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Abstract

Genome-wide association studies can potentially unravel the mechanisms behind complex traits and common genetic
diseases. Despite the valuable results produced thus far, many questions remain unanswered. For instance, which specific
genetic compounds are linked to the risk of the disease under investigation; what biological mechanism do they act
through; or how do they interact with environmental and other external factors? The driving force of computational biology
is the constantly growing amount of big data generated by high-throughput technologies. A practical framework that can
deal with this abundance of information and that consent to discovering genetic associations and interactions is provided
by means of networks. Unfortunately, high dimensionality, the presence of noise and the geometry of data can make the
aforementioned problem extremely challenging. We propose a penalised linear regression approach that can deal with the
aforementioned issues that affect genetic data. We analyse the gene expression profiles of individuals with a common trait
to infer the network structure of interactions among genes. The permutation-based approach leads to more stable and
reliable networks inferred from synthetic microarray data. We show that a higher number of permutations determines the
number of predicted edges, improves the overall sensitivity and controls the number of false positives.
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Introduction

Any biological system is characterised by interactions between

components. The study of these interactions is essential to

understanding the mechanisms that regulate complex diseases

and to unravel the functional aspects of genetic compounds. In

several fields of research, from social to telecommunication and

biology, system interactions are increasingly represented by

graphical models [1–3]. Generally speaking, those are defined by

a set of nodes and a set of edges. Each node usually represents a

specific biological component that interacts with others to perform

specific functions. Edges may have several meanings, depending

on the type of interactions they represent, such as similarity,

causality, distance, etc. In the field of network theory and genetics,

the nodes of a graph usually represent genes and the edges

represent the interactions among nodes. Consequently, a network

graph of genetic interactions is a suitable way to visualise clusters,

detect modules or pathways, according to the purpose of the

analysis. Network modelling has proven to be an effective

approach in computational biology due to the straight-forward

representation of conditional dependency between variables [4,5].

It is known that genes act in clusters and their individual effects

tend to be characterised by a smaller magnitude within the system

as a whole [6,7]. Graphical models facilitate the detection of main

genetic effects. Moreover, pathways of genes become more visible

to the researcher who investigates the data, giving a more

complete explanation of the biological function that the pathway

itself performs. One viable way to represent the interactions of the

nodes of a graph - and consequently the topology of the resulting

network - is usually represented by the adjacency matrix b = bij.

The values of each entry (i, j ) in the adjacency matrix represent the

magnitude of the interaction between two nodes, whereas zeros

are equivalent to absence of interaction between node i and node

j. Specifically to the field of computational biology, one possible

way to learn the structure of genetic interactions is to analyse the

expression profile of a number of genes. The task becomes

challenging due to the presence of noise in the measurements, the

high dimensionality of data and multicollinearity of variables.

Despite active research in the field of high-density oligonucleotide

arrays, noise still represents a consistent source of error. Any

analysis subsequent to the measurement of a subset of genes should

take into consideration the artifacts that are usually introduced by

noise or by the computational methods performed to mitigate it

[8,9]. In addition to the presence of noise, high dimensionality is a

very common aspect of genetic data. The number of genes p,

usually much larger than the number of individuals n, makes the

task of discovering interactions extremely difficult. Without loss of

generality, the problem of inferring the conditional independence

between variables is equivalent to the problem of computing the

sample covariance matrix of the interactions among variables. In

the case of high dimensional data, as well as in a more relaxed case

in which the number of individuals has a similar order of
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magnitude as the number of genes, the inverse of the sample

covariance matrix does not exist [10]. This makes the solution of

the interaction problem numerically unstable and the discovered

interactions unreliable.

Finally, gene expression profiles are affected by the presence of

multicollinearity [11,12], namely two or more genes or genetic

compounds can be highly correlated. Highly correlated predictor

variables can give rise to non-sensical results or, specifically to

regression methods, can lead to parameter estimates of incorrect

magnitude and sign (harmful multicollinearity). Moreover, the

greater the number of covariates, the higher the risk of such critical

scenarios [13]. A number of techniques to mitigate the problem of

multicollinearity have been indicated in the literature. Regressing

each covariate on the others and investigating the stability of

regression models to predicting the response variable are two

methods that have been denoted in [13]. The same line of

conclusion is depicted in [14], which states that successful forecast

with multicollinear variables requires both a stable dependency

relationship between the response and the independent variables

and stable interdependency relationships within the predictors.

Collecting additional data as a solution of the multicollinearity

problem is suggested in [13,14]. The presence of multicollinearity

can influence the performance of methods that rely on regression.

The regression coefficient of a predictor variable’s importance on

the target variable has the tendency to lose precision with respect

to the case in which the same genes were uncorrelated. From a

biological perspective, it is broadly recognised that strong genetic

correlations are frequent in microarray data and that, in contrast,

complete independence between any two gene expression

measurements is rare [15]. Therefore, it is expected that

functionally related genes are correlated to each other and might

be co-expressed. This biological phenomenon can be explained by

assuming the presence of high correlation for a subset of genes in

the dataset under study. Moreover, as the gene sets to be tested are

usually chosen on the basis of functional annotation, it should be

expected that many of the tested genes might be, in fact, correlated

[15]. Some regression-based methods like the one described in this

paper are even more sensitive to the presence of multicollinearity

as they tend to select only one or few highly correlated variables.

We propose a penalised linear regression approach that can deal

with the aforementioned issues affecting genetic data. We analyse

the gene expression profiles of individuals with a common trait to

infer the network structure of interactions among genes. The core

idea consists in reducing the number of meaningful interactions

with each gene, in order to build a sparse network. Penalised linear

regression (Lasso) has been investigated in seminal work reported

in [16–19], in which each variable is considered response and the

remaining ones are independent covariates. In the aforementioned

work, bootstrapping has been extensively used to improve the

stability of the predicted interactions. Unfortunately, the nature of

genetic data and the presence of highly correlated variables can

play a detrimental role that affects the overall reliability of

discovered interactions. Specifically, Lasso-based regression pro-

cedures are known to deal poorly with highly correlated variables

since only one in a group of multi correlated covariates is selected.

Bootstrapping does not seem to mitigate such a troublesome

condition.

In this paper, we consider the use of Lasso penalised regression

as a starting point. We subsequently rely on a permutation-based

approach in order to increase the significance of predicted

interactions.

In Section Approach, we describe the method in detail. In

Section Results, we measure the performance of our approach on

simulated genetic networks of different size. Conclusion and future

developments are drawn in the proper Sections.

Methods

Gene expression data are usually represented by the matrix

X~xij of the expression profiles of i genes and j individuals or

sample tissues. The main goal of the approach described in the

current section is to infer the network topology that regulates the

main interactions of the genes under investigation. Generally

speaking, a network model is formed by a set of vertices G,

representing the genes in our specific case, and a set of edges E
representing pairwise interactions. The existence of edge (i, j )
represents the conditional dependency between gene i and gene j.
If such an edge is not present, the two genes are considered

conditionally independent, in the symbolic representation

(Gi\Gj)DGk,Vk=j. In the specific application described in this

paper, we aim at finding the best set of neighbours associated to

each gene. We interpret the biological meaning of genetic

associations within the terms specified by regression analysis.

Regressing the expression value of a gene (response) against the

remaining ones in the dataset (independent variables) leads to

selecting a subset of the most influential genes associated with the

response. Regardless of the number of mathematical models that

have been considered for inferring the association between

variables in genetics, linear regression is a type of analysis that

has found large consensus in the field of computational biology

due to its simplicity of modelling [20,21]. One limitation of linear

regression methods prevails in assuming a linear dependency

between variables, a hypothesis that does not always apply in

biology. One strategy to overcome such a limitation consists of

splitting the problem of learning the topology of the entire network

of genes into a number of smaller linear problems. This can be

achieved by regressing each covariate against all the remaining

ones. Such a strategy, which has been used first in the work

reported in [17] makes the assumption of linearity more suitable to

the analysis of biological data. Assuming the presence of linearities

on a local scale is a much more convincing and appropriate

conjecture that might find an application to data from genomics

and proteomics. Another limitation that researchers have to take

into account appears in the case of high-dimensional data. In such

a scenario, the number of genes is usually some orders of

magnitude larger than the number of the individuals. Penalised

regression has been considered as a way to circumvent such

limitation due to the presence of a penalty factor that encourages

sparsity of the final network. Specifically, Lasso is one such

regression method that converts the problem of estimating the

covariance matrix into an optimisation problem in which a convex

function, applied to each variable, is minimised.

Given Xi the expression of gene i and the expression profiles of

the remaining genes (referred to as X , for simplicity), the Lasso-

based estimate consists of providing a solution for Equation 1

ĤHa,l~s: t:H : Ha~0 (
1

n
EXi{XHE2

2zlEHE1) ð1Þ

The vector of regression coefficients H determines the

conditional independence structure between variables. The l1-

norm of the coefficient vector tends to shrink the coefficients of

some variables to zero, removing them from the set of selected

variables associated to the response, as extensively explained in

[16]. The right choice of the shrinkage factor l is crucial to

controlling the rate of false positives and false negatives.

LAsso-Based Network Inference
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Regardless of the number of approaches to approximate the

optimal l, reported in [22–24], a reliable estimate that is widely

used in practice is provided by cross-validation [25]. We use a 3-

fold cross validation approach and estimate l̂lcv from a subset of

the data. Cross-validation can be a time consuming task especially

when applied to datasets with a high number of covariates.

Therefore, we estimate the shrinkage factor that minimises the

expected generalisation error, for a grid of l values, on the 10% of

the total number of genes. The R package glmnet has been used to

provide such an estimate.

The method we describe in this paper is a two-step approach

that recursively performs the regression of Equation 1 for each

gene, considered as response, with respect to all remaining genes,

considered as independent variables. The response gene is not

included in the set of independent variables. Regardless of

biological evidence that supports the existence of self interactions

and positive/negative feedback loops within regulatory networks

[26–28], those are not considered here, in order to avoid complex

interactions and simplify as much as possible the inferred network

topology.

In step 1, the set S of variables associated with the current

response gene is selected. We use a Lasso method that does not fit

the intercept. As explained, the choice of the optimal l occurs

prior to this stage.

In step 2, we use a permutation-based approach to assess the

significance of the associated edges detected in step 1. The values

of the response variables are permuted a number of times specified

as parameter. For each permutation we count how many times

each variable within the set S of selected genes has been selected

again. At the end of the permutation test, the variables with the

smallest counter are selected as the best candidate variables

associated with the current response gene.

This approach is supported by the fact that after permuting the

response variable, the genes selected at step 1 should be no longer

associated and therefore should be considered as selected by

chance.

The procedure we propose is summarised in Table 1. It selects

the best number of genes associated to the current response.

Namely, the vector of the associated genes is sorted in decreasing

order and the first best are selected (line 5). The parameter best
can be tuned in order to select a variable number of strong genetic

effects according to the type of disease under investigation and the

dataset at the researcher’s disposal which, in turn, might

determine the amount of significant genetic compounds to be

considered for further analysis. At each permutation, the counters

of the selected variables are updated (line 9) and after B
permutations the first fanout genes are selected. These variables

represent the most stable genes associated with the response

variable (line 12).

For large values of B we perform an additional significance test

for the smallest counter. A critical case to deal with occurs

whenever different covariates are selected with similar frequency.

This phenomenon in turns produces uniform values of counters

for a high number of selected variables. Lasso-based regression

methods are affected by issues of this type due to the fact that one

from a group of highly correlated variables can be randomly

selected at each permutation. To mitigate such side effects, we

compute the empirical distribution of the counters of the selected

covariates regressed against each permuted response. The p-value

of the smallest counter is calculated from the aforementioned

empirical distribution. We found that a significance level of 0:05

improves the precision (calculated as TP
TPzFP

) by 3%.

The algorithm described above finds a solution of Equation 1

for each response variable. Subsequently, it finds the most stable

non-zero regression coefficients associated to each gene. Conse-

quently, when the described procedure is performed on the entire

set of genes, an adjacency matrix can be built directly from the

counters of selected variables. The aforementioned adjacency

matrix can be used to visualise the network topology of the

inferred network of interactions. Since we are interested in

discovering genetic interactions we convert the non-zero values of

the adjacency matrix to 1, in order to denote the presence of an

edge in the graph. As one would expect, the method does not

guarantee the adjacency matrix to be symmetric. A symmetrisa-

tion procedure would be required before further analysis or

visualisation of the predicted network.

A number of approaches that perform matrix symmetrisation

have been proposed in [29]. Given two nodes i and j and the

weights of the edges Mij and Mji, the symmetric adjacency matrix

can be built by taking the average value as in

Mij~Mji~mean(
MijzMji

2
); by selecting the largest weight

Mij~Mji~max(Mij ,Mji); or by selecting the smallest weight

Mij~Mji~min(Mij ,Mji). For a binary adjacency matrix, in

which each entry represents the presence or absence of the edge

(i, j), the AND rule will set Mij~Mji~(Mij ^Mji). In order to

detect a generic association between nodes i and j, we symmetrise

the adjacency matrix by applying the OR rule which considers two

variables as associated if only one of the two variables is associated

with the other. Namely, Mij~Mji~(Mij _Mji).

The main goal of the work described here is to detect the

structure of the network of the main genetic associations, passing

over the magnitude of interaction and its direction.

Results

In order to evaluate the performance of the method described in

the Methods section, we need to compare the predicted network to

the real network that generated the data. In real biological

applications this procedure is usually not possible, due to the fact

that the real network is, in fact, unknown. In the specific case

described thus far, we take advantage of synthetic data that make

such a performance evaluation practical.

Since our algorithm is designed to analyse gene expression

profiles, we generate synthetic microarray data with the Gene Net

Weaver software package (GNW) [30]. The aim of GNW is to

generate in-silico networks extracting modules from biological

Table 1. Algorithm of the variable selection and
permutation-based stability test.

1: procedure LASSO2NET(Xi ,X ,B,fanout,best)

2: fit/lasso:cv Xi,Xð Þ
3: lcv/fit:lambda

4: S/fit:coeffs

5: S/sort(S,decreasing)½1 : best�
6: while rvB do

7: X
perm
i /permute(Xi)

8: permfit/lasso X
perm
i ,X ,lcv

� �

9: update(counter½S�) update counters of selected variables

10: r/rz1

11: sel/sort(counter½S�,increase)½1 : fanout� order and select first fanout

12: return sel

doi:10.1371/journal.pone.0110451.t001
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networks. These networks are simulated to produce gene

expression data (steady states or time series) [31]. The aforemen-

tioned framework can be used to evaluate the performance of our

inference method by comparing the predicted network with the

golden standard network that generated the dataset.

We perform the approach described above on synthetic

microarray data generated from simulated networks of 50 and

200 nodes. The parameters used in our experiments are

summarised in Table 2.

A set of networks has been inferred with an increasing number

of permutations. One important characteristic that arises from our

experiments consists in the fact that by increasing the number of

permutations, the connectivity of the network is increased

proportionally (Figure 1). Within the same figure it is shown that

the number of false positives is limited regardless the number of

predicted edges and permutations. We measure the connectivity of

the network by counting the number of the predicted edges.

In Figure 2 the false positive rate, usually referred to as

accuracy, is not affected by the number of permutations but by the

number of predicted edges which increases accordingly (as shown

in Figure 3).

Moreover, by increasing the number of permutations the false

negatives, or missed edges, tend to decrease (Figure 2). Since

higher connected networks are usually affected by an increasing

number of false negatives, we consider the method described

above a promising approach with potential benefits to the analysis

of large genetic networks.

We also found that the true positive rate follows the same trend

of the number of permutations (Figure 4). Within the same figure

the Matthew Correlation Coefficient (MCC) is also reported. The

MCC is a correlation coefficient between the observed and the

predicted classification (presence or absence of edges). It returns a

value in the range ({1,1), where {1 indicates total disagreement

between prediction and observations, z1 indicates perfect

prediction and 0 no better than random guessing. One important

property of the MCC is that it takes into account the number of

true negatives and true positives of the predicted network within

the normalisation factor. This leads to more meaningful interpre-

tations of the final MCC score. Biological networks are usually

sparse. Therefore, prediction methods performed on such

networks usually return high numbers of true negatives (absent

interactions are correctly predicted). In the extreme case of empty

predicted network (a network without any edge), the number of

true negatives would positively impact the overall performance of

the method. It comes without saying that measuring the number of

true negatives would be too optimistic. The MCC mitigates

extreme cases of this type. The empty network would have a

MCC~0.

The MCC, as introduced in [32], is calculated as

MCC~
(TP|TN){(FP|FN)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TPzFP)|(TPzFN)

p
|(TNzFP)|(TNzFN)

ð2Þ

In order to compare the predicted network to the golden

standard using a measure that takes into account the global

structures of the graphs, two global measures have been provided,

such as the degree correlation DC and the betweenness

correlation BC.

Table 2. Parameters of LABnet for both 50-node and 200-node networks.

cross-validation 3-fold on 10% genes

best 80% genes

fanout 1

B 0–500

doi:10.1371/journal.pone.0110451.t002

Figure 1. Number of predicted edges and false positives vs.
number of permutations.
doi:10.1371/journal.pone.0110451.g001

Figure 2. False positive rate vs. number of permutations.
doi:10.1371/journal.pone.0110451.g002
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DC is the correlation between the vector of the degrees of all

genes in the real network and those of the predicted network. It is

calculated as

DC~cor(�ddgold ,�ddpred )

where d is the i-dimensional vector containing the degree of each

gene.

Similarly, the betweenness correlation BC is the correlation

between the same two vectors where the degree has been replaced

by the betweenness centrality measure.

BC is calculated as

BC~cor(�bbgold ,�bbpred ) ð3Þ

where b~b(i)~
P

q=i=r

sqr(i)

sqr
,Vi, sqr is the total number of

shortest paths from node q to node r and sqr(i) is the number of

shortest paths from q to r that pass through gene i.

Betweenness centrality is, in our opinion, more helpful than

simple connectivity. This measure is a direct indicator of how

connected the node is and its importance with respect to the global

network topology.

As it can be seen in Figure 5 and Figure 6 there is a strong

degree correlation (0.83) and betweenness correlation (0.86)

between the nodes of the predicted and real networks. The two

measures and the aforementioned strong correlations support the

evidence that the topology of the real network is conserved within

the predicted network, following the same power law degree

distribution of the original network that generated the data. Due to

the fact that GNW generates network from real life templates, we

expect similar results in real biological data.

Performance
We implemented LABNet in R and we used the glmnet package

to perform both the Lasso penalty estimation and variable

selection. For each gene (node) the algorithm performs a number

of permutations to compute the most significant variables

associated to the current gene. Therefore, the code that performs

such permutations is the most demanding in terms of computing

resources and time. The permutation-based variable selection

described in the previous section can be performed independently

from the rest of the code. As a consequence, the bottleneck of our

method seems to be ideally suited for parallel architectures. We

implemented a parallel version that consistently improves the

overall performance of the algorithm, with respect to its sequential

execution. The response permutation code has been written to

perform within the snowfall environment, distributed as R

package in CRAN.

A summary of the performance improvement achieved by

parallel code is provided in Table 3. Moreover, we found that the

speedup is more consistent as the number of permutations is

increased.

In a setting with c computing nodes, p genes, k permutations

per gene, Tk seconds required to perform k permutations on one

computing node, the speedup introduced by the parallel approach

can be calculated as pTk

c
. In the aforementioned formula, the time

needed to perform the first selection of covariates and set the

Figure 3. Number of predicted edges and false negatives vs.
number of permutations.
doi:10.1371/journal.pone.0110451.g003

Figure 4. True positives and Matthew Correlation Coefficient
vs. number of permutations.
doi:10.1371/journal.pone.0110451.g004

Figure 5. Degree correlation across real and predicted nodes.
doi:10.1371/journal.pone.0110451.g005

Figure 6. Betweenness correlation across real and predicted
nodes.
doi:10.1371/journal.pone.0110451.g006
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computing nodes within the cluster are not counted. Therefore,

the expression will indicate better performance than the one we

measure effectively in our experiments. As the number of available

computing nodes approaches the number of covariates, the total

time required by our algorithm is determined by the number of

permutations performed on the single computing node.

Discussion

The Lasso-based procedure performed on microarray data is

enhanced by a permutation approach that consistently improves

the stability of the inferred network structure. The purpose of

permuting the response variable is to break the link with the other

independent variables by optimising an equivalent convex

function which selects a number of variables close to those

selected for the original (not permuted) response. Since the

permutation affects only the response gene, the structure of the

permuted data is equivalent to the original one. Moreover, using

the same l increases the speed of the algorithm due to the fact that

cross-validation is no longer required. Results from simulated

genetic data are encouraging and consent to perform our

approach to predict genetic interactions from real biological

datasets. However, we address some limitations we intend to

investigate in the near future.

As already stated, genetic data are usually affected by

measurement noise and high number of variables collected from

different datasets such as gene expression profiles, SNPs,

methylation and clinical data.

The curse of dimensionality can set a limit on the number of

permutations to perform. Due to the fact that our method relies on

permuting each response variable in order to increase the stability

of the discovered interactions, the overall performance is directly

affected by the total number of genes in the dataset.

The variable selection procedure consistently depends on the

value of the shrinkage factor l, estimated on a subset of the

covariates. Obviously, it might occur a prior exclusion of

significant genes from further analyses in the case of a too

restrictive shrinkage factor. An alleviation to this risk (which can

directly determine the false negative rate) consists in replacing the

pure Lasso penalty with an elastic net procedure of the type

ĤHa,l~ argmin
H:Ha~0

(
1

n
EXi{XHE2

2zaEHE1z(1{a)EHE2) ð4Þ

In such a scenario it would be necessary to estimate an

additional parameter a. To the other extreme, a pure ridge-

regression procedure would not benefit from the permutation-

based stability test, due to the fact that ridge-regression procedures

tend to include all the covariates in the model. Moreover, our

method ignores the value of the regression coefficients and selects a

subset of genes with the best permutation score. In a ridge-

regression setting all covariates would be selected an equal number

of times.

Another aspect we intend to probe regards the direction of the

interactions. In our analysis we ignore the direction of each edge in

the graph. A relaxation of the problem of learning the network

topology consists in considering the interaction i?j equivalent to

the interaction j?i. Although this simplification makes the

construction of the overall network consistently easier, it might

lead to inconsistencies from a biological perspective. As a matter of

fact, gene regulations are known to have a direction, usually

referred to as activation and inhibition. Activation and inhibition

are essential regulatory mechanisms in the transcriptional

machinery of the cell and are causes for up- and down-regulation

of particular genes [33].

Learning the directionality of network edges represents an

additional complexity that is plausible to deal with only in the

presence of a large number of samples, or by integrating

complementary data sources of known interactions. Therefore,

the need for integrating different data sources is twofold: data

integration can increase the stability of all discovered interactions

and their direction and, specifically to our method, it can reduce

the number of required permutations per gene. We believe that

data integration can consistently improve the overall performance

of the described approach.

We endorse our approach to be deployed in a data analysis

pipeline in order to 1) analyse different data sources 2) build the

local network from each dataset 3) increase the stability of

predicted interactions by permutation and 4) integrate each

singular network into a more stable and complete graph. We are

currently extending our network inference method to implement

the aforementioned data analysis pipeline.

Conclusion

We presented LABNet, a Lasso-based approach to detect main

genetic interactions from gene expression profiles. Penalised

regression in concert with a permutation-based procedure

determines whether the predicted interactions are stable across

experiments. The higher number of permutations not only

improves the sensitivity of the method by reducing the number

of false negatives, but it also determines the overall number of

predicted edges. This does not seem to affect consistently the false

positive rate. Due to the features that we have described and the

promising results on synthetic data, the approach is a good

candidate to further investigate and expand for the analysis of

heterogeneous sources of genetic data.

Table 3. Timings for 4 different execution of LABNet running in sequential (1 CPU) and parallel environments from 2 to 4 CPUs on
general purpose hardware (1.3 GHz Intel Core i5), 4GB RAM.

Genes Perm 1 CPU 2 CPU 3 CPU 4 CPU

50 500 269 175 153 135

50 1000 547 347 282 276

200 500 2846 2073 1997 1942

Perm indicates the number of permutations per gene.
doi:10.1371/journal.pone.0110451.t003
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