
1 
 

Impacts of climate change on future flood damage on the river Meuse, with a 
distributed uncertainty analysis 

S. Detrembleur1, F. Stilmant1, B. Dewals1, S. Erpicum1, P. Archambeau1 and M. Pirotton1 
1Hydraulics in Environmental and Civil Engineering – University of Liège 

Chemin des Chevreuils, 1 – 4000 Liège – Belgium 
Email: michel.pirotton@ulg.ac.be 

 
Abstract Flood-risk assessments are an objective and quantitative basis for implementing 
harmonized flood mitigation policies at the basin scale. However, the generated results are subject to 
different sources of uncertainty arising from underlying assumptions, data availability and the random 
nature of the phenomenon. These sources of uncertainty are likely to bias conclusions because they are 
irregularly distributed in space. Therefore, this paper addresses the question of the influence of local 
features on the expected annual damage in different municipalities. Based on results generated in the 
frame of a transnational flood-risk-assessment project for the river Meuse (Western Europe) taking 
climate change into account, the paper presents an analysis of the relative contributions of different 
sources of uncertainty within one single administrative region (the Walloon region in Belgium, i.e. a 
river reach of approximately 150 km). The main sources of uncertainty are not only found to vary both 
from one municipality to the other and in time, but also to induce opposite effects on the computed 
damage. Nevertheless, practical conclusions for policy-makers can still be drawn. 
 
Keywords Floods, Risk analysis, Damage estimation, Climate change 

1 Introduction 
From 2009 to 2012, the four European countries affected by the floods of the river Meuse, i.e. France, 
Belgium, Germany and the Netherlands, joined in the transnational project AMICE (‘Adaptation of 
the Meuse to the Impacts of Climate Evolution’) in order to reach an agreement on the flood-risk 
mitigation policies that each country should implement in order to face climate change. The scientific 
component of this project was a joint basin-wide flood risk analysis, with future projections in the 
medium term (2020-2050) and in the long term (2070-2100) (Dewals and Fournier 2013). 

The assessment of flood risk throughout Europe is based on rather heterogeneous and country-
specific methods, models and data sources (Becker et al. 2007, de Moel et al. 2009, Van Alphen et al. 
2009, van Pelt and Swart 2011). However, the basins of European rivers like the Meuse do not 
necessarily remain within the borders of one single country. This is a challenge for flood risk analyses 
that aim at comparing the risk in different parts of one river basin (Becker et al. 2007, van Pelt and 
Swart 2011). In the AMICE project, the models in use in the four countries involved in the flood risk 
analysis were thus either homogenized (i.e. one single model was used throughout the whole study 
area – e.g. damage functions) or harmonized (i.e. inconsistencies between the models were removed – 
e.g. boundary conditions of the different hydraulic models). The aim was to generate spatially 
consistent results despite the administrative borders. 

From literature, it appears that the reliability of the results is a key issue in flood risk assessment, 
because such studies are commonly subject to significant uncertainties (Merz and Thieken 2009). 
Model validation can rarely be performed in a satisfactory manner, which leads authors to call for 
thorough uncertainty analyses as a means of circumscribing the reliability of the results (Merz and 
Thieken 2009, Merz et al. 2010). Examples of such uncertainty analyses that take into account 
different uncertainty sources and their contribution to the uncertainty on the results are given in 
literature (Apel et al. 2009, Merz and Thieken 2009, de Moel and Aerts 2011). However, the 
availability of data, rather than an objective basis, often determines the importance that is granted to 
the study of a given uncertainty source (Apel et al. 2009). 

In a review article, Merz et al. (2010) point out that the relevance of the application of a given 
model to different locations is a question that deserves more attention, especially as existing studies on 
damage models show that their relevance for varying locations and/or times is limited. Merz et al. 
(2010) introduce the concept of area similarity as an indicator for the relevance of the transfer of 
damage models in space and time. For risk analyses covering large areas, this suggests that the sources 
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Table 1 Boundaries of the flood risk analysis 
Type of boundary Description 
Damage Direct tangible damage 
Space Area defined by the inundation extent induced by the highest discharge (Q5) 

in the Walloon reach of the river Meuse 
Time Flood hazard in present situation and future projections in the medium term 

(2020-2050) and in the long term (2070-2100) 
Exposure and vulnerability in present situation (no evolution) 

Scenarios No failure of any flood protection 
No temporary installation of additional flood defense by emergency services 

 
In comparison to the study area of the AMICE project, the area of interest of the study presented 

in this paper is limited to the nineteen Belgian municipalities of the Walloon stretch of the river 
Meuse, i.e. approximatively the central zone of the basin as described by de Wit et al. (2007a). The 
focus on municipalities within one single administrative unit helps removing the uncertainties induced 
by the use of different models. For instance the AMICE project did not impose the use of a single 
hydraulic model (Table 2), but paid attention to the correct interactions between the models in use in 
the different countries, i.e. a correct transfer of boundary conditions (discharges and water stages) 
from one model to the other. Moreover, the focus on a zone in which the morphological features of the 
basin are more or less homogeneous helps reducing the uncertainties induced by underlying 
assumptions. For instance, the assumption of no failure of flood protections has a different impact in 
the central zone of the Meuse basin region, where flood plains are small and flood protections mainly 
composed of concrete walls, and in the downstream zone, where flood plains are wide and flood 
protections mainly composed of dikes. 

 
Table 2 State of the art in hydraulic modelling in the Meuse basin. Spatial discretization includes both one-
dimensional (1D) and two-dimensional (2D) models solving the complete shallow-water equations (SWE) or 
using storage cells. Either the entire flood wave (unsteady model) or its peak (steady model) is simulated. 

Country 
Spatial discretization 

Flood wave simulation 
Main stream Flood plain 

France (F) 1D (SWE)      2D (storage cells) Unsteady 
Belgium (B) 
    Wallonia (W) 
    Flanders (FL) 

 
2D (SWE) 
1D (SWE) 

 
     2D (SWE) 
     2D (storage cells) 

 
Steady 

Unsteady 
The Netherlands (NL) 1D (SWE)      1D (SWE) Unsteady 
Germany (D) 1D (SWE)      2D (storage cells) Unsteady 

 
Only the evolution of the expected annual damage that is caused by an evolution in flood hazard 

is studied. No evolution in exposure or vulnerability is taken into account. For a thorough discussion 
on the relative influence of flood hazard evolution and exposure evolution in the same study area and 
the same long-term horizon (2100), we refer to Beckers et al. (2013), whose study includes a 
sensitivity analysis that considers several land-use evolution scenarios. 

Finally, the working hypotheses regarding the flooding scenario consist in taking the situation as 
is. The failure of flood defenses is not modeled, nor is the intervention of emergency services. 

All these working hypotheses restrict the scope of the study, but, in contrast, they help reducing 
the number of uncertainty sources and clarifying the discussion on the relative contributions of the 
remaining uncertainties. 

3 Data and methods 
The flood risk analysis follows a three-step procedure: flood frequency analysis, inundation estimation 
and damage estimation, as detailed in the subsequent sub-sections. As shown in Table 3, uncertainty 
arises at all steps of the analysis. In this study, the different sources of uncertainty are taken into 
account by using equivalent models to generate the results of a given step. Different model 
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combinations in the procedure lead to different results, whose range give an indication of the 
magnitude of the total uncertainty. 
 
Table 3 Uncertainty sources 
Step in the analysis Uncertainty sources 
Flood frequencies Present situation: 

  Statistical analysis 
Future projections: 
  Emission scenario 
  Global and regional climatic models 
  Hydrological model 

Inundation estimation Digital elevation model 
Hydraulic model 
Boundary condition 
Roughness coefficient 
Steady-state assumption 

Damage estimation Exposure: 
  Classification of elements at risk in homogeneous categories 
  Localization of elements at risk 
  Asset values 
Vulnerability: 
  Damage influencing factors (e.g. velocities, duration) 
  Stage-damage functions 

 

3.1. Flood frequency 

The discharges associated with a given return period in present situation have been derived from 
statistical analyses of the measurements at the gauging stations along the river Meuse. Such analyses 
have been made for each reach of the Meuse. The differences in the discharges between two 
successive stations have been attributed to the corresponding tributaries. Table 4 gives the obtained 
values upstream (Hastière) and downstream (Visé) of the study area. Note that the highest discharge 
measured in Chooz (upstream of Hastière) was 1575 m³/s in January 1995 and that the highest 
discharge measured in Borgharen (downstream of Visé) was 3039 m³/s in December 1993 (de Wit et 
al. 2007a). In order to account for the uncertainty on the probability distributions of the discharges, 
return periods have also been assessed thanks to a Weibull distribution (Table 4). 

The influence of climate change was modeled through a delta change approach in the medium 
term (2020-2050) and in the long term (2070-2100) (Dewals and Fournier 2013). National 
meteorological institutes derived seasonal increments in rainfalls and air temperature based on 
global/regional climate models forced with emission scenarios from the Intergovernmental Panel on 
Climate Change (IPCC 2000). According to several studies, dryer summers and wetter winters are 
expected in the Meuse basin (de Wit et al. 2007b, Leander et al. 2008). Nevertheless, even with wetter 
winters, not all models predict an increase in the extreme discharges (Leander et al. 2008). As a 
consequence, the AMICE project retained a ‘dry’ climate change scenario beside a ‘wet’ scenario, in 
order to take into account the wide range of predicted values. The ‘wet’ scenario leads to a basin-wide 
mean increase of the 100-year peak discharge by 15% in the medium term (2020-2050) and by 30% in 
the long term (2070-2100). The ‘dry’ scenario leads to a slight decrease in the 100-year peak 
discharge. As a consequence, no distinction is made between discharges in the ‘dry’ scenario and 
discharges in the present situation (Table 4). 
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Table 4 Expected evolution of the return periods of the five discharges taken into account in the study. Values 
are given for the dry scenario (DS) and the wet scenario (WS). 

Discharge (m³/s) Return period (years) 

ID Hastière Visé 
Present & DS Medium term – WS Long term – WS 

AMICE Weibull AMICE Weibull AMICE Weibull 
Q1 1356 2726 25 23 10 12 5 8 
Q2 1501 2962 50 50 25 19 10 12 
Q3 1650 3150 100 100 40 29 25 17 
Q4 1898 3622 300 800 100 100 50 39 
Q5 2145 4095 1250 10000 250 430 100 100 

 
A risk assessment must ideally take all return periods into account to compute the expected 

annual damage, i.e. the integral of the probability density function of the damage. Practical limitations 
however hinder this. Messner et al. (2007) recommend a minimum of 3 to 6 return periods in the risk 
analysis. Penning-Rowsell et al. (2005) recommend a minimum of 5 return periods. Ward et al. (2011) 
showed that the use of a small number of return periods is an important source of uncertainty. 
Nevertheless, only a set of five return periods (25 to 1250 years in present situation) could be 
considered in this basin-wide analysis that involved a transnational modeling chain (Table 2). A 
sensitivity analysis of the results with respect to the number of return periods is presented in section 
4.4. 

3.2. Inundation estimation 

The WOLF2D model, developed at the University of Liege, solves the complete two-dimensional 
shallow-water equations on a multibloc Cartesian grid (5 m × 5 m in this case). Spatial discretization is 
based on a finite volume scheme, with mass and momentum fluxes being computed thanks to a flux-
vector splitting method that enables consistent modeling of pressure and bottom slope terms. Time 
integration is achieved by means of an explicit Runge-Kutta algorithm constrained by a Courant-
Friedrich-Lewy stability criterion. Stability is also reinforced thanks to a semi-implicit treatment of the 
friction terms. A grid adaptation technique restricts the computation domain to the wet cells. Wetting 
and drying of cells is handled without any mass conservation error thanks to an iterative procedure 
(Erpicum et al. 2010a). 

The digital elevation model is built on echo-sonar bathymetry and laser altimetry. Raw 
topographic data are corrected with field data in order to accurately take into account features like 
hydraulic structures and flood defenses. Roughness coefficients are spatially distributed and validated 
on historical flood events. They only stand for small scale friction because large scale roughness is 
taken into account in the digital elevation model (Ernst et al. 2010, Erpicum et al. 2010a). 

The WOLF2D model is able to compute even highly transient flows (Erpicum et al. 2010b). 
Flood hazard mapping is however based on peak-discharge steady-flow simulations that run faster 
than unsteady simulations of the complete flood hydrograph. A high spatial resolution can thus be 
used within the extent of flooded areas (5 m × 5 m in this study). 

According to literature, hydraulic modeling is not the main source of uncertainty in a flood-risk 
assessment (Apel et al. 2009, Merz et al. 2010, Dottori et al. 2013). Uncertainty sources mainly arise 
from the digital elevation model, the underlying assumptions of the hydraulic model, and the boundary 
conditions (Table 3). The validation of the hydraulic model for inundation modeling along more than 
1000 km of river reaches in the Walloon region has shown a mean absolute error on water stage values 
of 10 to 15 cm (Ernst et al. 2010, Erpicum et al. 2010a). In comparison with an unsteady simulation, 
the steady-state assumption induces an overestimation of the maximum water stages. In the study area, 
this overestimation is mostly not significant. However, for the most extreme discharge (Q5 – see Table 
4), the overestimation reaches 20 cm in one reach, because of important flooding. 

In order to account for the uncertainty in the inundation estimation, two types of results are used: 
the untreated steady-state water stages computed with the WOLF2D model, which are the reference 
values, and the same water stages decreased by 20 cm, which show the influence of the uncertainty on 
the damage results. 
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3.3. Damage estimation 

3.3.1. Exposure 

Damage assessment is made at a meso scale, i.e. at the scale of land-use units (Apel et al. 2009). In the 
AMICE project, the exposure model that defines the locations and monetary values of the possible 
elements at risk is based on the CORINE land cover data (CLC) and its classification. The 44 CLC 
categories are agglomerated into 5 damage categories: residential area, industry, infrastructure (e.g. 
roads), agriculture and forest. 

CLC units have a minimum size of 25 ha. As such, they inevitably include heterogeneous 
elements among assets of the prevailing category, which have an influence on the mean monetary 
values attributed to the damage categories. In order to counterbalance this effect to some extent, the 
assessment of the asset values is based on a more precise land-use data source, available in vector 
format in the Walloon region (Computerized Localization Map, CLM). A comparison of CLC and 
CLM data is shown in Fig. 2. The Walloon Computerized Localization Map has more than 250 
categories, belonging to 26 groups. However, for asset value estimation, these data are aggregated into 
9 categories corresponding to the categories of the German ATKIS data set (Müller 2000), from which 
the mean monetary values are adapted ( 

Table 5). Mean monetary values for each of the 5 AMICE categories are then deduced from a 
weighted average of the mean monetary values of the 9 Walloon categories. Averaging is made within 
the present 100-year flood extent. Each value is weighted by the relative area occupied by the 
corresponding Walloon category within a given AMICE category. Results are given in  

Table 5 and compared to the original data. This highlights the influence of the heterogeneity 
within CLC units on monetary values, which can change dramatically whether heterogeneity is taken 
into account or not. 
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induced by higher discharges is much more important (~170 to ~1500% for Q5). Finally, from St.-
Georges to Visé (group 3), nearly no inundation occurs for discharges below Q3, which corresponds to 
the 100-yr discharge in present situation. Thus, flood hazard is only due to extreme events, which is an 
effect of the existence of flood protections (mainly concrete walls). In the municipalities of Seraing 
and Liège, the inundation that occurs for Q5 induces submersion depths that reach several meters in 
some zones, as a consequence of a subsidence process that has taken place over the past centuries due 
to mining operations. 
 

 
Fig. 4 Flooded areas per municipality, induced by the five discharges taken account in the study. 

 

4.2. Expected annual damage 

Fig. 5 shows the models used in the AMICE project together with the alternative models which have 
been considered as equivalent. There are 24 combinations that lead to 24 different results for each 
municipality. The best estimate is given by the choice of a particular model at a given step of the 
computation, or by the average of a set of models, as shown in Fig. 5. The uncertainty range is given 
by the difference between the maximum and minimum value of all 24 results. 
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The comparison of the best estimates of the damage for the different municipalities shows that 
the main trends are in accordance with the flood extents in Fig. 4. The highest expected annual 
damages are found in municipalities in which the flood hazard is mainly due to relatively frequent 
floods. In municipalities with flood protections against these relatively frequent floods, the expected 
annual damage is high only if the submersion depths for the most extreme discharges are dramatically 
high, as it is the case in Seraing and Liège, owing to mining subsidence. 

The uncertainty ranges in Fig. 6(a) are rather important, and they increase with time in such a 
way that, in the long term, overlapping occurs for nearly all municipalities. As a consequence, it is no 
more possible to make an objective distinction between the municipalities, although such a distinction 
is expected to exist, as suggested by the best estimates. Nevertheless, as shown in Fig. 6(b), in the 
frame of one single climate change scenario, the uncertainty range is considerably reduced, and 
distinctions can be made between municipalities, even within the three groups defined in section 4.1. 

The distribution of the uncertainty range with respect to the best estimate varies from one 
municipality to the other. For instance, in Fig. 6(b), the uncertainties on the damage in Yvoir tend to 
increase the value of the best estimate, while the uncertainties on the damage in Andenne tend to 
decrease the value of the best estimate. As a consequence, if the best estimates in Andenne are ~1.8 
times higher than the best estimates in Yvoir, there is still a systematic overlapping of the uncertainty 
ranges. 

4.3. Contributions of uncertainty sources 

 Uncertainties are associated with each of the three steps of the risk analysis, namely the estimation of 
flood frequency, inundation and damage. The relative contribution of each group of uncertainties is 
computed following the procedure defined by Visser et al. (2000) and (Merz and Thieken (2009)): 

 
MUR UR

MUR
i

i
R

-
=   (1) 

In Eqt. (1), Ri is the relative contribution of step i to the maximum uncertainty range MUR, and URi is 
the uncertainty range when only one alternative is considered for step i, i.e. the best estimate or the 
average which is supposed to give the best estimate, as defined in Fig. 5. Note that, with this 
definition, the sum of all three contributions is not necessarily equal to 1. 

The results are given in Fig. 7 (for both climate change scenarios) and Fig. 8 (considering only 
the wet scenario). They show that, in present situation, the uncertainty associated with flood frequency 
has a negligible influence on the uncertainty of the expected annual damage in the municipalities from 
Hastière to Huy (i.e., the municipalities belonging to groups 1 and 2, as defined in section 4.1), while 
flood frequency estimation appears to be the main source of uncertainty in the municipalities from 
Flémalle to Herstal (i.e., municipalities belonging to group 3). As a consequence, a direct comparison 
of the expected annual damage between these two categories is delicate because the assumptions that 
have been made for the computation do not have the same influence in both areas. 

According to Fig. 7, flood frequency is the main source of uncertainty in all municipalities in the 
medium and long term. The inundation estimation, despite the 20 cm variability accounted for in water 
stages, has a negligible influence on the results. In Fig. 8, in which results are given for the wet 
scenario only, the relative contributions of all three steps are less different in the medium and long 
term. The damage estimation is however the main source of uncertainty. In this case, the comparison 
of the expected annual damage from one municipality to the other suffers fewer critics due to 
heterogeneity of assumption implications. 
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Fig. 7 Relative contributions of uncertainties in flood frequency, inundation and damage estimations to the total 
variability of the expected annual damage, when both climate change scenarios are taken into account. 

 
Fig. 8 Relative contributions of uncertainties in flood frequency, inundation and damage estimations to the total 
variability of the expected annual damage, when only the wet climate change scenario is taken into account. 

4.4. Sensitivity to the number of return periods 

The limited number of return periods taken into account in the analysis (5 values) has been identified 
as a source of error in section 3.1. The magnitude of this error is assessed in present situation by 
computing the expected annual damage with even less values, keeping the lowest (Q1), middle (Q3) 
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and highest (Q5) discharges only. This error assessment is based on the assumption that the 
convergence of the approximation of the integral of the damage probability density function is 
monotonic. 

 In all 19 municipalities, the use of three return periods instead of five induces an increase in the 
expected annual damage. The total increase in the whole study area is 33% for present-situation 
values. However, as the focus of the risk analysis is put on relative values, the main question is 
whether the distribution of the expected annual damage is different. Fig. 9 shows that there is a 
difference between group 1 and group 2 municipalities (mainly a 15 to 20% decrease) on one side and 
group 3 municipalities on the other side (an increase that can reach 110 to 180%). This is due to an 
overestimation of the weight of extreme discharges in the approximation of the expected annual 
damage. As a result, the error on the number of return periods appears to attenuate the difference that 
exists between the damage in the municipalities where progressive flooding occurs and the 
municipalities where flooding is discontinuous. 

 

 
Fig. 9 Sensitivity of the non-dimensional expected annual damage with respect to the number of return periods 
taken into account in the approximation of the integral. The values correspond to the best estimates in present 
situation. 

5 Discussion 
The results presented in section 4 are hereafter compared to similar studies. 

Merz and Thieken (2009) applied a flood risk analysis to the city of Cologne (river Rhine, 
Germany) and studied the uncertainty that originates from flood frequency, inundation estimation and 
damage estimation. The damage induced by a 100-year flood was found to vary from 1 to 5 due to the 
different sources of uncertainty. They computed the contribution of each step of the risk analysis to the 
total uncertainty for seven return periods (10, 20, 50, 100, 200, 500 and 1000 years). They found that 
the contribution of damage estimation was the lowest, with an almost constant value of 20 to 25% for 
all return periods. The main contribution to the total uncertainty was different at low (< 100 years) and 
high (> 100 years) return periods: in the first case, the main source of uncertainty was found to be the 
inundation estimation (contribution of about 60-70%), while in the second case, flood frequency 
accounted for the main uncertainty (contribution of about 45-70%). 

Apel et al. (2009) assessed the damage induced in Eilenburg (river Mulde, tributary of the river 
Elbe, Germany) by the August 2002 flood and compared their values with the building repair costs as 
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reported by the Saxonian Relief Bank. The different inundation and damage models they used gave a 
total damage that varied from 1 to 10. The application of Eqt. (1) to the results they report shows that 
the relative contribution of the inundation estimation to the total uncertainty range is 39% and that the 
contribution of the damage estimation is 92%. These results are in accordance with the results of the 
study presented in this paper. 

de Moel and Aerts (2011) assessed the damage of a flood induced by dike breaching in the Land 
van Heusden/Maaskant dike ring (the Netherlands). Results varied from 1 to 5-6. The inundation 
estimation was found to generate only limited uncertainties, even though water stages were decreased 
by 25 cm. The damage estimation was found to be the main source of uncertainty, which was mainly 
due to the stage-damage curves and the asset values rather than the land-use maps. 

6 Conclusion 
This paper presents a distributed uncertainty analysis of the results of a flood risk analysis in the 
Walloon reach of the river Meuse. The uncertainties that have been studied are related to the three 
steps of the flood risk analysis, namely the flood frequency analysis, the inundation estimation and the 
damage estimation (exposure and vulnerability). The error generated by the use of a limited number of 
return periods in the assessment of the expected annual damage has also been analyzed. It appears that 
the magnitude of the uncertainty and its main origin vary, both in space and time. Moreover, 
uncertainty sources can have opposite effects on the damage computed in different municipalities. 
This has been related to local features, especially to how the floodplains inundate (progressive or 
discontinuous flooding). As a consequence, it appears that distributed uncertainty analyses are of 
prominent importance in order to show the spatial consistency of basin-wide damage assessments. 
Within the study area, this consistency appeared to be sufficient to draw conclusions at the 
municipality scale, provided that damages are compared for one single climate change model. 
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