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1 Introduction

Accurate calculation of the position of the contacts between the drillstring and
the borehole as well as the determination of the extent of these contacts is the
true challenge of a torque-and-drag analysis. Such calculations are required to
estimate the loss of torque from the rig to the bit under some assumed friction
models, but also to assess the axial force on the bit (the “weight on bit”) given the
known axial force at the rig (the “hook load”). Indeed, the weight on bit directly
influences the rate of penetration, but also the drilling tendency of bottom-
hole-assemblies equipped with rotary steerable systems [3, 6]. The accurate and
efficient structural analysis of such a slender body, which is constrained to deform
inside a borehole, is thus of paramount importance for the modeling of drilling
operations.

In the late 1990’s, the state-of-the-art in torque-and-drag modeling has shifted
from the “soft string model,” based on the assumption that the drillstring co-
incides with the borehole axis [4], to advanced numerical methods with built-in
management of the contacts. Standard finite element techniques have been ap-
plied to the torque-and-drag problem, but they require a fine mesh to properly
capture the response of the system in the vicinity of contacts [5]. Furthermore,
the slenderness of the drillpipe, combined with the limited clearance between the
drillstring and the borehole wall are two of the reasons that make the application
of such standard techniques rather inefficient [2].

As an alternative, we have developed an approach that segments the drill-
string between contacts and treats the series of unconstrained (or classical) elas-
tica problems between successive contacts as a sequence of simpler auxiliary
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problems [1]. The reconnection of the a priori unknown number of segments
is then performed in order to ensure consistency of the internal forces at the
contacts. The kinematic non-penetration condition is imposed as an essential
condition; conversely no spurious contact force is applied to the drillstring as
long as it strictly remains between the walls of the borehole. Besides this formal
treatment of contacts, the approach builds on a series of concepts that make the
formulation well-conditioned and its implementation rather efficient. First, it is
formulated within the Eulerian reference frame associated to the borehole, rather
than the Lagrangian reference frame related to the drillstring, thus freeing the
formulation of the integral constraints arising from the a priori unknown length
of drillpipe between two contacts. Second, in order to determine efficiently the
apparition of new contacts between the drillstring and the borehole, the posi-
tion of the drillstring inside the curved borehole is parametrized by means of its
transverse position relative to the borehole axis.

In its original version, the methodology was presented on the basis of an
analytical description of the borehole geometry. Aiming at a wider application
and as an intermediate step towards a 3-D model, we introduce in this paper
a formulation based on a discrete description of the borehole, for a uniform
drillstring and well (in diameter) and a planar trajectory. The main scope of this
work aims at calculating successive equilibrium configurations of the drillstring
inside a preexisting borehole. Although the context of a propagating borehole is
not considered here, these calculations would be an integral part of a directional
drilling analysis algorithm.

2 Borehole and Drillstring Description

The geometry of the borehole axis can alternatively be described by Θ (S),
the inclination of the axis as a function of the curvilinear coordinate S; or by
(X (S) , Y (S)) the cartesian coordinates of the point parametrized by S, see Fig.
1-a. The two representations are related by

X ′ = cos Θ; Y ′ = sin Θ (1)

The walls of the borehole are further described by an offset A (S) on each side of
this axis. The drillstring is parametrized by (X −∆ sin Θ, Y + ∆ cos Θ), where
∆ (S)∈ [−A;A] represents the distance between the drillstring and the borehole
axes.

In contrast to previous works [1], where only simple analytical forms of Θ(S)
were assumed, we deal here with a conduit of arbitrary geometry. Namely, the
borehole is described by a set of triplets (Sk, Ak,Θk) representing the profile of
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Figure 1: (a) Borehole geometry - (b) Description of borehole with piecewise-
continuous inclination - (c) Description of borehole with continuous inclination.

the inclination along the borehole at discrete coordinates Sk. It is necessary,
however, to define the geometry of the borehole between these points. Several
families of interpolation are available: (i) a piecewise continuous interpolation
characterized by kinks at each Sk is not compatible with the signed-distance
model, as the existence and uniqueness of the solution is violated, see Fig. 1-
b; (ii) a linear interpolation as illustrated in Fig. 1-c is possible; however (iii) a
Hermite interpolation with continuity in the borehole inclination Θ and curvature
Θ′ at each Sk is preferable and is used in the following developments. The
main motivation for using the Hermite interpolation is that continuous contacts
cannot spread beyond discontinuities in the curvature. This choice makes thus
the number of continuous contacts insensitive to the discretization of the borehole
geometry.

3 Segmentation Procedure and Auxiliary Problem

The algorithm presented in [1] is built on three nested loops. The outermost one
is related to the determination of the actual contact pattern, i.e. the sequence
of contacts including their number and their types. This loop segments the full
problem into a series of auxiliary ones. In the middle loop, the exact location of
the discrete contact(s) and the extent of continuous contact(s) -in other words,
the bounds of each segment associated to an auxiliary problem- are determined
by means of an appropriate nonlinear solver, while the auxiliary problems are
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solved sequentially in the innermost loop.
Consideration of an arbitrary conduit does not prevent the application of

the same algorithm, although changes have to be implemented to make it more
general. In particular, the solver related to the outermost loop has to act auto-
matically as a decision algorithm. The change from a contact type to another,
the apparition or disappearing of contacts, the split of continuous contacts, and
other events have to be properly managed.

Besides, because the description of the borehole inclination is rather general
(there could even be several intervals defining the borehole for a single auxiliary
problem), an appropriate numerical solver has to be implemented. Instead of the
shooting method used in the original contribution [2], a Bubnov-Galerkin method
has been implemented here. It is particularly efficient in solving the fourth order
nonlinear differential equation in ∆ (S) corresponding to the auxiliary problem.

4 Illustration

As an illustration of the capability of the algorithm, we consider the insertion of a
slender drillpipe into a borehole, with a nominal clearance of 0.05 m. Snapshots
of the continuous contacts as well as the pressure against the walls are represented
in Fig. 2 for two different inserted lengths of drillpipe (L = 316 m and L = 776
m). The profile of ∆ (S) illustrates how the contact between the drillstring and
borehole alternates from one side to the other, as a result of the macro-tortuosity
of the borehole.

A vertical hook load, equal to the total weight of pipes inserted into the
borehole, is applied. For short lengths of inserted pipe, the axial force is linearly
decreasing from the total weight to zero. For longer lengths, the axial force profile
curls, as a fraction of the total weight is balanced by the reaction forces along
the contacts. The bending moment reflects the wall curvature in the contact
zones; this is represented by the red solid lines in the bending moment diagram.
Between these continuous contacts, the bending moment corresponds to that of a
free elastica (a mix between a cable and a beam) with imposed end inclinations.
The shear profile exhibits jumps corresponding to the discrete reactions that are
known to take place at the ends of continuous contacts.

An interesting outcome of such an analysis is naturally the position and
extents of the contacts along the drillpipe. They are represented in Fig. 3 as
a function of the length of inserted drillpipe. In particular, Fig. 3 reveals the
existence of two contact zones for an inserted length L = 316, and four contact
zones for L = 776 m (these two cases are tagged with dotted lines). This form
of representation of the contacts further shows that the extending and sliding
contacts zones (resulting from the increase of axial force) mark the boundaries
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Figure 2: Insertion of a drillpipe into a borehole at two stages (inserted length
L = 316 m and L = 776 m). Variation of the distance ∆ between the borehole
and drillstring axis, axial force, shear force, and bending moment with curvilinear
coordinate S
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Figure 3: Evolution of the contacts with the inserted length of the drillstring
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of the sub-domains where the problem has to be solved. The width of these sub-
domains remains roughly identical throughout the whole contact pattern map. It
depends actually on the clearance in the hole and on the weight of the drillpipe.

5 Conclusions

The approach to solve constrained elastica problems originally proposed by [1]
has been extended to model a drillstring inside a borehole, which is here described
by a curve characterized by a piecewise continuous curvature. Furthermore, an
advanced numerical technique for the solution of the auxiliary problem has been
implemented. This technique provides robust results, even when the domain of
the auxiliary problem spans several segments defining the borehole.
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