
Research Article
Artificial Intelligence in Video Games:
Towards a Unified Framework

Firas Safadi, Raphael Fonteneau, and Damien Ernst

Université de Liège, Grande Traverse 10, Sart Tilman, 4000 Liège, Belgium

Correspondence should be addressed to Firas Safadi; fsafadi@ulg.ac.be

Received 27 August 2014; Revised 26 December 2014; Accepted 8 February 2015

Academic Editor: Alexander Pasko

Copyright © 2015 Firas Safadi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With modern video games frequently featuring sophisticated and realistic environments, the need for smart and comprehensive
agents that understand the various aspects of complex environments is pressing. Since video game AI is often specifically designed
for each game, video game AI tools currently focus on allowing video game developers to quickly and efficiently create specific AI.
One issue with this approach is that it does not efficiently exploit the numerous similarities that exist between video games not
only of the same genre, but of different genres too, resulting in a difficulty to handle the many aspects of a complex environment
independently for each video game. Inspired by the human ability to detect analogies between games and apply similar behavior on
a conceptual level, this paper suggests an approach based on the use of a unified conceptual framework to enable the development
of conceptual AI which relies on conceptual views and actions to define basic yet reasonable and robust behavior. The approach is
illustrated using two video games, Raven and StarCraft: Brood War.

1. Introduction

Because artificial intelligence (AI) is a broad notion in video
games, it is important to start by defining the scope of this
work. A video game can be considered to have two main
aspects, the context and the game. The game includes the
elements that define the actual challenges players face and the
problems they have to solve, such as rules and objectives. On
the other hand, the context encompasses all the elements that
make up the setting in which these problems appear, such
as characters and plot. This work focuses on game AI, that
is, AI which is concerned with solving the problems in the
game such as defeating an opponent in combat or navigating
in a maze. Conversely, context AI would deal with context-
specific tasks such as making a character perform a series of
actions to advance the plot or reacting to player choices.Thus,
the scope of discussion is limited to the game aspect in this
work.

Since video games are designed for human beings, it is
only natural that they focus on their cognitive skills and
physical abilities. The richer and more complex a game is,
the more skills and abilities it requires. Thus, creating a
truly smart and fully autonomous agent for a complex video

game can be as challenging as replicating a large part of the
complete human intelligence.On the other hand,AI is usually
independently designed for each game.This makes it difficult
to create thoroughly robust AI because its development is
constrained to the scope of an individual game project.
Although each video game is unique, they can share a number
of concepts depending on their genre. Genres are used to
categorize video games according to the way players interact
with them as well as their rules. On a conceptual level, video
games of the same genre typically feature similar challenges
based on the same concepts. These similar challenges then
involve common problems for which basic behavior can be
defined and applied regardless of the problem instance. For
example, in a first-person shooter one-on-one match, players
face problems such as weapon selection, opponent position
prediction and navigation. Each moment, a player needs to
evaluate the situation and switch to the most appropriate
weapon, predict where the opponent likely is or is heading
and find the best route to get there. All of these problems
can be reasoned about on a conceptual level using data such
as the rate of fire of a weapon, the current health of the
opponent and the location of health packs.These concepts are
common to many first-person shooter games and are enough

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2015, Article ID 271296, 30 pages
http://dx.doi.org/10.1155/2015/271296

http://dx.doi.org/10.1155/2015/271296

2 International Journal of Computer Games Technology

to define effective behavior regardless of the details of their
interpretation. Such solutions already exist for certain navi-
gation problems for instance and are used across many video
games.Moreover, human players can often effortlessly use the
experience acquired from one video game in another of the
same genre. A player with experience in first-person shooter
games will in most cases perform better in a new first-person
shooter game than one without any experience and can even
perform better than a player with some experience in the
new game, indicating that it is possible to apply the behavior
learned for one game in another game featuring similar
concepts to perform well without knowing the details of the
latter. Obviously, when the details are discovered, they can be
used to further improve the basic conceptual behavior or even
override it. It may therefore be possible to create cross-game
AI by identifying and targeting conceptual problems rather
than their game-specific instances. Detaching AI or a part of
it from the development of video games would remove the
project constraints that push developers to limit it and allow
it to have a continuous and more thorough design process.

This paper includes seven sections in addition to Intro-
duction and Conclusion. Section 2 presents some related
work and explains how this work positions itself beside it.
Sections 3–6 present a development model for video game AI
based on the use of a unified conceptual framework. Section 3
suggests conceptualization as a means to achieve unifica-
tion. Section 4 discusses the design of conceptual AI while
Section 5 discusses conceptual problems. Section 6 then
focuses on the integration of conceptual AI in video games.
Sections 7-8 include some applications of the development
model presented in the previous sections. Section 7 describes
a design experiment conducted on an open-source video
game in order to concretize the idea of introducing a
conceptual layer between the game and the AI. Section 8
then describes a second experiment which makes use of the
resulting code base to integrate a simple conceptual AI in two
different games. The Conclusion section ends the paper by
discussing some of the merits of the proposed approach and
noting a few perspectives for the extension of this research.

2. Related Work

Conceptualizing video games is a process which involves
abstraction and is similar to many other approaches that
share the same goal, namely, that of factoring AI in video
games. More generally, abstractionmakes it possible to create
solutions for entire families of problems that are essentially
the same when a certain level of detail is omitted. For exam-
ple, the problem of sorting an array can take different forms
depending on the type of elements in the array, but consid-
ering an abstract data type and comparison function allows a
programmer towrite a solution that can sort any type of array.
This prevents unnecessary code duplication and helps pro-
grammers make use of existing solutions as much as possible
so as to minimize development efforts. Another example of
widely used abstraction application is hardware abstraction.
Physical components in a computer can be seen as abstract
devices in order to simplify software development. Different
physical components that serve the same purpose, storage

for example, can be abstracted into a single abstract storage
device type, allowing software developers to write storage
applications that work with any kind of storage component.
Such a mechanism is used in operating systems such as
NetBSD [1] and theWindowsNToperating system family [2].

The idea of creating a unified video game AI middleware
is not new. The International Game Developers Association
(IGDA) launched an Artificial Intelligence Interface Stan-
dards Committee (AIISC) in 2002 whose goal was to create a
standard AI interface to make it possible to recycle and even
outsource AI code [3]. The committee was composed of sev-
eral groups, each group focusing on a specific issue.Therewas
a groupworking onworld interfacing, one on steering, one on
pathfinding, one on finite state machines, one on rule-based
systems and one on goal-oriented action planning, though
the group working on rule-based systems ended up being
dissolved [3–5].Thus, the committee was concerned not only
with the creation of a standard communication interface
between video games and AI, but with the creation of stan-
dard AI as well [6]. It was suggested that establishing AI stan-
dards could lead to the creation of specialized AI hardware.

The idea of creating an AI middleware for video games
is also discussed in Karlsson [7], where technical issues
and approaches for creating such middleware are explored.
Among other things, it is argued that when state systems
are considered, video game developers require a solution in
between simple finite state machines and complex cognitive
models. Another interesting argument is that functionality
libraries would be more appropriate than comprehensive
agent solutions because they provide more flexibility while
still allowing agent-based solutions to be created. Here too,
the possibility of creating specialized AI hardware was men-
tioned and a parallel with the impact mainstream graphics
acceleration cards had on the evolution of computer graphics
was drawn.

An Open AI Standard Interface Specification (OASIS)
is proposed in Berndt et al. [8], aiming at making it easier
to integrate AI in video games. The OASIS framework is
designed to support knowledge representation as well as
reasoning and learning and comprises five layers each dealing
with different levels of abstraction, such as the object level
or the domain level, or providing different services such as
access, translation or goal arbitration services. The lower
layers are concerned with interacting with the game while
the upper layers deal with representing knowledge and
reasoning.

Evidently, video game AI middleware can be found in
video game engines too. Video game engines such as Unity
[9], Unreal Engine [10], CryEngine [11], and Havok [12],
though it may not be their primary focus, increasingly aim at
not only providing building blocks to create realistic virtual
environments but realistic agents as well.

Another approach that, albeit not concerned with AI
in particular, also shares a similar goal, which is to factor
development efforts in the video game industry, is game
patterns. Game design patterns allow game developers to
document recurring design problems and solutions in such
a way that they can be used for different games while helping
them understand the design choices involved in developing

International Journal of Computer Games Technology 3

a game of specific genre. Kreimeier [13] proposes a pattern
formalism to help expanding knowledge about game design.
The formalism describes game patterns using four elements.
These are the name, the problem, the solution and the
consequence. The problem describes the objective and the
obstacles that can be encountered as well as the context
in which it appears. The solution describes the abstract
mechanisms and entities used to solve the problem. As for
the consequence, it describes the effect of the design choice
on other parts of the development and its costs and benefits.

Björk et al. [14] differentiates between a structural frame-
work which describes game components and game design
patterns which describe player interaction while playing.
The structural framework includes three categories of com-
ponents. These are the bounding category, which includes
components that are used to describe what activities are
allowed or not in the game such as rules and game modes,
the temporal category which includes components that are
involved in the temporal execution of the game such as
actions and events, and the objective category which includes
concrete game elements such as players or characters. More
details about this framework can be found in Björk and
Holopainen [15]. As for game design patterns, they do
not include problem and solution elements as they do in
Kreimeier [13]. They are described using five elements which
are name, description, consequences, using the pattern and
relations. The consequences element here focuses more on
the characteristics of the pattern rather than its impact on
development and other design choices to consider, which
is the role of the using the pattern element. The relations
element is used to describe relations between patterns, such
as subpatterns in patterns and conflicting patterns.

In Olsson et al. [16], design patterns are integrated within
a conceptual relationship model which is used to clarify the
separation of concerns between game patterns and game
mechanics. In that model, game mechanics are derived from
game patterns through a contextualization layer whose role
is to concretize those patterns. Conversely, new patterns can
be extracted from the specific implementation of these game
mechanics, which in the model is represented as code.

Also comparable are approaches which focus on solving
specific AI issues. It is easy to see why, since these approaches
typically aim at providing standard solutions for common AI
problems in video games, thereby factoring AI development.
For instance, creating models for intelligent video game
characters is a widely researched problem for which many
approaches have been suggested. Behavior languages aim to
provide an agent design model which makes it possible to
define behavior intuitively and factor common processes.
Loyall and Bates [17] presents a goal-driven reactive agent
architecture which allows events that alter the appropri-
ateness of current behavior to be recognized and reacted
to. ABL, a reactive planning language designed for the
creation of believable agents which supports multicharacter
coordination, is described in Mateas and Stern [18] and
Mateas and Stern [19].

Situation calculus was suggested as a means of enabling
high-level reasoning and control in Funge [20]. It allows the
character to see the world as a sequence of situations and

understand how it can change from one situation to another
under the effect of different actions in order to be able tomake
decisions and achieve goals. A cognitive modeling language
(CML) used to specify behavior outlines for autonomous
characters and which employs situation calculus and exploits
intervalmethods to enable characters to generate action plans
in highly complex worlds is also proposed in Funge et al. [21],
Funge [22].

It was argued inOrkin [23, 24] that real-time planning is a
better suited approach than scripting or finite state machines
for defining agent behavior as it allows unexpected situations
to be handledmore naturally. Amodular goal-oriented action
planning architecture for game agents similar to the one used
in Mateas and Stern [18, 19] is presented.Themain difference
with the ABL language is that a separation is made between
implementation and data. With ABL, designers implement
the behavior directly. Here, the implementation is done by
programmers and designers define behavior using data.

Anderson [25] suggests another language for the design of
intelligent characters. The avatar definition language (AvDL)
enables the definition of both deterministic and goal directed
behavior for virtual entities in general. It was extended by
the Simple Entity Annotation Language (SEAL) which allows
behavior definitions to be directly embedded in the objects
in a virtual world by annotating and enabling characters to
exchange information with them [26, 27].

Finally, learning constitutes a different approach which,
again, leads to the same goal. By creating agents capable of
learning from and adapting to their environment, the issue
of designing intelligent video game characters is solved in
a more general and reusable way. Video games have drawn
extensive interest from the machine learning community in
the last decade and several attempts at integrating learning
in video games have been made with varying degrees of
success. Some of the methods used are similar to the pre-
viously mentioned approaches in that they use abstraction
or concepts to deal with the large diversity found in video
games. Case-based reasoning techniques generalize game
state information tomakeAI behavemore consistently across
distinct yet similar configurations. The possibility of using
case-based plan recognition to reduce the predictability of
real-time strategy computer players is discussed in Cheng
andThawonmas [28]. Aha et al. [29] presents a case learning
and plan selection approach used in an agent that learns to
win against a number of different AI opponents in Wargus.
In Ontañón et al. [30], a case based planning framework for
real-time strategy gameswhich allows agents to automatically
extract behavioral knowledge from annotated expert replays
is developed and successfully tested in Wargus as well. More
work using Wargus as a test platform includes Weber and
Mateas [31] and Weber and Mateas [32] which demonstrate
how conceptual neighborhoods can be used for retrieval in
case-based reasoning approaches.

Transfer learning approaches attempt to use the experi-
ence learned from some task to improve behavior in other
tasks. In Sharma et al. [33], transfer learning is achieved by
combining case-based reasoning and reinforcement learning
and used to improve performance over successive games
against the AI in MadRTS. Lee-Urban et al. [34] also uses

4 International Journal of Computer Games Technology

MadRTS to apply transfer learning using a modular archi-
tecture which integrates hierarchical task network (HTN)
planning and concept learning. Transfer of structure skills
and concepts between disparate tasks using a cognitive
architecture is achieved in Shapiro et al. [35].

Although machine learning technology may lead to the
creation of a unified AI that can be used across multiple
games, it currently suffers from a lack of maturity. Even if
some techniques have been successfully applied to a few
commercial games, it may take a long time before they are
reliable enough to become mainstream. On the other hand,
video game engines are commonly used and constitute amore
practical approach at factoring game development processes
to improve the quality of video games. They are however
comprehensive tools which developers need to adopt for the
entire game design rather than just their AI. Furthermore,
they allow no freedom in the fundamental architecture of the
agents they drive.

The approach presented in this paper bears the most
resemblance to that of creating a unified AI middleware. It
is however not an AI middleware, strictly speaking. It makes
use of a conceptual framework as the primary component
which enables communication between video games and AI,
allowing video game developers to use conceptual, game-
independent AI in their games at the cost of handling the nec-
essary synchronization between game data and conceptual
data. A key difference with previous work is that it makes no
assumptions whatsoever on the way AI should be designed,
such as imposing an agent model or specific modules.
Solutions can be designed for any kind of AI problem and in
any way. A clear separation ismade between the development
of the conceptual framework, that of AI and that of video
games. Because AI development is completely separated from
the conceptual framework, its adoption should be easier as
it leaves complete freedom for AI developers to design and
implement AI in whichever way they are accustomed to.
Furthermore, the simplicity of the approach made it possible
to provide a complete deployment example detailing how
an entire video game was rewritten following the proposed
design. In addition, the resulting limited conceptual frame-
work prototype was successfully employed to reuse some of
the game AI modules in a completely different game.

3. Conceptualize and Conquer

Since video games, despite their apparent diversity, share
concepts extensively, creating AI that operates solely on
concepts should allow developers to use it formultiple games.
This raises an important question however, namely, that of the
availability of a conceptual interpretation of video games. In
reality, forAI to handle conceptual objects, itmust have access
to a conceptual view of game data during runtime.

When humans play a video game, they use their faculty of
abstraction to detect analogies between the game and others
they have played in the past. Abstraction in this context
can be seen as a process of discarding details and extracting
features from raw data. By recalling previous instances of
the same conceptual case, the experience acquired from the
other games is generalized and transformed into a conceptual

policy (i.e., conceptualized). For example, a player could have
learned in a role-playing game (RPG) to use ranged attacks
on an enemy while staying out of its reach. This behavior is
known as kiting. Later, in a real-time strategy (RTS) game,
that player may be faced with the same conceptual situation
with a ranged unit and an enemy. If, at that time, the concept
of kiting is not clearly established in the player’s mind, they
may remember the experience acquired in the RPG and
realize that they are facing a similar situation: control over
an entity with a ranged attack and the ability to move and the
presence of an enemy. The player will thereby conceptualize
the technique learned in the RPG and attempt to apply it in
the RTS game.On the other hand, if the player is familiar with
the concept of kiting, a simple abstraction of the situation
will lead to the retrieval of the conceptual policy associated
with it, without requiring the recall of previous instances and
associated experiences and their conceptualization.

Note that kiting can be defined using only concepts, such
as distance, attack range and movement. Distance can have
several distinct interpretations, for example yards, tiles or
hops. Attack range can be a spell range, a firearm range or a
gravity range. Walking, driving and teleporting are all differ-
ent forms ofmovement. Kiting itself being a concept, it is clear
that concepts can be used to define other concepts. In fact, in
order to define conceptual policies, different types of concepts
are necessary, such as objects, relationships, conditions and
actions. Weapon, enmity, mobility (The condition of being
mobile.) and hiding are all examples of concepts.

According to the process shown in Figure 1, conceptual
AI, that is AI which operates entirely on concepts, could be
used in video games under the premise that three require-
ments are met. These would be:

(1) the ability to translate game states into conceptual
states,

(2) the ability to translate conceptual actions into game
actions,

(3) and the ability to define conceptual policies. (A con-
ceptual policy maps conceptual states to conceptual
actions.)

Though the third requirement raises no immediate ques-
tions, the other two appear more problematic, as translating
states and actions needs to be done in real-time and there
currently exists no reliable replacement for the human faculty
of abstraction. It follows from the latter assertion that this
translation must be manually programmed at the time of
development. This means that the game developer must have
access to a library of concepts during development and write
code to provide access at runtime to both conceptual views
and conceptual controls of the game for the AI to work with.
Using such a process, both the real-time availability and the
quality conditions of the translation are satisfied.

As is hinted in Figure 2, rather than translating game
states into conceptual states discretely, it is easier to simply
maintain a conceptual state in the conceptual data space
(CDS). In other words, the conceptual state is synchronized
with the game state. Every change in the game state, such
as object creation, modification or destruction, is directly

International Journal of Computer Games Technology 5

Game state Abstraction
Concepts

established?

Conceptual
categorization

Conceptual
situation

Conceptualization

Conceptual
policy Concretization Game action

Similar

Memory

Memory

Abstract

Brain

Yes

No

situation

experiences

Figure 1: Possible process of human decision making in a video game using conceptual policies, as described above. If memory queries do
not yield any results, a concrete policy is computed in real-time using other cognitive faculties such as logic or emotion.

propagated to the conceptual state. Note that there is no
dynamic whatsoever in the CDS. A change in the CDS can
only be caused by a change on the game side, wherein the
game engine lies.

Obviously, this design calls for a unified conceptual
framework (CF). That is, different developers would use the
same conceptual libraries. This would allow each of them to
use anyAIwritten using this unique framework. For example,
a single AI could drive agents in different games featuring
conceptually similar environments, such as a first-person
shooter (FPS) arena. This is illustrated in Figure 3.

From a responsibility standpoint, the design clearly dis-
tinguishes three actors:

(1) the game developers,
(2) the AI developers,
(3) and the CF developers.

The responsibilities of game developers include deciding
which AI they need and adding code to their game to main-
tain in the CDS the conceptual views required by the AI as
well as implementing the conceptual control interfaces it uses
to command game agents. Thus, game developers neither
need toworry about designingAI nor conceptualizing games.
Instead, they only need to establish the links between their
particular interpretation of a concept and the concept itself.

On the opposite side, AI developers can write conceptual
AI without worrying about any particular game. Using only
conceptual elements, they define the behavior of all sorts of
agents. They also need to specify the requirements for each
AI in terms of conceptual views and controls.

Finally, the role of CF developers is to extract concepts
from games (i.e., conceptualize) and write libraries to create
and interact with these concepts. This includes writing the
interfaces used by game developers to create and maintain
conceptual views and by AI developers to access these views
and control agents.

Because the CF should be unique and is the central com-
ponent with which both game developers and AI developers
interact, it should be developed using an open-source and
extensible model. This would allow experienced developers
from different organizations and backgrounds to collaborate
and quickly produce a rich and accessible framework. Inci-
dentally, it would allow game developers towrite their ownAI
while extending the framework with any missing concepts.

4. Designing Conceptual AI

From a technical perspective, writing conceptual AI is similar
to writing regular AI. That is, developers are free to design
their AI anyway they see fit. Conceptual AI does not require a
specific form.The only difference between conceptual AI and

6 International Journal of Computer Games Technology

Game Conceptual data space
AI

Conceptual views

Conceptual controlsRead

ReadUpdate

Update

Figure 2: Basic architecture of a video game using conceptual AI. The game maintains a conceptual view of its internal state. A conceptual
view is the projection of a part of the game state into conceptual space. Based on this conceptual data, the AI controls an agent in the game
by issuing conceptual commands, which the game translates back into game actions.

A B C

Video games

AI solutions

A
A B

B
Conceptual
interface Ainterface A

A

ConceptualConceptual Conceptual
interface C interface C

C
C

Conceptual
interface Binterface B

B

Conceptual

C

Figure 3: Using the sameAI inmultiple games. AI A can run in games A and B because both implement the conceptual interface A it requires.
A conceptual interface is a set of conceptual views and controls.

regular AI is that the former is restricted to the use of concep-
tual data. Rather than operating on concrete objects, such as
knights, lightning guns or fireball spells, it deals with concepts
such as melee (Opposite of ranged, can only attack within
grappling distance.) tanking units (A tanking unit, or tank, is
a unit who canwithstand large amounts of damage andwhose
primary role is to draw enemy attacks in order to ensure the
survival of weaker allied units.), long-range hitscan weapons
(A hitscan weapon is a weapon that instantly hits the target
when fired (i.e., no traveling projectile).) and typed area-
of-effect damage projectile abilities. (Area-of-effect abilities
target an entire area rather than a single unit.) Likewise,
actions involve conceptual objects and properties instead of
concrete game elements and can consist in producing an anti-
air unit or equipping a damage reduction accessory. This
difference is illustrated in Algorithms 1 and 2.

Algorithm 1 shows an excerpt from the combat code of a
Fortress Defender, a melee non-player character (NPC) in a
RPG. A Fortress Defender can immobilize enemies, a useful
ability against ranged opponents who might attempt to kite
it. Before commanding the NPC to attack an encountered

enemy, the code checks whether the type of opponent is one
of those who use a ranged weapon and starts by using its
immobilization ability if it is the case.

Algorithm 2 shows a possible conceptualization of the
same code. Note how the design remains identical and
the only change consists in replacing game elements with
conceptual ones. As a result, the new code mimics a more
conceptual reasoning. In order to prevent a ranged enemy
from kiting the melee NPC, the latter checks whether a
movement-impairing ability is available and uses it on the tar-
get beforemoving towards it.Whether the actual ability turns
out to slow, immobilize or completely stun the opponent
holds little significance as long as the conceptual objective of
preventing it from kiting the NPC is accomplished. Although
this requires developers to think in a more abstract way, they
do retain the freedom of designing their AI however they are
accustomed to.

Despite this technical similarity, the idea of conceptualiz-
ing video games suggests looking at AI in a more problem-
driven way. There are two obvious reasons. First, conceptual
AI does not target any game in particular, meaning that it

International Journal of Computer Games Technology 7

void handle enemy(pc t & enemy)

{

⋅ ⋅ ⋅

if (enemy.type() == pc t::cleric || enemy.type()

== pc t::sorcerer || enemy.type() == pc t::ranger)

queue action(use skill(Skill::root, enemy));

queue action(attack(enemy));

⋅ ⋅ ⋅

}

Algorithm 1: Fortress Defender combat code snippet.

void handle enemy(pc t & enemy)

{

⋅ ⋅ ⋅

if (enemy.ranged() && can impair movement())

queue action(use skill(get skill(SkillType::

disable move), enemy));

queue action(attack(enemy));

⋅ ⋅ ⋅

}

Algorithm 2: Conceptual combat code snippet.

J

K

H

I
B

CA

G

F

D

E

L

Figure 4: Conceptual problems (circles) and solutions (irregular
forms). Instead of looking at the whole ADE and CDI problems
found in two different games and solving them directly, solving
problem D twice in the process, it is more interesting to identify
the individual problems A, C, D, E, and I and solve them once first.
A solution based on those of the individual problems can then be
developed for each game without having to solve them again.

should not be defined as a complete solution for an entire
game. Second, with the various interpretation details omit-
ted, AI developers can more easily identify the conceptual
problems that are common to games of different genres and
target the base problems first rather than their combinations
in order to leverage the full factoring potential of conceptual-
ization.The idea of solving the base conceptual problems and
combining conceptual solutions is illustrated in Figure 4.

Besides combining them, it can be necessary to establish
dependencies between solutions. An AI module may rely

on data computed by another module and require it to
be running to function properly. For example, an ability
planner module could require a target selection module by
planning abilities for a unit or character according to its
current target. This can be transparent to game developers
when the solutions with dependencies are combined together
into a larger solution. When they are not however, game
developers need to know whether an AI module they plan
on using has any dependencies in order to take into account
the conceptual interfaces required by those dependencies.
This means that AI developers have to specify not only
the conceptual interface an AI solution uses, but also those
required by its dependencies. Dependencies in combined and
individual AI solutions are illustrated in Figure 5.

It can be argued that problems are actual video game ele-
ments.The difference between them and other elements such
as objects is that they are rarely defined explicitly.Theymight
be in games where the rules are simple enough to be listed
exhaustively in a complete description of the problem the
player is facing, but often in video games the rules are com-
plex and numerous and a complete definition of the problems
players must face would be difficult to not only write, but also
read an understand. Instead, a description of the game based
on features such as genres, environments or missions convey
the problems awaiting players in a more intuitive way. With
such implicit definitions, there can be many ways of breaking
down video games into conceptual problems. Different AI
developers might consider different problems and composi-
tions. There are no right or wrong configurations of concep-
tual problems, though somemay allow developers to produce
AI more efficiently than others, just like the concepts making
up the CF. It was suggested that the CF should be developed

8 International Journal of Computer Games Technology

AI A

CI B

CI A

CI C

CI
 D

Game A

Game B

AI B

AI C

AI C

A
I D

CI A

CI C

AI A

Figure 5: AI dependency in combined and individual solutions.
Arrows represent requirement. A combination of AI solutions (AI
D) has its own conceptual interface (CI D) which includes those
of its components, making AI dependency transparent to game
developers. In the case of separate AI solutions, a dependency (AI
C requires AI A) translates into an additional conceptual interface
(CI A) for game developers to provide.

using an open-source model to quickly cover the numerous
existing concepts through collaboration and ease the addition
of new ones. The same suggestion could be made for con-
ceptual problems. If conceptual problems are listed and orga-
nized in the CF, AI developers can focus on solving concep-
tual problems instead of identifying them. As with concepts,
as conceptual problems are identified and included in the
CF, they become part of the AI developers’ toolkit and allow
them to better design their solutions. This task can be added
to the responsibilities of CF developers, though since AI
developers are the ones facing these conceptual problems and
dealing with their hidden intricacies, they are likely to detect
similarities between solutions to seemingly distinct problems,
and in extension similarities between problems, and could
collaborate with CF developers to restructure problems or
contribute to the CF directly. Similarly, game developers deal
with the details of the explicit elements andmay have valuable
contributions to make to the CF. In a way, CF developers can
include both game andAI developers who could be assuming
a double role either as direct contributors or as external
collaborators. Such an organization together with the idea of
breaking down video games into conceptual problems and
using these as targets for conceptual AI is shown in Figure 6.
The AI used in a video game could thus be described as
solutions to elementary or composite conceptual problems.

5. Identifying Conceptual Problems

Conceptual problems are the heart of this video game AI
development model. Indeed, it would serve little purpose to
conceptualize video games if the resulting concepts could not

be used to identify problems that are common to multiple
games. Problem recurrence in video games is the raison
d’être of such a model and why factoring video game AI is
worth pursuing.The amount of factoring that can be achieved
depends on howwell recurring problems are isolated in video
games not only of the same genre, but of any genre.This could
be used as a measure of the efficiency of the model, as could
be the amount of redundancy inAI solutions to disjoint prob-
lems. Clearly identifying and organizing conceptual problems
is therefore a crucial dimension of this development model.

Problems and their solutions can either be elementary
or composite. Elementary problems are problems whose
decomposition into lesser problems would not result in any
AI being factored. They are the building blocks of composite
problems. The latter combine several problems, elementary
or composite, into a single package to be handled by a
complete AI solution. For example, an agent for a FPS arena
deathmatch can be seen as a solution to the problem of
control of a character in that setting. This problem could be
decomposed into smaller problems which can be found in
different settings such as real-time combat and navigation.

Navigation is a popular and well-studied problem found
in many video games. Navigation in a virtual world often
involves pathfinding. Common definitions as well as optimal
solutions already exist for pathfinding problems. Examples
include the A∗ search algorithm, which solves the single-
pair shortest path problem (Find the least-cost path between
a source node and a destination node in a graph.), and
Dijkstra’s algorithm, which solves the single-source shortest
path problem (Find the least-cost path between a root
node and all other nodes in a graph.). Although standard
implementations can be found in developer frameworks and
toolboxes, it is not unusual for developers to commit to their
own implementation for environment-based customization.

A problem decomposition is often reflected in the AI
design of a video game. For example, the AI in a RTS game
may be divided into two main components. One component
would deal with the problem of unit behavior and define
behavior for units in different states such as being idle or
following specific orders. This AI component could in turn
include subcomponents for subproblems such as pathfinding.
Defining autonomous unit behavior involves elements such
as the design of unit response to a threat, an attack or the
presence of an ally and is a problem that can be found in other
games such as RPGs and FPSs. The other main component
would deal with the problem of playing the RTS game to
make it possible for a humanplayer to face opponentswithout
requiring other human players. This component could be
organized in a number of modules to deal with the various
tasks a player has to handle in a RTS game. A strategy
manager can handle decisions such as when to attack and
which units to produce. A production manager can handle
construction tasks and assign workers to mining squads. A
combat manager can designate assault locations and assign
military units to combat squads. Squad managers can handle
tasks such as unit formations and coordination and target
selection. These AI components can provide insight on the
different conceptual problems they attempt to solve and
their organization. Coordination between a group of units

International Journal of Computer Games Technology 9

A A

VG developers AI developersCF developers

B

C

B

D

Video games Artificial intelligenceConceptual framework

Collaborate Collaborate

A

B

C

Conceptual problems

C

D

Figure 6: Collaboration between developers. Some game and AI developers, possibly large organizations or pioneers, also help developing
the CF. Others only use it. Conceptual problems (CP) are listed and organized in the CF. A conceptual problem can be included in multiple
games (CP B is included in VG B, C, and D) and can have multiple solutions (AI A and D are two different solutions for CP A).

to select a common target or distribute targets among units
and maneuver units can be included in the larger problem
of real-time combat which is not exclusive to the RTS genre.
On the other hand, production-related decisions could be
taken based on generic data such as total air firepower or total
ground armor, making it possible for the same conceptual
policy to be used for any RTS game providing a conceptual
view through which such data can be computed.

More conceptual problems could be derived from these
AI components. The real-time combat problem is a complex
recurring problem found in many different games and may
incorporate problems such as role management, equipment
tuning, positioning, target selection and ability planning.

Many such problems have already been studied and the
video game AI literature is rich in books which explore
common problems in depth. Examples include Programming
Game AI by Example by Buckland [36], AI Game Engine
Programming by Schwab [37],Artificial Intelligence for Games
by Millington and Funge [38], Artificial Intelligence: A Mod-
ern Approach by Russel and Norvig [39] and the AI Game
ProgrammingWisdom books by Rabin [40–43].More specific
publications that focus on positioning for example also exist,
such aswork fromStraatman andBeij [44] andPottinger [45].

The remainder of this section briefly presents some of
these problems and attempts to reason about them concep-
tually.

5.1. Role Management. Role management in combat is a
recurring problem in video games. Role management deals
with the distribution of responsibilities, such as damaging,

tanking, healing and disabling, among a group of units or
characters fighting together. This problem is often encoun-
tered in popular genres such as RPG (e.g.,World of Warcraft,
Blizzard Entertainment 2004), RTS (e.g., Command & Con-
quer: Red Alert 3, Electronic Arts 2008) and FPS (e.g., Left
4 Dead, Valve Corporation 2008). Roles can be determined
based on several factors, including unit type or character
class, attributes and abilities, equipment and items, unit or
character state and even player skill or preference. Without
targeting any specific game, it is possible to define effective
policies for role management using conceptual data only.The
data can be static like a sorted list of role proficiencies indicat-
ing in orderwhich roles a unit or character is inherently suited
for. Such information can be used by theAI to assign roles in a
group of units of different type in combat. Dynamic data can
also be used to control roles in battle, like current hit points
(The amount of damage a unit can withstand.), passive dam-
age reduction against a typed attack and available abilities of a
unit. For instance, these can be used together to estimate the
current tanking capacity for units of the same type. Naturally,
the interpretation of these concepts varies from one game to
another. Yet a conceptual policy remains effective in any case.

In a RPG, if a party is composed of a gladiator, an
assassin and two clerics, the gladiator may assume the role
of tank while a cleric assumes the role of healer and both
the assassin and the other cleric assume the role of damage
dealers. This distribution can vary significantly however. For
example, the gladiatormay be verywell equipped andmanage
to assume the double role of tank and damage dealer, or
conversely, the assassinmay be dealing toomuch damage and

10 International Journal of Computer Games Technology

become the target. If the tank dies, the healer may become
the target (Healing often increases the aggression level of a
monster towards the healer, sometimes more than damaging
the monster would.) and assume both the role of tank and
healer. In this case, the other cleric may switch to a healer role
because the tanking cleric could get disabled by the enemy or
simply because the lack of defense compared to a gladiator
could cause the damage received to increase drastically,
making two healers necessary to sustain enemy attacks. Roles
can thus be attributed during combat depending on character
affinities and on current state data too.

A similar reasoning process can be used for units in a
RTS game. In a squad composed of knights, sorcerers and
priests, knights will be assuming the role of tanks and fighting
at the frontlines, while priests would be positioned behind
them and followed by the sorcerers. Sorcerers would thus
be launching spells from afar while knights prevent enemy
units from getting to them and priests heal both injured
knights and sorcerers. Even among knights, some might be
more suited for tanking than others depending on their
state. Heavily injured knights should not be tanking lest they
not survive a powerful attack. They should instead move
back and wait for priests to heal them while using any long
range abilities they might have. Unit state includes not only
attributes such as current hit points but also status effects
(A status effect is a temporary alteration of a unit’s attributes
such as speed or defense.) and available abilities. Abilities can
significantly impact the tanking capacity of a unit. Abilities
could create a powerful shield around a unit, drastically
increase the health regeneration of a unit or even render a unit
completely invulnerable for a short amount of time. Likewise,
healing and damage dealing capacities can vary depending
on available abilities. The healing or damage dealing capacity
of a unit may be severely reduced for some time if the unit
possesses powerful but high-cooldown (The cooldown of an
ability is the minimum amount of time required between two
consecutive activations. It is used to regulate the impact of
an ability in a battle.) abilities which have been used recently.
If the knights fall, either priests stay at the front and become
the tanks or they move to the back and let the sorcerers tank
depending on who of the two has the higher tanking capacity.
Again, conceptual data can be used to generate operating
rules to dynamically assign roles among units.

Algorithm 3 shows a conceptualAI functionwhich can be
used to determine the primary tank in a group. The primary
tank is usually the unit or character that engages the enemy
and is more likely to initiate a battle. Algorithm 4 details a
possible implementation of the scoring function. It estimates
the total amount of damage a unit could withstand based on
its hit points and the overall damage reduction factor it could
benefit from that can be expected during the battle given
the abilities of both sides. A damage reduction factor is just
oneway of conceptualizing defensive attributes such as armor
or evasion. The dmgred abilities function could create a
list of available damage reduction abilities and average their
effects. For each ability, the amount of reduction it contributes
to the average can be estimated using the reduction factor it
adds, the duration of the effect, the cooldown of the ability
as well as its cast time. In the case of conflicting abilities

(i.e., abilities whose effects override each other), the average
reduction bonus could be estimated by spreading the abilities
over the cooldown period of the one with the strongest effect.
The dmgamp abilities function could work with damage
amplification abilities in a similar way. It could also take into
account the unit’s resistance to status effects.

Any form of distribution of responsibilities between units
or characters fighting together can be considered role man-
agement. Role management does not assume any objective
in particular. Depending on the goal of the group, different
distribution strategies can be devised. The problem of role
management in combat can therefore be described as follows.
Given an objective, two or more units or characters and
a set of roles, define a policy which dynamically assigns a
number of roles to each unit or character during combat in
a way which makes the completion of the objective more
likely than it would be if units or characters each assumed
all responsibilities individually. An example of objective is
defeating an enemy unit. Roles do not have to include multi-
ple responsibilities.They can be simple and represent specific
responsibilities such as acting as a decoy or baiting the enemy.

5.2. Ability Planning. Another common problem in video
games is ability planning. It can be found in genres such
as multiplayer online battle arena (MOBA) (e.g., League of
Legends, Riot Games 2009 and Dota 2, Valve Corporation
2013) and RPG (e.g., Aion: The Tower of Eternity, NCsoft
2008 and Diablo III, Blizzard Entertainment 2012). Units
or characters may possess several abilities which can be
used during combat. For instance, a wizard can have an
ice needle spell which inflicts water damage on an enemy
and slows it for a short duration, a mana shield spell which
temporarily causes damage received to reduce mana points
(Also called magic points or ability points. Using abilities
usually consumes mana points.) instead of health points and
a dodge skill which can be used to perform a quick sidestep to
evade an attack. Each of these abilities is likely to have a cost
such as consuming a certain amount ofmana points or ability
points and a cooldown to limit its use. Units or characters
thus need to plan abilities according to their objective to
know when and in what order they should be used. As with
role management, both static and dynamic data can serve in
planning abilities. For example, if the enemy’s class specializes
in damage dealing, disabling abilities or protective abilities
could take precedence over damaging abilities because its
damage potential may be dangerously high. However, if the
enemy’s currently equipped weapon is known to be weak or
its powerful abilities are known to be on cooldown, the use of
protective abilities may be unnecessary.

Although abilities can be numerous, the number of ability
types is often limited. These may include movement abili-
ties, damaging abilities, protective abilities, curative abilities,
enhancing abilities, weakening abilities and disabling abili-
ties. Evidently, it is possible for an ability to belong tomultiple
categories. Abilities can be described in a generic way using
various conceptual properties such as damage dealt, travel
distance, conceptual attributemodification such as increasing
hit points, effect duration, conceptual attribute cost such as
action point cost, and cooldown duration. Abilities could also

International Journal of Computer Games Technology 11

void set tank(UnitList & grp)

{

//Get a list of the enemies the group is fighting
UnitList enemies = get nearby threats(grp);

Unit∗ toughest = NULL;

double score = 0;

//For each unit in the group, estimate its toughness against the enemy
UnitList::iterator u;

for (u = grp.begin(); u != grp.end(); ++u)

{

double cs = score tanking(∗u, grp, enemies);

if (cs > score)

{

toughest = ∗u;

score = cs;

}

}

//Assign the role of tank to the toughest unit in the group
if (score > 0)

set role(toughest, Role::tank);

}

Algorithm 3: Primary tank designation. This function could be used to determine which unit or character should engage the enemy.

double score tanking(Unit∗ u, UnitList & grp, UnitList & enemies)

{

//Set the base score to the current unit hit points
double score = u->hitpts();

//Get primary damage type of enemy
DamageType dt = get primary dtype(enemies);

//Get current damage reduction of the unit
double dr = u->dmgred(dt);

//Factor in average reduction bonus from ally abilities
dr += dmgred abilities(u, grp, dt);

//Factor in average amplification bonus from enemy abilities

dr −= dmgamp abilities(u, enemies, dt);

if (dr >= 1.0)

return numeric limits<double>::infinity();
//Estimate effective hit points
score ∗= 1.0/(1.0 − dr);

return score;

}

Algorithm 4: Tanking capacity estimation. This function could be used to evaluate how fit of a tank a unit or character is.

be linked together for chaining, such as using an ability to
temporarily unlock another. Ability planning can then be
achieved without considering the materialization of the abil-
ities in a particular world. Even special abilities used under
certain conditions, such as a boss attack that is executedwhen
the hit points of the boss fall under a specific threshold, can
be handled by conceptual policies. For instance, a powerful
special ability of a boss monster can be unavailable until a
condition ismet. At that point, a policy that scans abilities and
selects the most powerful one available would automatically
result in the use of the special ability. If the ability must be
used only once, a long cooldown can stop subsequent uses

assuming cooldowns are reset if the boss exits combat (This
is to ensure that the boss can use the special ability again in a
new battle in case its opponents are defeated or run away.).

Abilities can be planned according to some goal. For
example, the goal could be to maximize the amount of
damage dealt over a long period of time, also called damage
per second (DPS). Maximizing DPS involves determining a
rotation of the most powerful abilities with minimum down-
time (A state where all useful abilities are on cooldown.).
Conversely, the goal could be maximizing the amount of
damage dealt over a short period of time, or dealing as much
damage as possible in the shortest amount of time, also called

12 International Journal of Computer Games Technology

Plan A

Plan B

Time

Figure 7: Ability planning using a burst strategy (Plan A) and aDPS
strategy (Plan B). Rectangles represent cooldownperiods of abilities.
Each color corresponds to a different ability. Cast time is represented
by a delay between the use of two consecutive abilities.

burst damage. A burst plan is compared to a DPS plan in
Figure 7. While the burst strategy (Plan A) obviously deals
more damage at the beginning, it is clear that theDPS strategy
(Plan B) results in more damage over the entire period.
The DPS plan orders long-cooldown abilities in a way that
avoids simultaneous cooldown resets because these powerful
abilities need to be used as soon as they are ready to make
the most out of them, which is not possible if multiple ones
become ready at the same time. It also avoids the downtime
between the two consecutive uses of the purple ability in Plan
A by better interleaving its casts throughout the time period.
This leads to a higher output overall. Note that the burst
strategy eventually converges towards the the DPS strategy.

When combat is largely based on abilities, predicting
and taking into account enemy abilities becomes crucial for
effective ability planning. If a lethal enemy attack is predicted,
a unit or character can use a protective ability such as casting
a shield just before the attack is launched to nullify its effect.
Alternatively, it can use a disabling ability to prevent the
enemy from using the ability or interrupt it. Known enemy
abilities could be evaluated in order to predict the enemy’s
likely course of action and plan abilities accordingly. Just
like role management, ability planning can be dealt with by
defining interesting conceptual policies for various frequently
encountered objectives.

In Algorithm 5, the DPS of an ability chain is estimated
by adding up the damage and duration of each ability in the
chain. Ability chains can be useful to represent linked abili-
ties, for example when an ability can only be activated after
another. They can also be used to generate different versions
of the same ability in cases where using an ability after a
specific one alters the attributes of the ability. If activating

ability𝑌 after𝑋 increases the damage of𝑌 by 100%or reduces
its use time by 50%, 𝑋 and 𝑌 may be interesting from a
DPS standpoint in cases where they otherwise are not when
considered individually.The attribute values of 𝑌 can then be
different from their default ones depending on the chain in
which they appear. Of course, this function only estimates a
theoretical damage and ismore useful to generate all-purpose
ability rotations than to plan abilities against a specific enemy.
DPS can be more accurately estimated by factoring in the
attributes and status effects of both the user and the target.
If the target is very resistant against a particular type of
damage, powerful abilities of this type may be outranked by
less powerful ones dealing a different type of damage. The
attributes or the status effects of the user can also affect the
effectiveness of different abilities in different ways. One ability
may have a high base damage value but gain nothing from
the strength of the user, while another ability may have a low
base damage but greatly benefit from the strength attribute
and end up out-damaging the former. Use time can also vary
depending on the user’s attributes. Note that the use time
corresponds to the total time during which the user is busy
using an ability and cannot use another. Some abilities may
involve both a cast time (i.e., a phase where the user channels
energy without the ability being activated) and an activation
duration (i.e., the time between the activation of the ability
and the time the user goes back to an idle state).This function
does not calculate other costs either. If abilities cost ability
points ormana points to use in combat, these additional costs
can be estimated for the chain together with the time cost
since they usually cannot be ignored during a battle.

The concept of abilities is used in several genres. They
usually correspond to actions that can be taken in addition
to base actions, such as moving, at a cost. Given an objective
and a set of abilities, the problem of ability planning is to
produce a sequence of abilities which leads to the completion
of the objective. Note that the set of abilities does not have
to belong to a single entity. Like in role management, the
objective can be fairly abstract and common, such as running
away, disabling an enemy or protecting an ally.

5.3. Positioning. A frequently encountered problem in video
games is positioning in the context of combat. Many genres
include it, such as action-adventure (AA) (e.g.,The Legend of
Zelda: Ocarina of Time, Nintendo 1998), RTS (e.g., StarCraft
II: Wings of Liberty, Blizzard Entertainment 2010) and RPG
(e.g., TERA: Rising, Bluehole Studio 2011). Maneuverable
units or characters have to continuously adjust their position
according to their role or plan. A character whose role is to
defend other characters will move to a position from which
it can cover most of its allies from enemy attacks. An archer
will attempt to stay outside the range of its enemies but close
enough to reach them. A warrior with strong melee area-of-
effect (AoE) attacksmustmove to the center of a group of ene-
mies so as to hit as many of them as possible with each attack.
An assassinmay need to stick to the back of an enemy in order
to maximize its damage. A specialized unit with poor defense
could remain behind its allies in order to easily retreat in case
it becomes targeted. This kind of behavior results from con-
ceptual reasoning and needs not be specific to any one game.

International Journal of Computer Games Technology 13

double calc dps(AbilityChain & ac)

{

double dmg = 0;

double dur = 0;

AbilityChain::iterator a;

//Add up the damage and duration of each ability in the chain
for (a = ac.begin(); a != ac.end(); ++a)

{

dmg += (∗a)->damage();

dur += (∗a)->usetime();

}

//DPS = total damage/total execution time
if (zero(dmg))
return 0;

if (zero(dur))
return numeric limits<double>::infinity();

return dmg/dur;

}

Algorithm 5: DPS estimation of an ability chain. This function can be useful for creating optimal DPS plans.

While navigation dealswith the problemof traveling from
one position to another, positioning is more concerned with
finding new positions to move to. New positions can be
explicitly designated for a unit or character or they could
be implicitly selected by adjusting movement forces. For
example, a unit may need to step outside the range of an
enemy tower by moving to a specific position, or it could
avoid bumping into a wall while chasing another unit by
adding a force that is normal to the direction of the wall
to its steering forces instead of selecting a position to move
to. When positions are explicitly calculated, navigation may
be involved to reach target positions. This can lead to a
dependency between solutions to positioning problems and
solutions to navigation problems.

Algorithm 6 shows a function which moves a unit out
of the attack range of a group of enemies. For each enemy,
it creates a circular area based on the enemy’s attack range
and centered on its predicted position. The latter is simply
calculated by adding the enemy’s current velocity to its
position. This function ignores enemies that are faster than
the unit because even if the unit is currently outside their
range, it would eventually fall and remain within their reach.
This could be delayed however. A list of immediate threats is
thus created and used to compute a force to direct the unit
away from the center of threats as quickly as possible. Note
that this code does not differentiate between threats. It can be
improved by weighting each position in the calculation of the
center according to an estimation of the danger the threat rep-
resents. The more dangerous the threat, the larger the weight
can be. This would cause the unit to avoid pressing threats
with higher priority. This function could be used for kiting.

The code inAlgorithm 7 shows how a straight line projec-
tile can be dodged by a unit. A ray is created from the current
position of the projectile and used to determine whether a
collision with the unit is imminent. If this is the case, the
unit is instructed to move sideways to avoid collision. The
bounding radius of the projectile as well as that of the unit are

used to determine the distance which must be traveled. The
side on which the unit moves depends on its relative position
vis-à-vis the projectile course. Of course, this function does
not take into account the speed of the projectile and could
therefore be better. If the projectile is slow compared to the
unit, the movement could be delayed. On the other hand, if
it is too fast, dodging may be impossible and the unit would
not need to waste any time trying to do that.

Clearly, both code examples presented above follow a
purely conceptual reasoning and could apply to a multitude
of video games.They operate solely on conceptual objects and
properties such as units, positions, velocities, steering forces
and distances. Creating a comprehensive collection of general
policies to deal with positioning problems can be time-
consuming, making it unlikely to be profitable for a video
game developer. When the solutions are conceptual and tar-
get all video games however, theymay becomeprofitable, pro-
viding incentive for AI developers to undertake the challenge.

Like role management and ability planning, positioning
exists within the context of an objective. It is possible
to design conceptual yet effective positioning policies for
generic objectives such as maximizing damage dealt or min-
imizing damage received. Given an objective, the problem of
positioning is to control the movement of a maneuverable
entity in a way which serves the completion of the objective.
Note that objectives could automatically be derived from
roles. Depending on the space and the type of movement,
different positioning problems could be considered. For
example, it may be more interesting to consider 2D position-
ing and 3D positioning separately than to consider a single
multidimensional positioning problem.

6. Integrating Conceptual AI in Video Games

Since conceptual AI is designed independently from games,
an integration mechanism is necessary for it to be used by
game developers. Game developers must be able to choose

14 International Journal of Computer Games Technology

void stay safe(Unit∗ u, UnitList∗ enemies)

{

UnitList threats;

UnitList::iterator e;

//Iterate on enemies to detect immediate threats
for (e = enemies.begin(); e != enemies.end(); ++e)

{

//Ignore enemies that can’t be outrun
if (u->maxspeed() > (∗e)->maxspeed() &&

distance(u->position(), (∗e)->position() + (∗e)

->velocity()) <= (∗e)->maxrange())

threats.add(∗e);

}

//Get the center of the threats
Vector c = center(threats);

//If the unit is located at the center, drop one of the threats
if (c == u->position())

c = center(remove weakest(threats));

//Create a force that pulls the unit away from the center
Vector dir = u->position() − c;

//Add a steering force of maximum magnitude
u->addforce(dir∗u->maxforce()/dir.norm());

}

Algorithm 6: Avoiding enemy attacks by staying out of range. This function can be used for kiting.

void dodge projectile(Unit∗ u, Projectile∗ p)

{

//Create a ray for the projectile course
Ray r(p->position(), p->velocity());

//Get a list of objects intersecting the ray
ObjectList is = intersection(r, p->radius());

//Only dodge if u is the first object to intersect the ray
if (is.front() == u)

{

//Is u exactly on the projectile course?
if (r.passthru(u->position()))
{

//Move perpendicularly by a distance equal to the sum of bounding radiuses
u->move(u->position() + r.normal()∗(p->radius() + u->radius()));

return;
}

//Project the unit position on the projectile course
Vector pr = r->project(u->position());

//Get a normal to the projectile course with a norm equal to the distance between
the unit position and its projection

Vector mv = u->position() − pr;

//Rescale it to the width of the intersection
mv ∗= (p->radius() − (mv.norm() − u->radius()))/mv.norm();

//Follow the normal to avoid collision
u->move(u->position() + mv);

}

}

Algorithm 7: Dodging a straight line projectile. This function assumes that the projectile is not penetrating.

International Journal of Computer Games Technology 15

and connect AI solutions to a game. This is achieved by
registering AI controllers with conceptual objects. To assign
control, partial or complete, of an entity in the game to a par-
ticular AI, the corresponding controller must be instantiated
and registered with the projection of the entity in CDS. The
AI then controls the conceptual entity, effectively controlling
the entity in the game. For example, a game developer
could use two AI solutions for a racing game, one for
controlling computer opponents on the tracks and another
for dynamically adjusting the difficulty of a race to the player’s
performance. Each time a computer opponent is added to the
race, a new instance of the drivingAI is created and registered
with its conceptual projection. As for the difficulty AI, it can
be created at the beginning of the race and registered with a
real-time player performance evaluation object.

For each controllable conceptual object defined by the
CF developers, a controller interface is defined together with
it. This interface describes functions the AI must implement
in order to be able to properly assume control over the
conceptual object. These are not to be confused with the
conceptual controls, also defined by the CF developers, which
the AI can use to control the conceptual object and which are
implemented by the game developers. Figure 8 illustrates the
distinction.

It is possible for multiple controllers to share control of
the same object. For example, a NPC could be controlled by
different AI solutions depending on its state. It may have a
sophisticated combat AI which kicks in only when the NPC
enters a combat state and otherwise remains on standby,
while a different AI is used when the NPC is in an idle state
tomake it roam, wander or rest. Multiple controllers however
may lead to conflict in cases with overlapping control. One
way to resolve conflicts is for AI controllers to have a
table indicating a priority level for each conceptual control.
Conceptual control calls would then be issued by controllers
with their respective priorities and queued for arbitration.
Of course, when multiple AI controllers are integrated into
a complete solution, this issue can be handled by the author
of the solution in whatever way theymay choose and only the
complete controller can be required to provide a priority table
for conceptual controls.

Figure 9 shows howmultiple controllers can be registered
with a conceptual object. First, an object in the game, an
Undead Peon, is created. Following this, its projection in
CDS, a NPC, is created and linked to the Undead Peon.
Finally, several independent AI controllers, one for generat-
ing idle behavior when the Undead Peon is idle, another for
generating social behavior when the Undead Peon is around
other Undead Peons and other types of NPCs and another for
generating combat behavior when the Undead Peon is facing
enemies, are created and registered with the NPC in CDS. In
this case, there is no overlap in the control of the NPC by the
different AI solutions. Using this registration mechanism, an
AI controller can also verify that its dependencies are running
and access them via the conceptual object.

Examples of functions found in controller interfaces are
an update function and event handlers. An update function
is used to update the internal state of the AI and can be
called every game cycle or at an arbitrarily set update rate.

This function is illustrated in Figure 10. Note how the NPC in
CDS has no internal state update cycle. This is because there
is no dynamic in the CDS. Objects in CDS are projections of
game objects and are only modified as a result of a change in
game objects. Event handlers are used to notify AI controllers
of game events, such as a unit being killed by another. When
an event occurs in the game, a conceptual projection is fired
at the projection of the involved game object. The events that
can involve a conceptual object are determined by the CF
developers and used to create the controller interface. An
AI controller does not necessarily need to handle all events.
This is obvious for partial controllers. Therefore, it is possible
for AI controllers to ignore some events. Event handlers
are illustrated in Figure 11. Other examples are functions for
suspending and resuming the controller.

When game developers link AI solutions to their games,
they can either link them statically at build time or load
themdynamically at runtime. LoadingAI at runtimemakes it
easier to test different AI solutions and can also allow players
to hook their own AI to the game. Typically, the AI would
be running within the video game process, though it can be
interesting to consider separating their execution. Deploying
the AI in a separate process means it can run on a different
machine. The latter could be optimized for AI processing or
it could even be on the Internet, making it possible for AI
developers to offer AI as a service. A multiprocess design can
easily be imagined, as shown in Figure 12.

7. Graven: A Design Experiment

7.1. Description. The Graven experiment consists in rebuild-
ing an open-source video game called Raven according to
the design presented in the previous sections. (See Figure 2.)
Namely, the AI is separated from the game and a conceptual
layer is added in between. The AI is adapted to interact
with the conceptual layer rather than directly with the game
and the latter is modified to maintain a conceptual view
in memory and use the conceptual AI. Albeit basic, Raven
involves enough concepts to use as a decent specimen for
conducting experiments relating to the deployment and use
of a CF. The goal of the experiment is twofold.

(1) Concretize the design architecture as well as key
processes in a working example.

(2) Obtain a code base to use as a limited prototype for
testing conceptual AI in multiple games.

Note that the Graven experiment does not directly aim at
demonstrating the efficiency of conceptual AI.

7.2. Raven. Raven is an open-source game written by Mat
Buckland. A detailed presentation of the game as well as the
code can be found in Programming Game AI by Example
Buckland [36], where it is used to demonstrate a number of
AI techniques such as path planning, goal-driven behavior,
and fuzzy logic. It is a single-player, top-down 2D shooter
featuring a deathmatch mode.

Maps are made of walls and doors and define spawn
locations for players as well as items. When players die,

16 International Journal of Computer Games Technology

Video game

ImplementsConceptual framework

Object
Object

Object

controls controller
interface

Implements

Artificial intelligence

Figure 8: Conceptual controls and controller interface. Both are defined by the CF developers. Conceptual controls have to be implemented
by game developers while the controller interface has to be implemented by AI developers.

Undead Peon NPC Idle AI
Social AI

Undead Peon NPC Social AI
Idle AI

Combat AI

Undead Peon NPC
Idle AI

Undead Peon

Undead Peon NPC

1

2

3

4

5

Figure 9: Registering multiple controllers with a conceptual object. Depending on its state, the Undead Peon is controlled by one of the three
AI solutions.

they randomly respawn at one of the fixed spawn locations.
Items also respawn at fixed time intervals after they are
picked up. There are two types of items in Raven, weapons
and health packs. Three weapons can be picked up. These
are the Shotgun, the Rocket Launcher and the Railgun. A
fourth weapon, the Blaster, is automatically included in every
player’s inventory at spawn time.

Each weapon is characterized by a unique set of fea-
tures such as a firing rate and the maximum quantity of
ammunition that can be carried for it. The Blaster is a basic
projectile weapon with unlimited ammo. The Shotgun is a
hitscanweaponwhich fires several pellets that spread out.The
Rocket Launcher is a projectile weapon which fires rockets
that deal AoE damage when they explode either on impact
or after traveling a certain distance. The Railgun is a hitscan
weaponwhich fires penetrating slugs that are only stopped by
walls. Players can pick up weapons they already have. In that
case, only the additional ammo is added to their inventory.

Initially, a default number of bots are spawned depending
on the map. Bots can then be added to and removed from
the game. The player can possess one of the existing bots
to participate in a match. The left and right mouse buttons
can be used to fire and move respectively, while numbers on
the keyboard can be used to switch weapons. Despite their
adorable look, these bots will compute the shortest paths to
navigate themap, avoidwalls, pick up ammo and healthwhen
needed, estimate their opponent’s position to aim projectiles
properly, use the most appropriate weapon depending on
the situation, remember where they last saw or heard an
opponent, chase or run away from an opponent, perform
evasive maneuvers and, of course, kill. A preview of the game
is shown in Figures 13 and 14.

The world in a Raven game is essentially composed of a
map, bots and projectiles. The map is composed of walls and
includes a navigation graph used for pathfinding as well as
triggers. Triggers are used to define item pick up locations as

International Journal of Computer Games Technology 17

Undead Peon

NPC

Update

Update

Update

Notify

Id
le

 A
I

So
ci

al
 A

I
C

om
ba

t A
I

Figure 10: Updating the internal state of AI controllers when game objects update theirs. Note how objects in CDS do not have an update
cycle.

Undead Peon

Id
le

 A
I

So
ci

al
 A

I
C

om
ba

t A
I

Handle

Handle

Handle

Notify NPC

Figure 11: Event handling by AI controllers. Game events are projected into CDS before being pushed to AI controllers.

well as temporary sound sources. This composition is illus-
trated in Figure 15.The bot AI is primarily made of 6 interde-
pendent modules, as shown in Figure 16. The brain module
handles abstract goals and takes decisions such as attacking
the current target or retrieving an item. The steering module
manages steering forces resulting frommultiple simultaneous
behaviors such as avoiding awall while seeking an enemy.The
path plannermodule handles navigation requests by comput-
ing paths between nodes in the navigation graph.The sensory
memory module keeps track of all the information the bot
senses and remembers, such as visible enemies, hidden ene-
mies and gunshot sound locations.The target selection mod-
ule is used to select a target among a group of enemies. Finally,
the weapon systemmodule handles aiming and shooting and
also includes per-weapon specific modules to evaluate the
desirability of each weapon given the current situation.

7.3. Overview of the Code Structure. The code structure in
Graven comprises five categories of components:

(1) the Raven classes,
(2) the conceptual view classes,
(3) the conceptual AI classes,
(4) the conceptual controls,
(5) and the Raven control classes.

The Raven classes are the game classes and an adaptation
of the original codewhere all the AI components are removed
and code to synchronize the conceptual view with the game

state is added. The second category is a library of objects
representing concepts corresponding to the Raven objects.
The conceptual AI classes are amodification of the original AI
code in which the AI is made to interact with the conceptual
layer rather than the game.The fourth category includes a set
of conceptual controls used by the conceptual AI to control
bots. Finally, the Raven control classes implement these
conceptual controls. Note that from a design perspective, the
conceptual controls belong in the conceptual layer classes and
their implementation in the game classes. They are separated
in the code structure for the purpose of clarity.

7.4. Conceptualization. Raven is primarily composed of
generic elements, as can be seen in Figure 15. A 2-dimensional
world, projectiles, or walls are concepts commonly found in
many video games. The added conceptual layer thus largely
consists of clones of the objects in Raven. Unlike their Raven
counterpart, however, conceptual objects are entirely static
and do not update their own state. Instead, their state is only
modified as a result of a modification on the game side. This
is illustrated in Algorithm 8.

In Algorithm 8, the Raven Weapon class declares a
ShootAt function which is used to fire the weapon and
which is implemented by each of the four Raven weapon
classes. It also defines an IncrementRounds function which
is used to update the number of rounds left for the weapon
when a bot picks up additional ammo. In the corresponding
CptWeapon class, the ShootAt function has been removed,
and the IncrementRounds function has been replaced with

18 International Journal of Computer Games Technology

AI processGame process

Artificial intelligence

Conceptual view

Conceptual
controls

Game engine

Game data

Player input

Execute

Synchronize

Figure 12: Running AI in a separate process. Synchronizing a conceptual view with game data requires an inter-process communication
mechanism such as sockets or remote procedure call (RPC) systems. The mechanism is also required for using conceptual controls.

Figure 13: Screenshot taken from the Raven game. Player spawn
locations are drawn in gray. On the top right corner is a Shotgun in
black. At the bottom is a Rocket Launcher. At the left are a Railgun
and a health pack. Each bot has its current hit points drawn next to
it.

a SetNumRoundsLeft function which can be used by the
game to update the number of rounds left for the weapon in
CDS.The synchronization process is detailed in a subsequent
section.

Four conceptual controls have been defined. These are
used by the conceptual AI to control the bots in Graven
and are shown in Algorithm 9. The ApplyForce function
can be used to apply a steering force to a bot and control
its movement. The RotateToward function can be used to
rotate a bot and control the direction of its field of view. The
EquipWeapon function can be used to switch a bot’s weapon
to any of those it holds in its inventory. Lastly, The ShootAt
function can be used to fire a bot’s equipped weapon. These
conceptual controls can be applied to a CptMvAgent2D
object, the conceptual projection of a Raven bot in CDS.They
are implemented game-side.

Figure 14:TheAI information of a selected bot in Raven. Are shown
are the goal stack, the path the bot is currently following, the current
target of the bot (shown as a colored square around another bot)
as well as a number of numerical desirabilities which indicate how
important some of the actions the bot is thinking about are. From
left to right, these are getting health, exploring, attacking the current
target, getting a Shotgun, getting a Railgun and getting a Rocket
Launcher.

World

BotsProjectilesMap

WallsGraph Triggers

Figure 15: Overview of the Raven world composition.

International Journal of Computer Games Technology 19

Bot

Targeting
system

Sensory
memory

Path planner

Steering
Weapon
system

Brain

Figure 16:Overview of the Raven botAI structure. Concrete actions
such as firing a weapon or applying a steering force are taken by the
green modules.

On the AI side, a CptMvAgent2D represents a control-
lable object and therefore the class comes with a controller
interface. For an AI to be recognized as a valid controller by
the game, it has to implement this interface. The interface
is shown in Algorithm 10. It includes six functions. The
KilledBy Handler function is called whenever a bot is
killed by an opponent and allows the controller to retrieve
information about the killer. The HeardSound Handler

function is called when a bot hears a gunshot and can
be used by the AI to find the origin of the sound. The
BotRemoved Handler function is called when a player
removes a bot from the game via the main menu and
can be used to notify other bots that the removed bot no
longer exists. The Suspend and Resume functions serve to
temporarily disable the controller when a bot is possessed by
the player. The last Update function is used to allow the AI
to update its state every game cycle.

Functionally, the AI in Graven is the same as the original
Raven AI. It slightly differs in its structure, however. In
Raven, the Raven WeaponSystem class serves as a weapon
inventory and handles weapon switching and also aiming
and shooting, whereas weapon selection and aiming and
shooting are separated in Graven. The central AI module
through which other AImodules interact is the CptBot class.
It resembles the original Raven Bot class, though there are
two significant differences. One, it interacts solely with the
conceptual layer instead of the game. Two, it does not host any
game state data such as current position and velocity, which
is found in the CptMvAgent2D it controls.TheAI state is thus
clearly separated from the game state.

7.5. Creating a Conceptual View. The following process is
used to synchronize the conceptual view with the Raven
game state. For each class representing an object in the Raven
game which has some projection in the CDS, a pointer to an
object of the corresponding conceptual class is added to its
data members. Then, following each statement that directly

modifies a member of the class (without calling a function),
a second operation is added to update the conceptual object
accordingly.The conceptual object is created at the beginning
of the class constructor and destroyed at the end of its
destructor. By confining the synchronization code of an
object to its class, its synchronization is done only once and
never mixed with that of other objects.This idea is illustrated
in Algorithm 11.

One problem with this technique is that it cannot be
used directly with virtual classes because, even if they have
corresponding conceptual classes, they do not represent
actual objects with an independent projection in the CDS.
The projection of a virtual class only exists as a part of the
projection of a concrete class (i.e., a conceptual concrete class)
and can only be accessed through this conceptual concrete
class. A remedy for this problem is using a pure virtual
getter implemented by its concrete subclasses, as shown in
Algorithm 12. This involves another problem however, since
virtual functions cannot be called in the constructor. (In
C++, the virtual table of an object is only initialized after
its construction is complete.) This is solved by moving the
synchronization code in the constructor into an additional
sync function for each class. This applies even to concrete
classes. The sync function in a subclass always starts by
calling the sync function of its superclass, ensuring that the
synchronization code of an object remains confined within
its class definition. A call to the sync function is added
immediately after the creation of a conceptual object in
the constructor of a concrete class, effectively executing the
synchronization code of all its superclass constructors.

In order to properly synchronize certain template classes
in Raven, it is necessary to use additional data type param-
eters to accommodate conceptual data types associated with
the base parameters. For example, theTrigger Respawning
template class in Raven takes an entity type parameter
which determines the type of game object that can
activate the trigger. The class Trigger WeaponGiver
which extends Trigger Respawning uses a Raven Bot
as parameter. However, its conceptual projection, a
CptTrigger WeaponGiver, requires a CptMvAgent2D
parameter. For this reason, the Trigger Respawning class
takes two parameters in Graven, one for the game data type
and one for the corresponding conceptual data type.

7.6. Registering the Conceptual AI. The CptBot class
implements the CptMvAgent2D Controller interface
and provides the AI functionality of the original Raven.
The CptMvAgent2D class defines an AddController
function which can be used by the game to register
CptMvAgent2D Controller objects with its instances. All
registered controllers are updated and notified through the
CptMvAgent2D instance. This is shown in Algorithm 13.

A DMController module can be used to instantiate
and register CptBot objects without exposing the class to
the game. Algorithm 14 shows how a controller is registered
in the constructor of the Raven Bot class. After creating
and synchronizing a corresponding CptMvAgent2D, the
RegisterDMController function is used to relegate the
control of the bot to the conceptual AI.

20 International Journal of Computer Games Technology

class Raven Weapon

{

⋅ ⋅ ⋅

//this discharges a projectile from the weapon at the given target position (provided
the weapon is ready to be discharged. . . every weapon has its own rate of fire)

virtual void ShootAt(Vector2D pos) = 0;

void IncrementRounds(int num)
{

m iNumRoundsLeft += num;

Clamp(m iNumRoundsLeft, 0, m iMaxRoundsCarried);

//Synchronize rounds in CDS
GetCptWeapon()->SetNumRoundsLeft(m iNumRoundsLeft);

}

⋅ ⋅ ⋅

};
class CptWeapon
{

⋅ ⋅ ⋅

//Removed
//virtual void ShootAt(Vector2D pos) = 0;
void SetNumRoundsLeft(int n)
{

m iNumRoundsLeft = n;

}

⋅ ⋅ ⋅

};

Algorithm 8: Modifications in the conceptual copy of a Raven class. No game behavior is defined in CDS, which hosts nothing more than
a projection of the game state.

//Applies a steering force to a bot
void ApplyForce(int agent id, Vector2D force);

//Rotates the facing direction of a bot
void RotateToward(int agent id, Vector2D position);

//Switches the equipped weapon of a bot
void EquipWeapon(int agent id, int weapon type);

//Fires the equipped weapon of a bot
void ShootAt(int agent id, Vector2D position);

Algorithm 9: Conceptual controls used by the AI in Graven. In order, these are used by the conceptual AI to send commands to apply a
steering force to a bot, to rotate a bot toward a certain position, to switch the currently equipped weapon of a bot, and to fire a bot’s weapon
at a given position. Together, these conceptual controls are sufficient to replicate the intricate behavior from the original code.

8. Using the Graven Targeting AI in StarCraft

8.1. Description. Following the Graven experiment which
produced a limited CF prototype as well as a number of
conceptual AI solutions, a second experiment was conducted
to assess the work involved in using a simple conceptual AI
solution in different games. Two games were used in this
experiment, Raven and StarCraft: Brood War (BW), a real-
time strategy game developed by Blizzard Entertainment.
Albeit very different, these two games share a common
conceptual problem, namely, target selection. Target selection
in combat deals with deciding which enemy should be
targeted in the presence of multiple ones. In Raven, a bot
may face multiple opponents at the same time. Likewise in
BW, a unit may face multiple enemy units on the battlefield.

This experiment consists in using the same solution to this
targeting problem in both Raven and BW, resulting in having
the exact same code drive the targeting behavior of both bots
in Raven and military units in BW.

8.2. StarCraft and the Brood War API. Although BW is not
open-source, hackers have long been able to tamper with the
game process by breaking into its memory space. Eventually,
a development framework was built on top of this hacking.
TheBroodWarApplicationProgramming Interface (BWAPI)
[46] is an open source C++ framework which allows AI
developers to create custom agents by providing them with
means to access the game state and issue commands. More
information regarding the features and the design of the API
can be found on the project’s web page.

International Journal of Computer Games Technology 21

class CptMvAgent2D Controller

{

protected:
CptMvAgent2D∗ m pOwner;

public:
virtual ∼CptMvAgent2D Controller() {}

//Called when a bot is killed by an opponent
virtual void KilledBy Handler(CptMvAgent2D∗ attacker) = 0;

//Called when a bot hears a gunshot
virtual void HeardSound Handler(CptMvAgent2D∗ source) = 0;

//Called when the player removes a bot from the game
virtual void BotRemoved Handler(CptMvAgent2D∗ bot) = 0;

//Called when the player takes control of a bot
virtual void Suspend() = 0;

//Called when the player hands back control to a bot
virtual void Resume() = 0;

//Called every game update cycle
virtual void Update() = 0;

};

Algorithm 10: The controller interface of a CptMvAgent2D. These functions are used by the CptMvAgent2D class to relay events to the AI.

void Raven Bot::Spawn(Vector2D pos)

{

⋅ ⋅ ⋅

//Direct modification: sync!
m iHealth = m iMaxHealth;

cpt->SetHealth(m iHealth);

//Function call: don’t sync, already done in function definition!
SetAlive();

//Different class: don’t sync, WeaponSystem has its own sync code!
m pWeaponSys->Initialize();

⋅ ⋅ ⋅

}

Algorithm 11: Conceptual data synchronization in Graven. Synchronization code in a class is added whenever its members are modified
directly.

8.3. Targeting in Graven. The targeting system module in
Graven, CptTargetingSystem, is used by the main AI
module CptBot. To function, it requires another module,
the sensory memory module CptSensoryMemory, which
determines which enemies the bot currently senses. The
targeting system works by setting an internal target variable
which the bot module can read to find out which enemy it
should aim at.

The original AI selects targets based on their distance
to the bot and prioritizes closer enemies. It was modified
to instead select targets based on their health and prior-
itize weaker enemies, a more interesting strategy for this
experiment because the default unit AI in BW also uses
distance as the primary factor in target selection. The main
module function is shown in Algorithm 15.The vision update
function in the sensory module is shown in Algorithm 16.

8.4. Completing the Graven Conceptual Layer. In terms of
conceptual view, the requirements of the targeting module

include those of its dependencies (i.e., the sensory memory
module). The solution requirements can quickly be deter-
mined by looking at Algorithms 15 and 16. It requires a 2D
world with the list of targetable entities that exist in it as well
as a list of vision-blocking obstacles such as walls typically
defined in amap.The entities must have their position, facing
direction, field of view and health attributes synchronized. All
of these concepts are already defined in the conceptual layer
used in Graven.

In addition to those, BW involves three more concepts
which are not present in Raven and which need to be defined.
First, the concept of entity ownership is required to specify
the player a unit belongs to. In Raven, a player is associated
with a single bot. In BW, a player is associated with multiple
units. Therefore, an owner property is required for units to
differentiate between allies and enemies. The second concept
is that of sight range. In Raven, a bot has a 180 degree field
of view but its vision range is only limited by obstacles.
In BW, a unit has a 360 degree field of view but can only

22 International Journal of Computer Games Technology

class MovingEntity: public BaseGameEntity

{

⋅ ⋅ ⋅

//Virtual accessor − Retrieves the conceptual projection of this entity
virtual CptMvEntity2D∗ GetCptMvEntity2D() const = 0;

⋅ ⋅ ⋅

void SetVelocity(const Vector2D & NewVel)

{

m vVelocity = NewVel;

//Velocity changed, update conceptual data
GetCptMvEntity2D()->SetVelocity(m vVelocity);

}

⋅ ⋅ ⋅

}

class Raven Bot: public MovingEntity

{

protected:
//The conceptual projection
CptMvAgent2D∗ cpt;

⋅ ⋅ ⋅

public:
//Returns the entire conceptual projection of this bot
CptMvAgent2D∗ GetCptMvAgent2D() const { return cpt; }

//Returns the conceptual projection of the MovingEntity part of this bot
CptMvEntity2D∗ GetCptMvEntity2D() const { return cpt; }

//Returns the conceptual projection of the BaseGameEntity part of this bot
CptEntity2D∗ GetCptEntity2D() const { return cpt; }

⋅ ⋅ ⋅

}

Algorithm 12: Synchronization with virtual classes. The virtual class MovingEntity uses a pure virtual getter implemented by its concrete
subclass Raven Bot for its synchronization code.

class CptMvAgent2D: public CptMvEntity2D

{

private:
//List of registered controllers
std::list<CptMvAgent2D Controller∗> controllers;

⋅ ⋅ ⋅

public:
//Registers a new controller
void AddController(CptMvAgent2D Controller∗ c)

{

controllers.push back(c);

}

//Notifies controllers that a bot has been removed from the game
void BotRemoved(CptMvAgent2D∗ bot)

{

std::list<CptMvAgent2D Controller∗>::iterator it;

for (it = controllers.begin(); it != controllers.end(); ++it)

{

(∗it)->BotRemoved Handler(bot);

}

}

⋅ ⋅ ⋅

}

Algorithm 13: Controller management in the CptMvAgent2D class.

International Journal of Computer Games Technology 23

Raven Bot::Raven Bot(Raven Game∗ world,Vector2D pos):

⋅ ⋅ ⋅

{

//Create the conceptual projection
cpt = new CptMvAgent2D(world->GetCptWorld2D());

//Synchronize initialization
sync();

⋅ ⋅ ⋅

//Instantiate and register a DMController
RegisterDMController(cpt);

}

Algorithm 14: Conceptual AI registration in Graven.The RegisterDMController function is defined in the DMControllermodule and
is used to instantiate the CptBot class.

void CptTargetingSystem::Update()

{

int LowestHPSoFar = MaxInt;

m pCurrentTarget = 0;

//grab a list of all the opponents the owner can sense
std::list<CptMvAgent2D∗> SensedBots;

SensedBots = m pOwner->GetSensoryMem()->GetListOfRecentlySensedOpponents();

std::list<CptMvAgent2D∗>::const iterator curBot = SensedBots.begin();

for (curBot; curBot != SensedBots.end(); ++curBot)

{

//make sure the bot is alive and that it is not the owner
if ((∗curBot)->isAlive() && (∗curBot != m pOwner->GetAgent()))

{

int hp = (∗curBot)->Health();

if (hp < LowestHPSoFar)

{

LowestHPSoFar = hp;

m pCurrentTarget = ∗curBot;

}

}

}

}

Algorithm 15: Modified target selection in Graven. Health is compared instead of distance.

see up to a certain radius. A sight range property is thus
required. The third concept is the plane. The world in BW is
two-dimensional but there are ground and air units. Ground
units are not always able to attack air units and vice versa.
A property to indicate the plane in which a unit exists and
which planes it can target is thus needed. As a result, five new
members are added to the CptMvAgent2D class, a player ID,
a sight range, a plane flag, and two plane reach flags. Note that
the sensory memory module is slightly modified to take into
account this information, though this has no impact on its
functionality in Raven.

As far as conceptual controls are concerned, the aiming
and shooting controls in Graven are not necessary for BW.
When a unit in BW is given an order to attack another
unit, the target only needs to be within firing range to be
automatically attacked continuously. Only one conceptual
control, an attack command, is required for this experiment
and added to the conceptual framework.

8.5. Integrating the Targeting AI in StarCraft. In order to use
the targeting AI fromGraven in BW, there are a few tasks that
need to be completed. These are

(1) adding code to the game to maintain in memory a
conceptual view including the elements mentioned
above,

(2) implementing the attack conceptual control,
(3) and creating an AI solution which makes use of the

targeting AI to control units.

8.5.1. Conceptual View. The conceptual view is maintained
using 3 callback functions provided by the BWAPI, the
onStart function which is called at the beginning of a BW
game, the onEnd function which is called at the end of the
game and the onFrame function which is called every game
frame. The code added in each of these functions is shown

24 International Journal of Computer Games Technology

void CptSensoryMemory::UpdateVision()

{

//for each bot in the world test to see if it is visible to the owner of this class
const std::list<CptMvAgent2D∗ > & bots = m pOwner->GetWorld()->GetAllBots();

std::list<CptMvAgent2D∗ >::const iterator curBot;

for (curBot = bots.begin(); curBot != bots.end(); ++curBot)

{

//make sure the bot being examined is not this bot
if (m pOwner->GetAgent() != ∗curBot)

{

//make sure it is part of the memory map
MakeNewRecordIfNotAlreadyPresent(∗curBot);

//get a reference to this bot’s data
CptMemoryRecord & info = m MemoryMap[∗curBot];

//test if there is LOS between bots
if (m pOwner->GetWorld()->isLOSOkay(m pOwner->GetAgent()->Pos(), (∗curBot)->Pos()))

{

info.bShootable = true;
//test if the bot is within FOV
if (isSecondInFOVOfFirst(m pOwner->GetAgent()->Pos(),

m pOwner->GetAgent()->Facing(),

(∗curBot)->Pos(), m pOwner->GetAgent()->FieldOfView()))

{

info.fTimeLastSensed = Clock->GetCurrentTime();

info.vLastSensedPosition = (∗curBot)->Pos();

info.fTimeLastVisible = Clock->GetCurrentTime();

if (info.bWithinFOV == false)
{

info.bWithinFOV = true;
info.fTimeBecameVisible = info.fTimeLastSensed;

}

}

else
{

info.bWithinFOV = false;
}

}

else
{

info.bShootable = false;
info.bWithinFOV = false;
}

}

}//next bot
}

Algorithm 16: Vision update in the Graven sensory memory module.

in Algorithms 17, 18, and 19, respectively. The syncUnit

function is shown in Algorithms 20.
Because the source code of BW is not available, the syn-

chronization process is different from the one used in the
Graven experiment. Every game cycle, the game state is
scanned and new and destroyed units are added to and
removed from the conceptual view and the states in CDS are
synchronized with unit states in the game.

8.5.2. Conceptual Controls. The Attack conceptual control is
easily implemented using the basic attack command players

can give to units in BW. The implementation is shown in
Algorithms 21.

8.5.3. Conceptual AI. For units capable of attacking, an attack
AI is added to the list of controllers of their projection
using the RegisterDMController function. This function
instantiates the CptBot class, which is similar to the one in
Graven but which has been modified to only use the sensory
memory and targeting system modules. The update function
of the CptBot module is shown in Algorithms 22. Note that
the sensory memory module only registers reachable enemy
units. Allied units are ignored.

International Journal of Computer Games Technology 25

void GravenAIModule::onStart()

{

⋅ ⋅ ⋅

//Create 2D world
cptWorld = new CptWorld2D();

//Add an empty map
cptWorld->pSetMap(new CptMap2D());

//Set map dimensions
cptWorld->GetMap()->pSetSizeX(Broodwar->mapWidth() ∗ 32);

cptWorld->GetMap()->pSetSizeY(Broodwar->mapHeight() ∗ 32);

}

Algorithm 17: Conceptual view code in the onStart callback function. Map dimensions in BW are given in build tiles, each build tile
representing a 32 by 32 area.

void GravenAIModule::onEnd(bool isWinner)
{

⋅ ⋅ ⋅

//Destroy world
delete cptWorld;

}

Algorithm 18: Conceptual view code in the onEnd callback func-
tion. The conceptual world destructor also destroys associated
objects.

8.6. Results. The same targeting AI was successfully used in
bothRaven andBW, as shown in Figures 17 and 18.Unsurpris-
ingly, the CF prototype (more specifically the CptMvAgent2D
class) built from Raven, a very simple 2D shooter, had to
be slightly extended for this experiment. Even so, the effort
required to integrate the Graven targeting AI in BW was
minimal. Of course, the AI was minimal too. This shows
however that the work involved in creating conceptual AI
that can be used in different games does not have to grow
significantly with the number of games it can be applied to
and that when a conceptual problem is clearly identified, it
can be solved independently of the game it appears in.

Obviously, though it may not have been the goal of
the experiment, the modified unit AI performs better in
combat than the original one for ranged units, since it uses
a better a strategy. In the presence of enemies, the original
unit AI acquires a target by randomly selecting one within
firing range. The modified unit AI on the other hand selects
among targets within its sight radius the one with the lowest
health. Because the sight range of a ranged unit is often close
to its firing range, this behavior is similar to the original
one in the sense that the unit does not move to reach a
target when another target that is already in firing range
exists. The behavior is therefore close but the unit does
target weak enemies first in order to reduce their firepower
as fast as possible. Moreover, setting a short memory
span in the CptSensoryMemory class prevents units from
remembering runaway targets for too long and starting
to look for them. This helps maintain similarity between
the original and modified unit AI. That way, the original

Table 1: Units lost in each battle for each group with the modified
and original unit AI.

Battle 1 2 3 4 5 6 7 8 9 10
Units lost
Modified AI 3 3 1 3 2 3 3 4 4 3
Original AI 5 5 5 5 5 5 5 5 5 5

unit behavior is maintained, making it harder for players
to notice any difference other than the improved targeting
strategy. Needless to say, the targeting AI remains completely
unchanged. Note that modifying the sensory module to pick
up targets that are within firing range rather than sight range
makes the strategy work for melee units as well.

The modified unit AI was tested using 10 battles of 5
Terran Ghosts versus 5 Terran Ghosts, one group being
controlled by the modified unit AI and the other by the
original unit AI. Ghosts are ranged ground units. The group
with the modified unit AI won every battle. The number of
Ghosts lost during each battle is reported in Table 1.

9. Conclusion

The main contribution of this research is an approach for
the development of AI for video games based on the use
of a unified conceptual framework to create a conceptual
layer between the game and the AI. (The AI referred to here
is game related and does not include context related AI as
specified at the beginning of this work.) This approach is
inspired by an interpretation of human behavior. Human
players have the ability to detect analogies between games
and generalize, or conceptualize, the knowledge acquired in
one game and apply it in another. By conceptualizing video
games and asking game developers to create conceptual views
of their games using a unified framework, it becomes possible
to create solutions for common conceptual problems and
use them across multiple video games. Developing solutions
for conceptual problems rather than specific video games
means that AI design is no longer confined to the scope of
individual game projects and can be more efficiently refined
over time. Such conceptual AI can then serve as a core engine

26 International Journal of Computer Games Technology

void GravenAIModule::onFrame()

{

⋅ ⋅ ⋅

//For each unit visible to the player
Unitset units = Broodwar->getAllUnits();

for (Unitset::iterator u = units.begin(); u != units.end(); ++u)

{

//Ignore neutral units which include mineral fields and critters
if (u->getPlayer()->isNeutral())
continue;

//Get the projection of the unit in CDS
CptMvAgent2D∗ cptUnit = dynamic cast<CptMvAgent2D∗>(cptEntityMgr->GetEntityFromID
(u->getID()));

//Projection found, synchronize state and update controllers
if (cptUnit)
{

syncUnit(cptUnit, ∗u);

cptUnit->Update();

}

//Projection not found, create one
else if (u->exists() && u->isCompleted())

{

cptUnit = new CptMvAgent2D(cptWorld);

syncUnit(cptUnit, ∗u);

cptWorld->pAddBot(cptUnit);

cptEntityMgr->RegisterEntity(cptUnit);

//If the unit can attack, register the targeting AI
if (u->getPlayer() == Broodwar->self() && u->canAttack())

{

RegisterDMController(cptUnit);

}

}

}

//Remove projections of units that no longer exist in the game
std::list<CptMvAgent2D∗> cptUnits = cptWorld->GetAllBots();

for (std::list<CptMvAgent2D∗>::iterator c = cptUnits.begin(); c != cptUnits.end(); ++c)

{

if (!Broodwar->getUnit((∗c)->ID()) || !Broodwar->getUnit((∗c)->ID())->exists())
{

cptEntityMgr->RemoveEntity(∗c);

cptWorld->pRemoveBot((∗c)->ID());

}

}

}

Algorithm 19: Conceptual view code in the onFrame callback function. The RegisterDMController creates a CptBot, which uses the
Graven targeting AI to attack enemies, and adds it to the list of controllers of the CptMvAgent2D.

for driving agents in a variety of video games which can
be complemented by game developers specifically for each
game. This would both reduce AI redundancy and facilitate
the development of robust AI.

Such an approach can result in a number of advantages for
game developers. First, it means that they no longer need to
spend a lot of resources to design robust game AI unless they
want to and can simply use existingAI solutions. Even though
they have to add code for the creation of conceptual views,
not having to worry about game AI can result in significant
cuts in development time. For example, they would not even
need to plan for coordination mechanisms between multiple

agents in the game. Moreover, they do not need to use
conceptual AI for all tasks. They can select the problems they
want to handle using conceptual AI and use regular AI for
other tasks. Story and environment related AI, which this
approach does not apply to, can be designed using existing
tools and techniques, such as scripting engines and behavior
trees, which make it easy to implement specific behavior. In
addition, the continuous development of conceptual AI is
likely to yield better quality solutions over time than what
can be achieved through independent game projects. It may
also be that clearly identifying and organizing the conceptual
problems that make up the challenges offered by video games

International Journal of Computer Games Technology 27

void GravenAIModule::syncUnit(CptMvAgent2D∗ u, Unit unit)

{

//Synchronize CptEntity2D attributes
u->SetID(unit->getID());

u->SetEntityType(cpttype bot);

u->SetScale(1);
u->SetBRadius(MAX(unit->getType().height() / 2, unit->getType().width() / 2));
u->SetPos(Vector2D(unit->getPosition().x, unit->getPosition().y));

//Synchronize CptMvEntity2D attributes
u->SetHeading(Vector2D(unit->getVelocityX(), unit->getVelocityY()));

u->SetVelocity(Vector2D(unit->getVelocityX(), unit->getVelocityY()));

u->SetMass(1);

u->SetMaxSpeed(unit->getType().topSpeed());

u->SetMaxTurnRate(unit->getType().turnRadius());

u->SetMaxForce(unit->getType().acceleration());

//Synchronize CptMvAgent2D attributes
u->SetMaxHealth(unit->getType().maxHitPoints() + unit->getType().maxShields());

u->SetHealth(unit->getHitPoints() + unit->getShields());

u->SetScore(unit->getKillCount());

u->SetPossessed(false);
u->SetFieldOfView(360);

u->Face(Vector2D(unit->getVelocityX(), unit->getVelocityY()));

u->SetWorld(this->cptWorld);
u->SetStatus(unit->exists() ? CptMvAgent2D::alive: CptMvAgent2D::dead);

u->SetPlayer(unit->getPlayer()->getID());

u->SetSightRange(unit->getType().sightRange());

u->SetPlane(unit->isFlying());

u->SetAirReach(unit->getType().airWeapon() != WeaponTypes::None);

u->SetGroundReach(unit->getType().groundWeapon() != WeaponTypes::None);

}

Algorithm 20: Synchronizing conceptual unit state. Some attributes are not required by the targeting AI and only serve as illustrations.

could allow game developers to compose new challenges
more easily.

Since this approach allows AI development to progress
independently of video games, it could lead to the birth of
a new game AI business. AI developers could compete to
create the best AI solutions and commercialize them or they
could collaborate to design a solid open-source AI core which
would be perfected over time. Additionally, machine learning
techniques would be more straightforward to apply with a
unified conceptual representation of game elements. These
techniques can be used to learn specialized behavior for each
game which can enhance the basic generic behavior. This is
similar to the way humans tune their generic experience as
they learn specific data about a video game they are playing
to improve their performance in that particular game.

With an open-source unified conceptual framework,
incentive for both game developers and AI developers to
contribute to the development of the framework and the
conceptualization of video games would exist. AI developers
would benefit from a better conceptual framework because
it would help factor AI better and allow more efficient AI
development, resulting in better quality AI which benefits
game developers directlywhen they integrate it in their games
to create smarter, more challenging andmore realistic agents.

Because the conceptual layer constitutes a sort of middle-
ware, a new version of the conceptual framework may not be

compatible with AI developed prior to its update. Even if it
is, legacy AI may require an update in order to benefit from
the improved conceptual framework. Another disadvantage
of the approach is that it requires more computational
resources in order to maintain a conceptual view in memory
during runtime, though this may not represent a major
obstacle with mainstream hardware featuring increasingly
more processing cores and system memory. Other issues
may also arise from the separation of AI from video games.
Indeed, game developers could lose some control over the
components of their games and subsequently over the ability
to balance them. For instance, it may be necessary to design
new mechanisms to allow game developers to retain control
over the difficulty of the game and adjust the skill level of their
agents. Furthermore, although machine learning techniques
such as imitation learning could benefit froma larger learning
set as a unified conceptual representation would give them
access to data from many games, they would require a
translation process to project human actions into conceptual
data space since, unlike AI actions, those are not conceptual.
In other words, without a translation process, conceptual
game states could only be linked to concrete game actions.

Though an implementation of the approach was pre-
sented to illustrate some applications, alternative implemen-
tations can easily be imagined. For example, even if the AI
code was compiled alongside the game code in Graven, it

28 International Journal of Computer Games Technology

void Attack(int agent id, int target id)

{

Unit u = Broodwar->getUnit(agent id);

Unit v = Broodwar->getUnit(target id);

// Don’t attack under explicit move orders
if (u->getOrder().getID() == Orders::Move)

return;
// Already attacking that target
if (u->getLastCommand().getTarget() != NULL && u->

getLastCommand().getTarget()->getID() == target id)

return;
if (v->getType().isFlyer())
{

if (u->getType().airWeapon() != WeaponTypes::None)

u->attack(v);

return;
}

else
{

if (u->getType().groundWeapon() != WeaponTypes::None && u->exists())

u->attack(v);

return;
}

}

Algorithm 21: Implementation of the Attack conceptual control in BW. Because the targeting AI only selects targets the unit can attack,
the test to see whether the unit is flying could be discarded.

void CptBot::Update()

{

//if the bot is under AI control but not scripted
if (!GetAgent()->isPossessed())
{

//examine all the opponents in the bots sensory memory and select one
//to be the current target
if (m pTargetSelectionRegulator->isReady())

{

m pTargSys->Update();

}

//update the sensory memory with any visual stimulus
if (m pVisionUpdateRegulator->isReady())

{

m pSensoryMem->UpdateVision();

}

//Attack
if (m pAttackRegulator->isReady() && m pTargSys->isTargetPresent())

{

Attack(m pOwner->ID(), m pTargSys->GetTarget()->ID());

}

}

}

Algorithm 22: The update function of the CptBot class. The function uses the Attack conceptual control to issue commands to the units
in the game.

International Journal of Computer Games Technology 29

Figure 17: Raven with the modified targeting AI. The selected bot
can be seen aiming at the enemy with low health (31), instead of the
one close to it.

Figure 18: StarCraft: Brood War with the modified unit AI. The
selected Goliaths are prioritizing Dragoons instead of the Archons
in front of them because of their lower health.

was designed to be independent. AImodules can be compiled
independently from game code and either linked to the game
statically or dynamically loaded at runtime. An implementa-
tion using the latter option would benefit from easier testing
of different AI solutions. When deployed, it would allow
players to switch between different solutions too. This may
not be desirable however, as untested solutions may result in
unexpected behavior. A security mechanism could be added
to prevent the game from loading unverified AI modules.

Perhaps the most exciting extension to this research
would be a study of the world of conceptual problems found
in video games. Both the video game industry and the
scientific community would benefit from tools for describing
and organizing problems using a set of convenient standards,
perhaps a bit like gamedesign patterns.Thiswould help better
categorize and hierarchically structure problems and result in
a clearer view and understanding of the complexity of video
games.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] The NetBSD Foundation, “Portability and supported hardware
platforms,” http://netbsd.org/about/portability.html.

[2] Microsoft, Windows NT Hardware Abstraction Layer (HAL),
http://support.microsoft.com/kb/99588.

[3] A. Nareyek, N. Combs, B. Karlsson, S. Mesdaghi, and I. Wilson,
“The 2003 report of the IGDA’s artificial intelligence inter-
face standards committee,” Tech. Rep., International Game
Developers Association, 2003, http://www.igda.org/ai/report-
2003/report-2003.html, http://archive.org/web/.

[4] A. Nareyek, N. Combs, B. Karlsson, S. Mesdaghi, and I. Wilson,
“The 2004 report of the IGDA’s artificial intelligence inter-
face standards committee,” Tech. Rep., International Game
Developers Association, 2004, http://www.igda.org/ai/report-
2004/report-2004.html.

[5] A. Nareyek, N. Combs, B. Karlsson, S. Mesdaghi, and I. Wilson,
“The 2005 report of the IGDA’s artificial intelligence inter-
face standards committee,” Tech. Rep., International Game
Developers Association, 2005, http://www.igda.org/ai/report-
2005/report-2005.html, http://archive.org/web/.

[6] B. Yue and P. de Byl, “The state of the art in game AI standard-
isation,” in Proceedings of the 2006 International Conference on
Game Research and Development, pp. 41–46, Murdoch Univer-
sity., 2006.

[7] B. F. F. Karlsson, “Issues and approaches in artificial intelligence
middleware development for digital games and entertainment
products,” CEP 50740:540, 2003.

[8] C. Berndt, I. Watson, and H. Guesgen, “OASIS: an open AI
standard interface specification to support reasoning, repre-
sentation and learning in computer games,” in Proceedings of
the Workshop on Reasoning, Representation, and Learning in
Computer Games (IJCAI ’05), pp. 19–24, 2005.

[9] Unity Technologies, “Unity—Game Engine,” http://unity3d
.com/.

[10] Epic Games, Unreal Engine Technology—Home, https://www
.unrealengine.com/.

[11] Crytek, CRYENGINE: The complete solution for next genera-
tion game development by Crytek, http://cryengine.com/.

[12] Havok, http://www.havok.com/.
[13] B. Kreimeier, The case for game design patterns, 2002, http://

www.gamasutra.com/view/feature/132649/the case for game
design patterns.php?print=1.

[14] S. Björk, L. Sus, and H. Jussi, “Game design patterns,” in Pro-
ceedings of the Level Up-1st International Digital Games Research
Conference, Utrecht, The Netherlands, November 2003.

[15] S. Björk and J. Holopainen, “Describing games—an interaction-
centric structural framework,” inLevel Up: Proceedings ofDigital
Games Research Conference, 2003.

[16] C. M. Olsson, S. Björk, and S. Dahlskog, “The conceptual rela-
tionshipmodel: understanding patterns andmechanics in game
design,” in Proceedings of the DiGRA International Conference
(DiGRA '14), 2014.

[17] A. B. Loyall and J. Bates, “Hap: a reactive, adaptive architecture
for agents,” Tech. Rep. CMU-CS-97-123, Carnegie Mellon Uni-
versity, School of Computer Science, 1991.

[18] M. Mateas and A. Stern, “A behavior language for story-based
believable agents,” IEEE Intelligent Systems and Their Applica-
tions, vol. 17, no. 4, pp. 39–47, 2002.

[19] M. Mateas and A. Stern, “A behavior language: joint action and
behavioral idioms,” inLife-LikeCharacters, CognitiveTechnolo-
gies, pp. 135–161, Springer, Berlin, Germany, 2004.

30 International Journal of Computer Games Technology

[20] J. D. Funge, “Making them behave: cognitive models for com-
puter animation,” 1998.

[21] J. Funge, X. Tu, and D. Terzopoulos, “Cognitive modeling:
knowledge, reasoning and planning for intelligent charac-
ters,” in Proceedings of the 26th Annual Conference on Com-
puter Graphics and Interactive Techniques, pp. 29–38, ACM
Press/Addison-Wesley, 1999.

[22] J. Funge, “Representing knowledge within the situation calculus
using interval-valued epistemic fluents,” Reliable Computing,
vol. 5, no. 1, pp. 35–61, 1999.

[23] J. Orkin, “Symbolic representation of game world state: toward
real-time planning in games,” in Proceedings of the AAAI
Workshop on Challenges in Game Artificial Intelligence, 2004.

[24] J. Orkin, “Agent architecture considerations for real-time plan-
ning in games,” in Proceedings of the Artificial Intelligence and
Interactive Digital Entertainment (AIIDE ’05), pp. 105–110, 2005.

[25] E. F. Anderson, “Scripting behaviour—towards a new language
for making NPCs act intelligently,” in Proceedings of the zfx-
CON05 2nd Conference on Game Development, 2005.

[26] E. F. Anderson, “SEAL—a simple entity annotation language,”
in Proccedings of zfxCON05-2nd Conference on Game Develop-
ment, pp. 70–73, Stefan Zerbst, Braunschweig, Germany, 2005.

[27] E. F. Anderson, “Scripted smarts in an intelligent virtual envi-
ronment,” in Proceedings of the Conference on Future Play:
Research, Play, Share, pp. 185–188, ACM, 2008.

[28] D. C. Cheng and R. Thawonmas, “Case-based plan recognition
for real-time strategy games,” in Proceedings of the 5th Inter-
national Conference on Computer Games: Artificial Intelligence,
Design and Education (CGAIDE ’04), pp. 36–40, 2004.

[29] D. W. Aha, M. Molineaux, and M. J. V. Ponsen, “Learning to
win: case-based plan selection in a real-time strategy game,” in
Proceedings of the 6th International Conference on Case-Based
Reasoning (ICCBR ’05), pp. 5–20, August 2005.

[30] S. Ontañón, K. Mishra, N. Sugandh, and A. Ram, “Case-based
planning and execution for real-time strategy games,” in Case-
Based Reasoning Research and Development: 7th International
Conference on Case-Based Reasoning, ICCBR 2007 Belfast,
Northern Ireland, UK, August 13–16, 2007 Proceedings, vol. 4626,
pp. 164–178, Springer, Berlin, Germany, 2007.

[31] B. Weber and M. Mateas, “Conceptual neighborhoods for
retrieval in case-based reasoning,” in Proceedings of the 8th
International Conference on Case-Based Reasoning (ICCBR ’09),
pp. 343–357, 2009.

[32] B. G. Weber and M. Mateas, “Case-based reasoning for build
order in real-time strategy games,” in Proceedings of the 5th
Artificial Intelligence and Interactive Digital Entertainment Con-
ference (AIIDE ’09), pp. 106–111, October 2009.

[33] M. Sharma, M. Holmes, J. Santamaria, A. Irani, C. Isbell, and
A. Ram, “Transfer learning in real-time strategy games using
hybrid CBR/RL,” in Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI ’07), pp. 1041–1046,
January 2007.

[34] S. Lee-Urban, H. Muñoz-Avila, A. Parker, U. Kuter, and D.
Nau, “Transfer learning of hierarchical task-network planning
methods in a real-time strategy game,” in Proceedings of the 17th
International Conference on Automated Planning & Scheduling
(ICAPS ’07), Workshop on AI Planning and Learning (AIPL),
2007.

[35] D. Shapiro, T. Könik, and P. O’Rorke, “Achieving far transfer
in an integrated cognitive architecture,” in Proceedings of the
23rd National Conference on Artificial Intelligence (AAAI ’08),
pp. 1325–1330, July 2008.

[36] M. Buckland, Programming Game AI by Example, Jones &
Bartlett Learning, 2004.

[37] B. Schwab, AI Game Engine Programming, Cengage Learning,
2008.

[38] I. Millington and J. Funge,Artificial Intelligence for Games, CRC
Press, Boca Raton, Fla, USA, 2009.

[39] S. Russel and P. Norvig, Artificial Intelligence: A Modern
Approach, Prentice Hall, 2009.

[40] S. Rabin,AI Game ProgrammingWisdom, Charles River Media,
2002.

[41] S. Rabin, AI Game Programming Wisdom 2, Cengage Learning,
2003.

[42] S. Rabin, AI Game Programming Wisdom 3, Cengage Learning,
Boston, Mass, USA, 2006.

[43] S. Rabin, AI Game Programming Wisdom 4, Charles River
Media Group, 2008.

[44] R. Straatman and A. Beij, “Killzone’s AI: dynamic procedural
combat tactics,” in Proceedings of the Game Developers Confer-
ence, 2005.

[45] D. Pottinger, “Implementing coordinated movement,” Game
Developer Magazine, pp. 48–58, 1999.

[46] bwapi—An API for interacting with Starcraft: Broodwar
(1.16.1)—Google Project Hosting, https://code.google.com/p/
bwapi/.

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Antennas and
Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

