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ABSTRACT

Context. Determining stellar characteristics such as the radius, mass or age is crucial when studying stellar evolution or exoplanetary
systems, or when characterising stellar populations in the Galaxy. Asteroseismology is the golden path to accurately obtain these
characteristics. In this context, a key question is how to make these methods less model-dependent.
Aims. Building on the previous work of Daniel Reese, we wish to extend the Substractive Optimally Localized Averages (SOLA)
inversion technique to new stellar global characteristics beyond the mean density. The goal is to provide a general framework in which
to estimate these characteristics as accurately as possible in low-mass main-sequence stars.
Methods. First, we describe our framework and discuss the reliability of the inversion technique and possible sources of error. We
then apply this methodology to the acoustic radius, an age indicator based on the sound speed derivative and the mean density, and
compare it to estimates based on the average large and small frequency separations. These inversions are carried out for several test
cases including various metallicities, different mixing-lengths, non-adiabatic effects, and turbulent pressure.
Results. We observe that the SOLA method yields accurate results in all test cases whereas results based on the large and small
frequency separations are less accurate and more sensitive to surface effects and structural differences in the models. If we include
the surface corrections of Kjeldsen et al. (2008, ApJ, 683, L175), we obtain results of comparable accuracy for the mean density.
Overall, the mean density and acoustic radius inversions are more robust than the inversions for the age indicator. Moreover, the
current approach is limited to relatively young stars with radiative cores. Increasing the number of observed frequencies improves the
reliability and accuracy of the method.
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1. Introduction

Determining stellar global characteristics such as mass, radius,
or age as accurately as possible is crucial for understanding stel-
lar evolution, determining properties of exoplanetary systems, or
characterising stellar populations in the galaxy. Although these
quantities can be estimated using classical observations, such as
photometry and spectroscopy, or in special cases such as binary
systems, significant progress has only been made in recent years
with the advent of high-precision asteroseismology missions,
namely CoRoT and Kepler. Indeed, these missions are provid-
ing a wealth of data of unprecedented quality for large numbers
of stars. Hence, it is crucial to develop techniques that are able
to determine global stellar parameters from pulsation data as ac-
curately as possible and with the least computational effort (see
Chaplin & Miglio 2013, for a review on this topic).

Estimating stellar ages is the most problematic case since
there is no direct observational method to measure this quan-
tity. Therefore, it has to be estimated by relating the evo-
lutionary stage empirically to some phenomena like rotation,
activity, lithium depletion, or by using model-dependent meth-
ods like isochrone placements (see Soderblom 2010, for an

� Appendices are available in electronic form at
http://www.aanda.org

extensive review of age determination methods). Currently, the
most promising method to determine stellar ages is carrying out
asteroseismic modelling of stars. These ages are estimated to be
∼10% accurate in the best cases (Soderblom 2010).

Many of the techniques used for exploiting stellar pulsa-
tion data are variants of grid or parameter search methods. On
one end of the spectrum, there are simple methods that esti-
mate global stellar parameters, such as the mass and radius,
through empirical scaling relations based on seismic indicators
such as the large frequency separation and frequency at max-
imum power. Search methods using a dense grid of models,
calculated once and for all, can also be used to find optimal
models for a whole set of observed stars. However, it is clear
that this method can only handle a limited number of free pa-
rameters when describing the models. On the other end of the
spectrum, there are sophisticated search methods such as ge-
netic algorithms (Charpinet et al. 2008; Metcalfe et al. 2010)
or MCMC methods (Bazot et al. 2012) that are able to deal
with much larger multi-dimensional parameter spaces thanks
to an optimised search strategy. These methods will typically
calculate stellar models as needed, which make them consider-
ably slower than scaling relations or simple grid search meth-
ods, thereby limiting the number of observed stars that can be
treated this way. A common point in these search methods is
their reliance on stellar models, which unfortunately do not fully
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represent the physical complexity of the phenomena taking place
in stars. Hence, these inaccuracies can lead to biases in the re-
sults and to persistent differences between the model and ob-
served frequencies. Therefore, there is currently a need for less
model-dependent methods that are applicable to a large number
of stars, and are able to characterise, as accurately as possible,
the global parameters and evolutionary stage of a star.

In this context, seismic inversion techniques become partic-
ularly interesting since they are able to invert the differences be-
tween observed and theoretical frequencies and translate them
into appropriate structural corrections on the models. In that
sense, these techniques overcome the limitations imposed by the
set of physical ingredients used for the construction of the mod-
els. Therefore, they allow us to obtain more detailed information
on the stellar structure as well as insights into new physical phe-
nomena that need to be included in the models. For instance, he-
lioseismic inversions have provided detailed solar rotation pro-
files, which were different from theoretical predictions, and have
shown that the solution to the lacking solar neutrino problem
should come from improving neutrino physics rather than re-
vising the solar structure. In contrast to the solar case, astero-
seismic space missions cannot resolve the objects they observe
and hence are limited to low-degree modes. As a result, it is
difficult to obtain reliable inversions of full structural profiles
for stars other than the sun. A useful alternative is to invert for
global stellar properties. Recently, Reese et al. (2012) showed
how this could be done for the mean density of a star. This ap-
proach represents an important step of progress compared to us-
ing typical seismic indices for two reasons. Firstly, it can provide
custom-made global quantities that are directly related to the
stellar structure rather than to the pulsation spectra of the stars.
Secondly, the associated averaging kernels that are obtained as a
by-product give useful indications on the accuracy of the result.

In the current paper, we wish to extend this approach to other
stellar quantities, namely the acoustic radius and an age indica-
tor based on the integral of the sound speed derivative. These
characteristics are not chosen fortuitously. Indeed, they allow us
to compare our inversion results with those obtained by current
asteroseismic proxies, the large frequency separation, and the
small frequency separation (Vandakurov 1967; Tassoul 1980).
The outline of the paper will be as follows. We will define our
general approach to the specific inverse problem of global char-
acteristics in Sect. 2. Section 3 will show how this methodol-
ogy applies to the acoustic radius and age indicator. Sections 4
and 5 will present inversion results for different tests cases. In
Sect. 4, we use the model grid of Reese et al. (2012), chosen
without any optimisation process1, to carry out a first series of
tests and conclude that an optimization process is necessary to
choose the appropriate reference model for each inversion. We
present this type of method in Sect. 5 and test it in different cases
that include: changes to the metallicity, modifications to the
mixing length parameter, non-adiabatic effects in the frequen-
cies, and the effects of turbulent pressure. These test cases are
chosen to illustrate current limitations and uncertainties in stel-
lar modelling i.e. the uncertainties in the convection treatment,
here mimicked by a mixing-length coefficient mismatch; the un-
certainties in chemical composition, mimicked by a metallicity
change; the intrinsic non-adiabaticity of stellar oscillations and
the unknown surface effects such as turbulent pressure. Each test
case is carried out separately to isolate any effects that the inver-
sion could not correct. We show that using inversion techniques

1 See Reese et al. 2012, Sect. 6 for further details on this particular
point.

on an appropriate reference model can improve the accuracy
with which global stellar characteristics are determined in that
it provides accurate results in all these cases. Section 6 sum-
marises our results and discusses the strengths and weaknesses
of the method.

2. General approach

2.1. Inverse problems and ways of solving them

As stated in the introduction, we seek to establish a new frame-
work for linear inversion techniques that allows us to determine
stellar global characteristics. As for any inversion carried out,
our method needs a reference model, an observed star and their
respective oscillation frequencies. The reference model has to
be close enough to the observational target so that the relation
between their relative frequency differences and their structure
differences can be deduced from the variational principle. This
leads to the following typical linear form:

δνn,�

νn,�
=

∫ 1

0
Kn,�

s1,s2

δs1

s1
dx +

∫ 1

0
Kn,�

s2,s1

δs2

s2
dx +

G(ν)
Qn,�

, (1)

where s1 and s2 are structural variables like ρ0, Γ1, c2, u0 =
P0/ρ0, etc. As we will see in the next section, choosing the
right couple of variables for the right inversion is not always
straightforward. The function G(ν) is an ad-hoc correction for
the surface term assumed to be a slowly varying function de-
pending only on the frequency. It is usually expressed as a sum of
Legendre polynomials and normalised by the factor Qn,l, which
is the mode inertia normalised by the inertia of a radial mode in-
terpolated to the same frequency (Christensen-Dalsgaard 1986).
The functions Kn,l

si,s j
are the inversion kernels, derived from

the reference model and its eigenmodes (Gough & Thompson
1991). The behaviour of the kernels is critical to ensure a suc-
cessful linear inversion, especially when working with astero-
seismic targets where the number of frequencies is rather small
compared to helioseismic inversions.

The symbol δs/s denotes the relative difference between the
value of s for the reference model and the target at a given x = r

R .
We use the classical definition of the relative differences between
target and model:

δs
s
=

sobs − sref

sref
· (2)

Other definitions were sometimes used in the past for helioseis-
mic inversions (see Antia & Basu 1994), but these definitions
were not used in this study.

It is well known that the inversion problem is ill-posed and
that the quality of the inversion (in terms of accuracy but also
of reliability) depends critically on the quantity and the accuracy
of available data. Therefore, in the asteroseismic context, inver-
sions of structural profiles such as the density, the sound speed,
or even the helium abundances are out of reach for linear inver-
sion techniques. However, we can still compromise and search
for global quantities.

The Substractive Optimally Localized Averages (SOLA) in-
version method (Pijpers & Thompson 1994) naturally lends it-
self to obtaining global quantities. When using SOLA, we build
a linear combination of the inversion kernels that matches a pre-
defined target. In other words, we wish to determine the val-
ues of the coefficients of the linear combination of frequency
differences that will give us information about one global char-
acteristic of the observed target. Using Eq. (1), we can define
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a target T , which can be any function of x = r
R . For example,

let us assume we wish to determine the value of a global charac-
teristic Aobs the relative perturbation of which is defined by:

δAobs

A
=

∫ 1

0
T (x)

δs1

s1
dx +

∫ 1

0
Tcross(x)

δs2

s2
dx. (3)

Assuming that Eq. (1) is satisfied for our model and our target,
we wish to build the linear combination of frequency differences
such that∑

i

ci
δνi

νi
=

∫ 1

0
T (x)

δs1

s1
dx +

∫ 1

0
Tcross(x)

δs2

s2
dx

=
δAobs

A
· (4)

This is of course an ideal scenario. For real inversions, the result
is more likely to be an estimate δAinv/A, which is expressed as
follows:

δAinv

A
=

∫ 1

0
Kavg(x)

δs1

s1
dx +

∫ 1

0
Kcross(x)

δs2

s2
dx

+
∑

i

ci
G(νi)

Qi
· (5)

The functions Kavg(x) and Kcross(x) are the so-called averaging
and cross-term kernels and the third term accounts for surface
effects. The averaging and cross-term kernels are directly related
to the structural kernels of Eq. (1) by the inversion coefficients

Kavg(x) =
∑

i

ciK
i
s1,s2

(x), (6)

Kcross(x) =
∑

i

ciK
i
s2,s1

(x). (7)

Thus, in order for the inversion to be accurate, these kernels need
to be as close as possible to their respective target functions. One
should note that the cross-term kernel will always be present in
an inversion result, as a direct consequence of Eq. (1). If A is
only related to s1, the function Tcross is simply 0. In this particu-
lar case, the contribution of the integral of s2 in Eq. (1) has to be
eliminated. When using the SOLA method, we build a cost func-
tion (see Backus & Gilbert 1967, for the original definition of the
OLA cost function and its analysis in the context of geophysics)

JA =

∫ 1

0

[
Kavg(x) − T (x)

]2
dx

+ β

∫ 1

0
[Kcross(x) − Tcross(x)]2 dx

+ tan(θ)
∑

i

(ciσi)2 + λ

⎡⎢⎢⎢⎢⎢⎣∑
i

ci − f

⎤⎥⎥⎥⎥⎥⎦
+

Msurf∑
m=1

am

∑
i

ci
ψm(νi)

Qi
· (8)

There can be three to five terms in the cost function, depend-
ing on whether or not a supplementary constraint and/or surface
corrections are included. The first two terms are responsible for
making the averaging and the cross-term kernels match their re-
spective targets T and Tcross. The third term of the cost function
defines the trade-off between reducing the measurement error
bars on the result and improving the match to the target func-
tions. One usually talks of the magnification of the measure-
ment errors. The fourth term is a supplementary constraint on

the inversion, usually a unimodularity constraint in the classi-
cal SOLA approach. In the following section, we will follow the
prescriptions of Reese et al. (2012) and use a constraint on the
sum of the inversion coefficients. The parameters β and θ are
trade-off parameters that regulate the balance between different
terms in the inversion, and λ is a Lagrange multiplier. Since the
parameters β and θ are free, one can adjust them to modify the
results of the inversion, but great care has to be taken since they
can lead to non-physical results. Finally, the fifth term corrects
surface effects in the inversion.

Because of the form of Eq. (5), one has to be careful of the
sources of errors on the inverted solution. When the real value
of Aobs is known (for example in theoretical analysis), one can
nearly always find a set of free parameters so that Ainv will be
equal to Aobs. However, one cannot use the same set of parame-
ters for another inversion and expect the same result. It is there-
fore necessary to introduce a criterion for which the inversion
can be considered as successful and reliable. In this study, we
set the parameters by testing several values and choosing the best
compromise between reducing the errors and matching the ker-
nels to the target functions. However, the problem is far more
complicated since one should analyse how these parameters de-
pend not only on the modes used to carry out the inversion but
also on the reference model for every integral quantity. This
problem will be discussed in further studies on larger samples
to provide relevant results.

The error bars on the inversion result are deduced from the
errors bars on the frequency differences, where the errors on
individual frequencies are considered to be independent:

σδA/A =

√∑
i

c2
i σ

2
i , (9)

with σi = σδνi
νi

. However, it is clear that Eq. (9) does not take

other sources of errors in the inversion into account, such as non-
linear effects in the frequency differences, the mismatch between
the averaging or cross-term kernels and their respective target
functions, or the errors arising from neglected surface terms in
the derivation of the kernels themselves. In other words, the in-
version is dependent on the mathematical hypotheses leading
to the variational principle (Lynden-Bell & Ostriker 1967) and
on other additional simplifications leading to expression (1) (see
Gough & Thompson 1991). In fact, Eq. (9) only takes into ac-
count the amplification of the observational errors, the so-called
error magnification, but this is not representative of the accuracy
of the method since it does not include all sources of error.

In the test cases of Sects. 4 and 5, the error analysis was per-
formed using the difference between Eqs. (4) and (5), following
the method of Reese et al. (2012). This leads to the following
equation:

δA − δAinv

A
=

∫ 1

0

(
T (x) − Kavg(x)

) δs1

s1
dx

+

∫ 1

0
(Tcross(x) − Kcross(x))

δs2

s2
dx

−
∑

i

ci
G(νi)

Qi
· (10)

The first integral is the error contribution originating from the er-
ror on the fit of the target to the averaging kernel. We will write
it σAvg. The second integral is the error contribution originat-
ing from the error on the fit of the target to the cross-term kernel.
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We will write it σCross. The third term originates from the surface
effects. The above equation does not take other sources of error
into account, such as the non-linear effects not taken into account
in Eq. (1), numerical errors, or the neglected non-adiabatic ef-
fects. In what follows, we will lump these errors together with
the surface effects and call this σRes i.e. the residual errors that
are left after having substracted σAvg and σCross from the total
error. Of course, σRes can only be obtained in theoretical test
cases, where the differences in structural profiles are known be-
forehand and this specific contribution can be isolated from the
kernel contributions.

2.2. Accuracy and reliability of the solution

As discussed in the previous section, inversion techniques have
to be used with care, especially when modifying the values of the
free parameters. First of all, it is necessary to recall that linear in-
version techniques are limited to targets, models, and oscillation
modes for which Eq. (1) is satisfied to a sufficient accuracy. This
means that the reference model already has to be close to the tar-
get before the inversion can be computed. Therefore, we propose
making use of the forward modelling method before calculat-
ing global characteristics with the inversion technique. For the
present study, we used the Optimal Stellar Model (OSM) soft-
ware developed by Samadi (Observatoire de Paris-Meudon) to
compute our reference models. We discuss the fitting process in
Sect. 5 and present further discussions in Sect. 6.

Once the reference model is obtained to sufficient accuracy,
one may carry out the inversion. The free parameters β and θ of
the SOLA method can be modified to improve the result. During
this optimisation, the contributions from the matching of the av-
eraging kernel, the cross-term kernel, and the error magnification
must be considered. In fact, one has to compromise on the error
contributions. One often talks about trade-off between precision
and accuracy (see Pijpers & Thompson 1994, for a discussion on
this problematic in the context of the SOLA method). In some
of our test cases, we see that the error magnification can be quite
important but on the other hand, having extremely small error
bars on an inaccurate result is also unacceptable.

3. Inversion procedure for acoustic radius
and age indicator

3.1. Definition of targets and motivations

As mentioned in the previous section, the first step is to define
the global characteristic and its associated target. For this study,
we work with the acoustic radius of the star, denoted τ, and an
age indicator, t, based on the integral of the derivative of the
sound speed appearing in the asymptotic limit of the small fre-
quency separation. Therefore, the global characteristics we wish
to determine are:

τ =

∫ 1

0

dx
c
, (11)

t =
∫ 1

0

1
x

dc
dx

dx. (12)

The acoustic radius is sensitive to surface effects because of
the 1/c factor, whereas the age indicator is mostly sensitive
to the central regions of the star. During the evolution of the
star, the mean molecular weight grows because of nuclear re-
actions, leading to a local minimum in the sound speed profile.
Therefore its derivative is very sensitive to the intensity of this

minimum and can be related to the age of the star. These targets
are also asymptotically related to the large and small frequency
separation as follows (Vandakurov 1967; Tassoul 1980):

τ �
1

2Δν
, (13)

t � −4π2νδ̃ν

(4� + 6)Δν
, (14)

where we use the symbol δ̃ν to represent the small frequency
separation to avoid confusion with the frequency perturba-
tion, δν. It is well known that Eq. (14) is not very accurate for
typical solar-like pulsators and that its agreement for models
of the sun in its current evolutionary stage is in fact fortuitous
(Christensen-Dalsgaard 1991).

The average large frequency separation is currently the only
way to estimate the acoustic radius of a star. This quantity is
expected to be sensitive to surface effects like convection and
can also be used to characterise structural changes that mimic
the evolution of the stellar radius, for example, its increase due
to the contraction of the core during the evolution of the star.
Moreover, the average large separation is also combined with the
small frequency separation or other frequency combinations (see
Christensen-Dalsgaard 1993; White et al. 2011) to build astero-
seismic H-R diagrams. The motivation behind this approach is
to estimate the mass and age of the star using seismic indicators
that provide nearly independent information. However, astero-
seismic diagrams are intrisically limited by two aspects: firstly,
the exact relation between frequency separations and the stellar
structure is not trivial; secondly, there is only a limited number of
different frequency combinations that can be used. In constrast,
inversion techniques allow us to target the structural characteris-
tics of our choise based on their relation with stellar properties.
Thus, they offer more specific constraints and potentially allow
us to distinguish between the different contributions from micro-
and macro-physics.

3.2. Target for the acoustic radius inversion

To define the target function of the inversions, we have to calcu-
late the first order relative perturbation of these quantities. For
the acoustic radius it is straightforward:

δτ

τ
=

1
τ

∫ 1

0

−1
c
δc
c

dx

=

∫ 1

0

−1
2τc

δc2

c2
dx. (15)

This result means that the target function is

Tτ =
−1
2cτ
· (16)

Since in this case the perturbation of the acoustic radius is only
related to the structural variable c2, the contribution of the cross-
term kernel has to be suppressed. However, when using the per-
turbation of c2, and the couple ρ, c2 in Eq. (1), the cross-term will
involve the relative difference in density between the model and
the target, potentially leading to high pollution of the solution by
the cross-term. It is possible to circumvent this problem by using
the structural couple ρ, Γ1. Indeed, the relative differences on Γ1
are expected to be small, thereby leading to a smaller cross-term.
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This can be done by using the following equations:

δc2

c2
=
δΓ1

Γ1
+
δP
P
− δρ
ρ
, (17)

P(x) =
∫ 1

x

m(y)ρ
y2

dy, (18)

m(x) =
∫ x

0
4πx2ρdx. (19)

Using these equations leads to new target functions defined on
the ρ, Γ1 couple, where we neglected the contribution of the
turbulent pressure that is considered a surface effect:

Tτ,avg =
1

2cτ
− m(x)

x2
ρ

[∫ x

0

1
2cτP

dy

]

− 4πx2ρ

[∫ 1

x

(
ρ

y2

∫ y

0

1
2cτP

dt

)]
dy. (20)

Tτ,cross =
−1
2cτ
· (21)

These definitions can be used directly in Eq. (8). Furthermore,
we optimise the inversion by defining a supplementary constraint
based on homologous relations and extending the method to the
non-linear regime, following the approach of Reese et al. (2012).

3.3. Supplementary constraint and non-linear extension
for the acoustic radius

The idea behind the supplementary constraint is that the result
of the inversion should be exact for models that are homolo-
gous. In what follows, a procedure satisfying this condition will
be described as unbiased (not to be confused with the statisti-
cal meaning of the word.). To reach this goal, we make use of
the knowledge that when using homology, if the density of the
model is scaled by a factor h2, the frequencies will scale as h.
With simple analysis of the definition of the acoustic radius,
Eq. (11), we can see that it scales as the inverse of the frequen-
cies, 1/h. Therefore, to the first order, the relative variation of the
acoustic radius should be the opposite of the relative variation of
the frequencies. This means that if δν/ν = ε, then δτ/τ = −ε.
Furthermore, we know that for linear inversion techniques, the
inverted correction is obtained from a linear combination of rel-
ative frequency differences. Therefore, if the sum of the coef-
ficient is equal to −1, the inverted correction will be exact for
models in a homologous relation.

The non-linear extension is based on an iterative process in-
volving successive scalings of the model to reach an optimal
point for which there is no further correction with the inver-
sion technique. We see after some development that this process
can be by-passed and that the solution can be obtained directly.
However, to grasp the philosophy of this extension, it is easier to
see it first as an iterative process. First, we carry out an inversion
of the acoustic radius for a first reference model with a given τref
and obtain a new estimate of the acoustic radius τinv,0. We now
define a scale factor q0 =

τinv0
τref

, used to scale the reference model,
bringing it closer to the observed target. We can use this scaled
model as a reference model for which another inversion can be
carried out. Indeed, the frequencies have been scaled by the fac-
tor h0 =

1
q0

, and the relative differences between the frequencies
of the scaled reference model and those of the target are now
given by:

νobs − h0νref

h0νref
=

1
h0

(
δν

ν
+ 1

)
− 1, (22)

where νobs is the observed frequency and νref the frequency of the
unscaled reference model. Now for the jth iteration, the inverted
acoustic radius can be expressed as follows:

τinv, j+1 =
τref

h j

⎡⎢⎢⎢⎢⎢⎣1 +∑
i

ci

[
νobs,i − h jνref,i

h jνref,i

]⎤⎥⎥⎥⎥⎥⎦
=
τref

h j

⎡⎢⎢⎢⎢⎢⎣1 +∑
i

ci

[
1
h j

(
δνi

νi
+ 1

)
− 1

]⎤⎥⎥⎥⎥⎥⎦
= τref

⎡⎢⎢⎢⎢⎢⎣ 2
h j
+

⎡⎢⎢⎢⎢⎢⎣ 1

h2
j

⎛⎜⎜⎜⎜⎜⎝∑
i

ci
δνi

νi
− 1

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎦ , (23)

where we have also used the fact that the sum of the inversion
coefficient is −1 for an unbiased acoustic radius inversion. Now
we also obtained that τinv, j+1 =

τref
hj+1

, by definition of our iterative
process. Using this definition and rewriting Eq. (23) in function
of q j and q j+1, we obtain the following expression:

q j+1 = 2q j + q2
j

⎡⎢⎢⎢⎢⎢⎣∑
i

ci
δνi

νi
− 1

⎤⎥⎥⎥⎥⎥⎦ = f (q j). (24)

where we have introduced the function, f . If the above itera-
tions converge, then the limit, qopt, will be a fixed point of f ,
i.e. f (qopt) = qopt. Convergence is guaranteed over a neighbour-
hood around qopt provided | f ′ (qopt)| < 1. Given the simplicity
of f , we choose to bypass the iterative method by solving di-
rectly f (q) = q. There are two solutions. The first is q = 0.
However, it leads to an unphysical result, and would tend not to
be the result of an iterative process since f

′
(0) = 2. The second

solution is

qopt =
−1∑

i ci
νobs,i

νref,i

· (25)

Furthermore, it turns out that f
′
(qopt) = 0. Hence, had we applied

an iterative method, the convergence would have been quadratic.
The associated acoustic radius is τinv = qoptτref . However, one
must be aware that the error bars given by Eq. (9) on the final
result are modified as follows if we assume that σi � 1 and
that the errors on the individual frequencies are independent (see
Appendix A for the demonstration of this formula):

στmin = q2
optτref

√∑
i

c2
i σ

2
i . (26)

3.4. Target for the age indicator inversion

By considering the perturbation of Eq. (12), we obtain the
following target:

δt
t
=

1
t

∫ 1

0

1
x

dδc
dx

dx

=
1
t

∫ 1

0

1
x

dc
dx

dδc
dx
dc
dx

dx. (27)

The fact that we divide and multiply by the sound speed deriva-
tive is simply because of the fact that the kernels are unable to
match the function 1/x in the centre. Therefore, we use this op-
eration to define an easier target for the inversion and express
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the problem in terms of the relative perturbation of the sound
speed derivative. The target is then given by:

Tt(x) =
1
x

dc
dx∫ 1

0
1
x

dc
dx dx
· (28)

If we now consider Eq. (1), we can use an integration by parts to
obtain inversion kernels in terms of the sound speed derivative

∫ 1

0
Kn,�

c2,ρ

δc2

c2
dx = −

∫ 1

0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∫ x

0

2Kn,�
c2,ρ

c
dy

⎞⎟⎟⎟⎟⎟⎟⎟⎠ dc
dx

dδc
dx
dc
dx

dx

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∫ x

0
2

Kn,�
c2,ρ

c
ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠ δc

⎤⎥⎥⎥⎥⎥⎥⎥⎦
1

0

. (29)

In the second term of this expression, the central evaluation is
exactly 0 because the kernels are proportional to x2 and the sur-
face evaluation has been neglected because numerical tests have
shown that its amplitude was 60 to 150 times smaller than the
first term for modes with higher degree and radial order, and
even smaller for lower degree and radial order modes. We then
define the structural kernels for the sound speed derivative as
follows:

Kn,�
dc/dx,ρ = −

dc
dx

∫ x

0

2Kn,�
c2,ρ

c
dy. (30)

By identification, we also obtain that Kn,�
ρ,dc/dx = Kn,�

ρ,c2 , which will
be associated with the cross-term kernel. When deriving the tar-
gets for the acoustic radius, it was rather straightforward to ob-
tain the cost function for the inversion. In the case of the age
indicator, we show in Sect. 4 that the cost function defined in
Eq. (8) is not adequate. Therefore, we defined a new way to
carry out a SOLA inversion: trying to match the anti-derivative
of the averaging kernel with the anti-derivative of the target func-
tion. This modification is motivated by the oscillatory behaviour
of the structural kernels, which is unsuitable for the age indica-
tor inversion. Using this method, the cost function is defined as
follows:

Jt =

∫ 1

0

[∫ x

0
T (y)dy −

∫ x

0
Kavg(y)dy

]2

dx

+ β

∫ 1

0
K2

cross(x)dx + tan(θ)
∑

i

(ciσi)
2

+ λ

⎡⎢⎢⎢⎢⎢⎣∑
i

ci − f

⎤⎥⎥⎥⎥⎥⎦ . (31)

The fourth term contains the supplementary constraint we will
define in the next section, and once again we do not consider
the ad hoc surface correction term. As for the acoustic radius,
we can determine the value of the number f using homologous
relations and add a non-linear extension to the method.

3.5. Supplementary constraint and non-linear extension
for the age indicator

The supplementary constraint is obtained in the same way as for
the acoustic radius inversion. We know that the frequencies scale
with

√
υ/ε3 for a scale factor of υ in mass and ε in radius, or in

other terms a scaling factor υ/ε3 in density. It is easy to show
that the adiabatic sound speed will scale as

√
υ/ε and therefore

its derivative will scale as
√
υ/ε3. This means that the first or-

der relative correction of the age indicator has to be the same as
the frequency correction for models in a homologous relation.
Again, we can find a constraint on inversion coefficients so that
the inverted correction will be exact for models in a homologous
relation. In this case, it means that the sum of the inversion co-
efficients needs to be equal to 1 to ensure that the correction will
be the same for both frequencies and t.

It is also possible to try to extend this inversion to the non-
linear regime using the iterative method of Eq. (22). Using
this definition and the constraint on the sum of the inversion
coefficients, we obtain:

tinv = htref

⎡⎢⎢⎢⎢⎢⎣1 +∑
i

ci

[
1
h

(
δνi

νi
+ 1

)
− 1

]⎤⎥⎥⎥⎥⎥⎦
= tref

⎛⎜⎜⎜⎜⎜⎝1 +
∑

i

ci
δνi

νi

⎞⎟⎟⎟⎟⎟⎠ · (32)

We now see that the inverted result is independent of the scal-
ing factor h meaning that the effect of the iterative process de-
scribed for the acoustic radius is already included in the linear
method. However, this does not mean that the SOLA method is
non-linear, nor that a non-linear inversion could not be defined
by some other approach.

3.6. Comparison with asymptotic laws based on frequency
separations

In the following sections, we will compare the results of SOLA
inversions to other techniques based on frequency separations.
We stress that these methods are not inversion techniques; we
simply express asymptotic laws in a differential formulation to
relate them to a linear combination of frequency differences.

It was shown by Vandakurov (1967) that the average large
frequency separation is asymptotically related to the acoustic
radius in the following way:

τ ≈
1

2 〈Δν〉
· (33)

When we linearise this relation we obtain

δτ

τ
≈ −δ 〈Δν〉
〈Δν〉

=
∑

i

ci
δνi

νi
, (34)

where we used the fact that the average large separation is simply
a linear combination of frequencies to derive coefficients ci. In
much the same way as was done for inversion coefficients, these
coefficients can be inserted into Eqs. (6) and (7) to obtain aver-
aging and cross-term kernels for this method. These kernels can
then be directly compared with those coming from the SOLA in-
version technique, thereby allowing a quantitative comparison of
the two methods. In our study, the average large separation was
determined by a χ2 fit (Kjeldsen et al. 2008). If we apply the non-
linear extension to the above relation, we obtain the following
result:

τinv = −
τref∑

i ci
δνi
νi
− 1
=

τref( 〈Δν〉obs
〈Δν〉ref

) = γτ

〈Δν〉obs
· (35)

where γτ = τref 〈Δν〉ref . Although Eq. (35) is very similar
to Eq. (33), there are some subtle, yet important, differences.
Indeed, the proportionality constant γτ is not, in general equal
to 1/2 (as given by the original asymptotic formula), but has
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Table 1. Methods used for the determination of t, τ and ρ̄.

ρ̄ determination t determination τ determination

SOLA with θ = 10−2, β = 10−6 SOLA with θ = 10−8, β = 10−2 SOLA with θ = 10−2, β = 10−6

〈Δν〉 estimate
〈
δ̃ν

〉
estimate 〈Δν〉 estimate

KBCD estimate with b = 4.9 − −

been specifically adapted to the reference model for that partic-
ular range of modes. Likewise, SOLA inversions are calibrated
on the reference model, but they also go a step further by op-
timising the frequency combination so as to be as sensitive as
possible to the acoustic radius.

We now turn our attention to the age indicator and the small
frequency separation. We know from Tassoul (1980) that the
small frequency separation is asymptotically and approximately
related to the derivative of the sound speed by the following
relation:

δ̃ν ≈ −(4� + 6)Δν
4π2νn,�

∫ R

0

dc
dr

dr
r
, (36)

which can be reformulated in the form of Eq. (14). The relative
perturbation of this equation will be a frequency combination,
thereby allowing us to write

δ νδ̃ν
Δν

νδ̃ν
Δν

=
∑

i

ci
δνi

νi

≈ δt
t
· (37)

In other words, by using the relative perturbation of Eq. (14),
we can define inversion coefficients leading to the following
estimate of the indicator t:

tinv = tref

⎛⎜⎜⎜⎜⎜⎝1 +
∑

i

ci
δνi

νi

⎞⎟⎟⎟⎟⎟⎠
=

tref

(
νδ̃ν
Δν

)
obs(

νδ̃ν
Δν

)
ref

= γt

(
νδ̃ν

Δν

)
obs

· (38)

Again we find a proportionality constant γt adapted to the refer-
ence model and the observed modes. Using Eq. (36), one would
find γt =

〈
−4π2/(4� + 6)

〉
. We will see in the next sections that

the indicators determined by directly applying the asymptotic
relations are inaccurate compared to the SOLA method and the
estimates defined in this section. In Reese et al. (2012), the same
technique is also applied to the scaling relationship between the
mean density and the large frequency separation, and to another
technique, which includes the empirical surface corrections of
Kjeldsen et al. (2008). In Sect. 5, we will compare the three
above procedures for estimating the mean density. Following the
notations of Reese et al. (2012), we will refer to Kjeldsen et al.’s
approach as the KBCD method2. The methods presented in this
paper are summarised in Table 1.

4. Test case with a grid of model

4.1. Targets and grid properties

The first test carried out used the model grid and the targets
of Reese et al. (2012). The goal of this test was to determine

2 Equation (26) in Reese et al. (2012).

Table 2. Characteristics of targets A′ and B.

Model A′ Model B
τ (s) 2822.07 2823.53
t (s−1) −2.640 × 10−3 −2.534 × 10−3

Mass (M�) 0.9 0.92
Radius (R�) 0.821 0.825
Age (Gyr) 1.492 2.231
Teff (K) 5291 5291
log(g) (dex) 4.563 4.569

the reliability of the inversion when no forward modelling3 was
performed. The model grid consists of 93 main sequence and
pre-main sequence models with masses ranging from 0.8 M�
to 0.92 M� and ages ranging from 28 Myr to 17.6 Gyr. These
models were downloaded from the CoRoT-HELAS website and
additional information on their physical characteristics can be
found in Marques et al. (2008) and Reese et al. (2012).

We present the results for two targets, models A′ and B, fol-
lowing the naming convention of Reese et al. (2012). The char-
acteristics of these targets are summarised in Table 2. The re-
sults for the first target were similar to those for B so we do not
present them here. Model A′ is in fact the first target of Reese
et al. (2012), denoted model A in their study, to which has been
added an ad hoc 50% increase of the density in the surface re-
gions in the form of a hyperbolic tangent. Model B is radically
different from the models of the grid since it includes rotational
mixing, diffusion and follows the solar mixture of Asplund et al.
(2005) rather than that of Grevesse & Noels (1993), as used in
the grid. We used a set of 33 oscillation modes ranging from
� = 0 to � = 2 and from n = 15 to n = 25. The error bars on the
observed frequencies were set to 0.3 μHz.

4.2. Results for the acoustic radius

The results for the acoustic radius for models A′ and B are repre-
sented in Fig. 1. The values of the parameters θ and β are chosen
so as to improve the match between the averaging and cross-
term kernels, and their respective targets. The optimal values are
θ = 10−2 and β = 10−6. The small value of β is due to the fact that
the second target (Tcross defined by Eq. (21)) will be multiplied
by the corrective term δΓ1/Γ1, which is rather small. Likewise,
θ could be reduced because the error bars were not dramatically
affected by changes in the value of this parameter. Because the
structure of the target is known, it is possible to plot all error

3 Strictly speaking, the term “forward modelling” refers to solving
the direct problem (see e.g. Tarantola 2005, Sect. 1.3), i.e. predict-
ing the results (or in our case the pulsation frequencies) for a given
model. However, in the asteroseismic literature (see e.g. Charpinet et al.
2008), the term “forward modelling” has also come to mean “execution
of the forward problem using [stellar] models with a few adjustable
parameters, and the calibration of those parameters by fitting theory
to observations” (Gough 1985). In what follows, we use this latter
definition.
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Fig. 1. Left-hand panels: inversion results for model A′, whereas the right-hand side is for model B. Top panels: SOLA inversion results (blue)
and estimates based on the large frequency separation (red), the vertical line (magenta) indicates the value of the large frequency separation of
each target. The figures below show the different error from Eq. (10) terms, which appear in the SOLA inversions (middle panels) and the large
separation (lower panels). The results and error contributions are given for every model of the grid such that the abscissa of these figures is
the average large separation of each reference model.
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Fig. 2. Averaging and cross-term kernels for the inversion of the acoustic radius for model A′. The target function is represented in black, the
results for the Δν relation in red, and those from SOLA inversions in blue.

contributions to the inversion results as in Eq. (10) and perform
the error analysis described at the end of Sect. 2. These contribu-
tions are represented for targets A′ and B in Fig. 1 and the kernels
for model A′ are represented in Fig. 2. We see that the cross-term
is not responsible for the errors of the SOLA inversions and that
the matching of the averaging kernel is the leading error term.
Also, we sometimes observe a compensation of the residual er-
ror and the averaging kernel error for the SOLA method and that

the correction based on the large frequency separation can have
smaller errors than SOLA, despite its oscillatory behaviour. The
value of the least-square fits of the kernels for model A

′
for the

τ and t inversions are illustrated in Fig. B.1, where we compute
the squared difference between the kernel and its target for each
reference model of the grid. However, it should be noted that
these errors tend to compensate and that this compensation is
the reason for the slightly more accurate results for model B, as
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Fig. 3. Inversion results for the age indicator and estimates based on the small frequency separation, using the grid of models. The left column
shows the results in which the averaging kernels are optimised, whereas in the right column, the anti-derivative of the averaging kernels are
optimised. The top two panels show the inversion results where the vertical line (magenta) indicates the value of the small frequency separation
of the target, the middle two panels show the errors from Eq. (10) in the SOLA inversions, and the bottom two panels are the errors from Eq. (10)
from the improved small frequency separation technique. The results and error contributions are given for every model of the grid such that the
abscissa of these figures is the average large separation of each reference model.

can be seen on the right-hand side of the figure. These compen-
sations have also been observed for mean density inversions, but
in the case of model A′ and other test cases, they did not occur,
as can be seen in the error plots in Fig. 1. Thus, this technique
is unable to account for surface effects and its reliability for ob-
served stars is questionable. If we directly use the asymptotic re-
lation for the acoustic radius, i.e. if we apply Eq. (33), we obtain
τ = 2691 s for model A′ and τ = 2890 s for Model B, which is
even less accurate than both SOLA inversions and the improved
Δν approach.

4.3. Results for the age indicator
The results of the age indicator inversions for models A′ and B
are the same, thus we only present them for model A′. They
show the limit of our inversion techniques when there is no cri-
terion to choose the reference model. From Fig. 3, it is clear
that the SOLA inversion technique failed to reproduce the re-
sults for a subgrid of models. This is simply due to the large
range of ages of the reference models. One has to recall that the

SOLA approach is based on the integral Eq. (1), which itself is
based on the variational principle, only valid for small pertur-
bations. The error plot also shows that SOLA inversions bene-
fit from error compensations, which is problematic for observed
stars. The second problem is that when plotting the averaging
and cross-term kernels, we see that the results are rather poor
(see Fig. 3). The parameters for these inversions were θ = 10−6

and β = 10−4.

When carrying out an inversion on an observed star, one can
only assess the quality of the inversion based on how well the
averaging and the cross-term kernels fit their respective target
functions. Therefore being able to obtain accurate results is not
sufficient: the accuracy must be related to the quality of the fit
of the targets, otherwise one would never be able to determine if
the inversion was successful or not. Figure 4 illustrates the ex-
act opposite for both our techniques. Therefore, we modified the
age indicator inversion by using the anti-derivative of the target
function rather than the target itself, as described in Sect. 3.4.
We then see that the inversion failed on a larger subgrid than
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Fig. 4. Upper panels: averaging and cross-term kernels for the model with the best small frequency separation by optimising on the averaging
kernel itself. Lower panels: same results by optimising the anti-derivative of the averaging kernel. The target function is in black, the results for
the small frequency separation estimate in red and those for SOLA inversions in blue.
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before, but this failure is inevitable because of the properties of
the reference grid. The set of parameters for these inversions was
θ = 10−8 and β = 10−2. The parameter β was increased to an-
nihilate the effect of the cross-term and θ was reduced thanks to
its small impact on the error bars. However, we need to define
a criterion to select a model for which the result is reliable. We
simply take the model with the closest average small frequency
separation to the target. The results for this choice are illustrated
in Fig. 5. In this case, it is clear that the SOLA inversion is supe-
rior to the estimate based on the small frequency separation and
this leads to the definition of a new framework in which to carry
out inversions for this indicator more accurately.

5. Test case for targets using forward modelling

5.1. Definition of the framework

In the previous section, we saw that by simply choosing the best
model of the grid in terms of the arithmetic average of the small
frequency separation, we could achieve very accurate results.
However, the validity of Eq. (1) for the best model of the grid
and the target is still questionable, and one could wish to achieve
an even greater accuracy. Using forward modelling of the tar-
get is the best way to obtain a model that is sufficiently close
to enable the use of the variational principle, thereby leading
to successful linear inversions. We chose the software Optimal
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Kernels for τ, ρ̄ and t for Model 1
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Fig. 6. Kernels for the test case with different metallicity. Averaging kernels (left) and cross-term kernels (right) for the age indicator inversion
(top panels), the acoustic radius inversion (middle panels), and the mean density (lower panels). The SOLA method is in blue, the 〈Δν〉 estimate
in red and when implemented, the KBCD approach is in green. The target function in all panels is plotted in black. (Colour online.)

Stellar Model (OSM)4, developed by Réza Samadi, to carry out
the forward modelling using the arithmetic average of the large
separation and small frequency separations of the observed fre-
quency set as seismic constraints and the mass and age of the
reference model as free parameters. This optimization strategy
is purely arbitrary and further studies will be needed to deter-
mine how other approaches can be used. However, regardless of
what quantities (e.g. individual small separations or other seis-
mic indicators) and analysis methods (e.g. MCMC algorithms
or genetic algorithms) are used to select the reference model,
the inversion will be carried out afterwards, since it is able to
depart from the physical assumptions used by the stellar evolu-
tion code when constructing the reference model. To ensure that
differences still remain between our reference model and our
targets, we deliberately use different values for the metallicity
or mixing-length parameter, add turbulent pressure to the target,
or use non-adiabatic computations for the observed frequencies.
Therefore the forward modelling process will always intention-
ally be unable to reproduce the target within an accuracy that
would make the inversion step useless. The tests were carried
out using the CESTAM evolutionary code (Code d’Evolution
Stellaire, avec Transport; Adaptatif et Modulaire; Marques et al.
2013), and the Adipls (Christensen-Dalsgaard 2008), the LOSC
(Liège OScillation Code; Scuflaire et al. 2008) and MAD pul-
sation (Dupret 2001; Dupret et al. 2006) codes. We used the
same modes as for the model grid tests, namely with � rang-
ing from 0 to 2 and n ranging from 15 to 25. The error bars
on the frequencies were set to 0.33 μHz. We will compare the
results from the SOLA method with those from improved es-
timates based on the average large separation as in the previ-
ous section. One could ask why we are not using the arithmetic
average of the large separation to carry out the correction. In
fact this quantity is already fitted to within 0.2 μHz of its target

4 The OSM software can be downloaded from https://pypi.
python.org/pypi/osm/

Table 3. Characteristics of targets 1 and 2.

Model 1 Model 2
Mass (M�) 0.95 1.05
Radius (R�) 0.868 0.988
Age (Gyr) 1.8 1.5
Teff (K) 5284 5912
log(g) (dex) 4.538 4.469
Z 0.015 0.0135
αMLT 1.522 1.7

value with the forward modelling process, and cannot therefore
be improved upon. Concerning the values of the θ and β param-
eters, we keep the same values as in the previous section, i.e.
θ = 10−2 and β = 10−6 for the acoustic radius and the mean
density, θ = 10−8 and β = 10−2 for the age indicator.

5.2. Test case with different metallicity and αMLT

The first test made use of a 0.95 M� and a 1.05 M� model, de-
noted targets 1 and 2, respectively. The characteristics of the
targets are summarised in Table 3. The first step was to carry
out the forward modelling of these targets with the OSM soft-
ware using the fixed parameters Z = 0.0135 and αMLT = 1.522
for the reference models. In Tables 4 and 5, we summarise the
inversion results with their error bars for both models. We can
see from this table that the error bars are underestimated for the
acoustic radius and mean density inversions. This results from
the definition (9), which only accounts for the propagation of
observational errors but neglects the contributions related to the
inversion process itself or to the validity of Eq. (1). However,
the error bars from the age indicator are more important. We
stress that quantifying errors of inversion techniques is still prob-
lematic and require further theoretical studies. We also analysed
the different contributions σi and found that compensation was
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Table 4. Inversion results for the test case with a different metallicity, Model1.

Method ρ̄ (g/cm3) τ (s) t (s−1)

Reference value 2.036 3007.77 −0.002523
SOLA 2.055 ± 1.17 × 10−4 2993.91 ± 0.08 −0.002548 ± 1.27 × 10−4

〈Δν〉 or δ̃ν estimates 2.054 ± 1.33 × 10−3 2995.10 ± 0.334 −0.002560 ±2.71 × 10−5

KBCD 2.055 ± 4.2 × 10−4 − −
Target value 2.047 2995.01 −0.002539

Table 5. Inversion results for the test case with a different αMLT, Model2.

Method ρ̄ (g/cm3) τ (s) t (s−1)

Reference value 1.523 3471.91 −0.002452
SOLA 1.533 ± 9.89 × 10−5 3460.29 ± 0.1 −0.002460 ± 1.38 × 10−4

〈Δν〉 or δ̃ν estimates 1.530 ± 9.95 × 10−4 3464.43 ± 0.45 −0.002464 ± 2.835 × 10−5

KBCD 1.534 ± 3.14 × 10−4 − −
Target value 1.533 3461.49 −0.002458

present to a lesser extent in SOLA inversions than in the other
correction techniques. This is a direct consequence of the quality
of the kernel fits with SOLA.

We also observed that the cross-term kernel contribution
could sometimes be rather important in the mean density and
acoustic radius inversions. First of all, we can tell that the inver-
sion of the age indicator is far more accurate when there are no
metallicity effects. Indeed, modifying the metallicity affects the
entire star, whereas changing the mixing length only influences
the convective envelope, thereby having a negligible impact on
the age indicator inversions. Furthermore, test cases carried out
for this model with up to 50 or 70 frequencies showed an im-
provement in the accuracy of the method. The inversion step,
as well as the estimate based on the large frequency separation
should only be considered if there is a sufficient number fre-
quencies with small error bars. If this is not the case, then one
should avoid carrying out an inversion. We will discuss more
extensively the observed weaknesses of the method and possi-
ble problems in Sect. 6. Two supplementary results can be ob-
served for this first test case: the SOLA method is again more
accurate when dealing with surface effects, here the variations
of αMLT, confirming what had been guessed from the results of
the previous section. The second comment is related to the es-
timates based on the frequency separations. We see that the re-
sults improve even if we already fitted the arithmetic average of
the large separation during the forward modelling process. This
means that the χ2 large separation is more efficient at obtaining
the acoustic radius and the mean density of a star and should
be preferred over the average large separation. The case of the
age indicator is also different since the estimate is determined
through the combination given in Eq. (14) and not the small
separation alone.

5.3. Test case with non-adiabatic frequencies

In this section we present the results for a 0.9 M� model, denoted
target 1nad, for which non-adiabatic effects have been taken into
account. The frequencies have been calculated with the MAD
oscillation code, using a non-local, time-dependent treatment of
convection taking the variations of the convective flux and of
the turbulent pressure due to the oscillations into account (see
Grigahcène et al. 2005; Dupret 2001; Dupret et al. 2006, for the
description of this treatment). A second test case was carried out
using a 1 M� model, denoted target 2nad, and a reference model
with a slightly less accurate fit. The characteristics of both targets

Table 6. Characteristics of targets 1nad and 2nad.

Model 1nad Model 2nad

Mass (M�) 0.9 1.0
Radius (R�) 0.858 0.942
Age (Gyr) 6.0 3.0
Teff (K) 5335 5649
log (g) (dex) 4.5248 4.4895
Z 0.0135 0.0135
αMLT 1.62 1.62

are summarised in Table 6. In both test cases, the difference be-
tween the frequencies from the target and reference models lay
in the fact that only the former includes non-adiabatic effects.
The results are summarised in Tables 7 and 8 for both targets.
The kernels from the various inversions and estimates are illus-
trated in Fig. B.2. The accuracy of the results is clearly related
to how well the kernels match their target functions, thereby ac-
counting for the reliability of the inversion technique. We ob-
serve that the SOLA inversion technique leads to accurate results
for all characteristics in the first test case. For the second test
case, we first carried out inversions and estimates based on a set
of 33 frequencies. The results were accurate for the mean den-
sity and the acoustic radius. However, the age indicator estimate
was as accurate as the value obtained through the forward mod-
elling because the inversion over-corrected this value. Therefore,
we carried out a second set of inversions, using 40 frequencies
ranging from n = 15−28 for � = 0 and from n = 15−27 for
� = 1, 2 to see if the result for the age indicator could be im-
proved. This second test is presented in Table 8 where we can
see that the SOLA inversion leads to more accurate results than
all of the other techniques. This illustrates two effects: firstly,
when the model and the target are less well fitted, the inversion
requires more frequencies to reach a good accuracy; secondly, a
few more frequencies can greatly improve the accuracy of the in-
version. This second effect is typical of ill-posed problems. One
has to be aware that the accurate result for the second frequency
set does not mean that using 40 frequencies is sufficient in all
cases. Analysing the different contributions to the error showed
that in this case, the estimates based on frequency combinations
could not accurately reproduce non-adiabatic effects in the fre-
quencies. We can thus conclude that the SOLA method is op-
timal to correct the errors introduced in the forward modelling
and particulary surface effects.
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Table 7. Inversion results for test case 1, Model1nad, using 33 non-adiabatic frequencies.

Method ρ̄ (g/cm3) τ (s) t (s−1)
Reference value 1.986 3042.76 −0.001873
SOLA 2.01 ±1.15 × 10−4 3024.60 ± 0.08 −0.001893 ± 7.8 × 10−5

〈Δν〉 or δ̃ν estimates 1.986 ± 1.3 × 10−3 3042.80 ± 0.34 −0.001903 ± 2.56 × 10−5

KBCD 2.015 ± 4.1 × 10−4 − −
Target value 2.006 3023.88 −0.001894

Table 8. Inversion results for test case 2, Model2nad, using 40 non-adiabatic frequencies.

Method ρ̄ (g/cm3) τ (s) t (s−1)
Reference value 1.588 3399.79 −0.002285
SOLA 1.691 ± 9.4 × 10−5 3294.84 ±0.09 −0.002150 ± 8.5 × 10−5

〈Δν〉 or δ̃ν estimates 1.659 ± 7.9 × 10−4 3326.93 ± 0.3 −0.002248 ± 2.54 × 10−5

KBCD 1.696 ± 2.65 × 10−4 − −
Target value 1.684 3295.87 −0.002190

Table 9. Characteristics of target 1turb.

Model 1turb

Mass (M�) 1.0
Radius (R�) 0.868
Age (Gyr) 4.0
Teff (K) 5683
log (g) (dex) 4.469
Z 0.0135
αMLT 1.62

5.4. Test case with turbulent pressure

In the last test case, we included the effects of turbulent pres-
sure when calculating, thanks to the LOSC code, the adiabatic
pulsation frequencies of a 1 M� target. The turbulent pres-
sure was included in the computation of the evolution of the
model by adding a supplementary term Pturb using the following
phenomenological approach:

Pturb =
〈
ρv2

R

〉
= Cpturbρv

2
R, (39)

with vR the radial speed of the convective elements given by the
mixing length theory. The value of the turbulent pressure coef-
ficient Cpturb was chosen to be 1.58 to match effects of 3D sim-
ulations for the sun. The characteristics of the target are sum-
marised in Table 9 and the results are summarised in Table 10.
We see that the SOLA method can account for the effects of
turbulent pressure and improve the accuracy with which global
stellar characteristics are determined in this case. The kernels for
this inversion are illustrated in Fig. B.3. As was the case previ-
ously, the SOLA kernels seem to be more regular and closer to
their target functions than those of the other techniques.

6. Conclusion

In this article, we have analysed four different methods for ob-
taining various stellar parameters. These include asymptotic re-
lations based on two different implementations of large and
small frequency separations, a scaling law for the mean den-
sity, which includes the Kjeldsen et al. (2008) surface correc-
tions, and inversions based on the SOLA method. A comparison
of these different methods reveals the following strengths and
weaknesses:

– Arithmetic average of the large and small frequency separa-
tions: this method is the simplest to implement and is useful

in forward modelling. The method is, however, less accurate
than the other methods.

– Large frequency separation from a χ2 adjustment and arith-
metic average of the age indicator (based on Eq. (14)): this
remains simple but is more accurate than the previous ap-
proach, as demonstrated by the improvement in the results
when this method is applied after the forward modelling
(which uses the previous approach). This version of the large
frequency separation is more accurate because it uses the in-
formation from all of the modes, rather than simply those
with the lowest and highest n values. The reason why us-
ing the average age indicator works better than the average
small frequency separation is less obvious, but is likely to be
related to the fact that in the former case one isolates an in-
tegral that only depends on the stellar structure and does not
contain a mode-dependent coefficient in front, before car-
rying out the average. In spite of these improvements, this
approach remains sensitive to surface effects as shown, for
instance, in Fig. 1 (left column).

– The mean density from the Kjeldsen et al. (2008) surface-
correcting approach: this approach produces superior results
compared to the two previous methods because it is able to
correct for surface effects. However, changes in metallicity
affect both this method and SOLA inversions more than the
previous methods, since such changes modify the entire star
rather than just the near-surface layers.

– SOLA inversions: although this approach is the most compli-
cated, it also turns out to be the most accurate. Indeed, apart
from the case where the metallicity was modified, it is able
to deal with incorrect assumptions in the reference models
since it focusses on optimising the averaging and cross-term
kernels. Furthermore, a key feature of SOLA inversions is
that the quality of these kernels is closely related to the qual-
ity of the results, unlike what sometimes happens for scaling
laws where fortuitous compensations lead to good results.
This is important because it provides a way to estimate the
quality of the inversion results. However, one must be care-
ful to choose a reference model that is sufficiently close to
the target, particularly for the age indicator inversions. This
naturally leads to the use of forward modelling before ap-
plication of this method. A quick inspection of the values in
Tables 5, 4, 8, 7, 10 shows that SOLA inversions have im-
proved the accuracy by a factor ranging from 10 to several
hundred for τ and ρ̄ and from 1.125 to more than 20 for t,
when compared to results from the forward modelling.
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Table 10. Inversion results for test case using turbulence pressure, Model1turb.

Method ρ̄ (g/cm3) τ (s) t (s−1)
Reference value 1.557 3429.59 −0.001877
SOLA 1.575 ± 9.6 × 10−5 3409.72 ± 0.1 −0.001894 ±6.7 × 10−5

〈Δν〉 or δ̃ν estimates 1.570 ±1.02 × 10−3 3415.93 ± 0.4 −0.001902 ± 2.6 × 10−5

KBCD 1.576 ± 3.3 × 10−4 − −
Target value 1.573 3409.76 −0.001888

A couple of further comments need to be made concern-
ing SOLA inversions of the age indicator. Firstly, great care
should be taken when calculating the quantity 1

x ( dc
dx ), which

intervenes in the target function. Indeed, this quantity is
prone to numerical noise as x approaches 0. In our calcu-
lations, we reduced this noise by numerically calculating the
derivative with respect to x2, but note that it was still neces-
sary to inspect this function before carrying out the inversion.
Secondly, as can be seen from the top left panel of Fig. 4, the
target function does not go to 0 in the centre, as opposed to
the structural kernels, which behave as O(r2) in the centre.
Therefore this target will be difficult to fit, even with more
frequencies, and we need to find a workaround to be able
to retrieve the effects of stellar evolution with an inversion
technique. In fact, the lower left panel of Fig. 4 shows that
optimising the anti-derivative is not always sufficient to solve
this problem.
In future studies, we plan to analyse in more detail under
what conditions SOLA inversions yield good results. In par-
ticular, we will investigate, in a systematic way, how close
the reference model needs to be to the observed star for the
inversion to be reliable. It will also be important to test the
quality of the averaging and cross-term kernels as a function
of the number and type of modes available. We also plan
to extend SOLA inversions to other structural quantities, in-
cluding age indicators that do not suffer from the difficul-
ties mentioned above. This highlights the great potential of
the SOLA method, since it allows us to choose the global
structural characteristic that we wish to determine, offering
a promising new diagnostic method into stellar structural
properties.
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Appendix A: Demonstration of the error
propagation formula for the non-linear
extension of the acoustic radius inversion

Equation (26) is obtained with a little algebra. First, we treat
the observed frequencies, νobs,i, and the inverted acoustic radius,
τinv, as independent stochastic variables

νobs,i = ν̄obs,i (1 + εi), (A.1)

τinv = τ̄inv (1 + ετ), (A.2)

with εi being the individual noise realisations for each frequency,
ετ the resultant deviation on τinv, and ν̄obs and τ̄inv the average of
the stochastic variables νobs,i and τinv, respectively. Furthermore,
we assume that:

εi � 1. (A.3)

Using the fact that τinv = qoptτref , with the definition of qopt
given in Eq. (25), and the separation into stochastic and average
contributions defined previously, we obtain:

τ̄inv(1 + ετ) �
−τref

∑
i ci
ν̄obs,i

νref,i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣1 +
∑

i ci

ν̄obs,i

νref,i
εi

∑
i ci

ν̄obs,i

νref,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
−τref∑

i ci
ν̄obs,i

νref,i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣1 −
∑

i ci
ν̄obs,i

νref,i
εi

∑
i ci
ν̄obs,i

νref,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (A.4)

where we assumed that εi is much smaller than 1, thereby allow-
ing us to linearise the above equation. We now apply the formula
for the variance of a linear combination of independent stochas-
tic variables and obtain

τ̄2
invσ

2
τ =

τ2
ref(∑

i ci
ν̄obs,i

νref,i

)4

∑
i

c2
i σ

2
i , (A.5)

where we used the following equivalences:

σ2
i = σ

2
δνi
νi

= σ2
νobs,i
νref,i

=

(
ν̄obs,i

νref,i

)2

σ2
εi
. (A.6)

Equation (A.5) then leads directly to Eq. (26) when using the
definition of qopt given in Eq. (25).

Appendix B: Supplementary figures

The following figures illustrate the quality of the kernel fits for
some of the test cases we presented in the article. Although
these plots are redundant from the visual point of view, we wish
here again to stress that they are crucial to the understanding of
the quality of a SOLA inversion and justify the accuracy of the
results presented in the previous sections.
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Fig. B.1. Least square fits of the kernels for model A′.
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Kernels for τ, ρ̄ and t for Model 1nad

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

Position r/R

∫
K

A
v
g

0 0.2 0.4 0.6 0.8 1
−40

−20

0

20

40

Position r/R

K
C
r
os
s

0 0.2 0.4 0.6 0.8 1
−5

0

5

Position r/R

K
A
v
g

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

Position r/R

K
C
r
os
s

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

6

Position r/R

K
A
v
g

0 0.2 0.4 0.6 0.8 1

−20

0

20

Position r/R
K

C
r
os
s

Fig. B.2. Same as Fig. 6 for the first test case with non-adiabatic frequencies.

Kernels for τ, ρ̄ and t for Model 1turb
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Fig. B.3. Same as Fig. 6 for the test case with turbulent pressure.
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