 2005.

M. Ainsworth and J. Coyle, “Hierarchic finite element bases on unstructured tetrahedral
meshes,” International Journal for Numerical Methods in Engineering, vol. 58, no. 14,
pp- 2103-2130, 2003.

P. Dular, C. Geuzaine, F. Henrotte, and W. Legros, “A general environment for the
treatment of discrete problems and its application to the finite element method,” IEEFE
Transactions on Magnetics, vol. 34, pp. 3395—-3398, Sept. 1998.

P. R. Amestoy, 1. S. Duff, J. Koster, and J.-Y. L’Excellent, “A fully asynchronous multi-
frontal solver using distributed dynamic scheduling,” SIAM Journal on Matriz Analysis
and Applications, vol. 23, no. 1, pp. 1541, 2001.

P. R. Amestoy, A. Guermouche, J.-Y. ’Excellent, and S. Pralet, “Hybrid scheduling for
the parallel solution of linear systems,” Parallel Computing, vol. 32, no. 2, pp. 136-156,
2006.

14

	Introduction
	Classical finite element assembly procedure
	Efficient assembly procedure using matrix operations
	Matrix version of Ii, je
	Matrix version of Ki, je
	Efficient assembly algorithm

	Global orientation of the basis functions
	Permutation tree to represent orientations
	Generation of all possible orientations
	Finding the orientation associated to a mesh element

	Results
	Conclusion

