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Abstract 14 

Within the context of nitrogen (N) management, since 1950, with the rapid 15 

intensification of agriculture, farmers have often applied much larger fertiliser quantities than 16 

what was required to reach the yield potential.  However, to prevent pollution of surface and 17 

groundwater induced by nitrates, The European Community launched The European Nitrates 18 

Directive 91/6/76/EEC. In 2002, in Wallonia (Belgium), the Nitrates Directive has been 19 

transposed under the Sustainable Nitrogen Management in Agriculture Program (PGDA), 20 

with the aim of maintaining productivity and revenue for the country’s farmers, while 21 

reducing the environmental impact of excessive N application. 22 

A feasible approach for addressing climatic uncertainty lies in the use of crop models 23 

such as the one commonly known as STICS (Simulateur multidisciplinaire pour les cultures 24 

standard). These models allow the impact on crops of the interaction between cropping 25 

systems and climatic records to be assessed. Comprehensive historical climatic records are 26 

rare, however, and therefore the yield distribution values obtained using such an approach can 27 

be discontinuous. In order to obtain better and more detailed yield distribution information the 28 
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use of a high number of stochastically generated climate time series was proposed, relying on 1 

the LARS-Weather Generator. The study focused on the interactions between varying N 2 

practices and climatic conditions. Historically and currently, Belgian farmers apply 180 3 

kgN.ha-1, split into three equal fractions applied at the tillering, stem elongation and flag-leaf 4 

stages. This study analysed the effectiveness of this treatment in detail, comparing it to similar 5 

practices where only the N rates applied at the flag-leaf stage were modified. 6 

Three types of farmer decision-making were analysed. The first related to the choice 7 

of N strategy for maximising yield, the second to obtaining the highest net revenue, and the 8 

third to reduce the environmental impact of potential N leaching, which carries the likelihood 9 

of taxation  if inappropriate N rates are applied.   10 

The results showed reduced discontinuity in the yield distribution values thus 11 

obtained. In general, the modulation of N levels to accord with current farmer practices 12 

showed considerable asymmetry. In other words, these practices maximised the probability of 13 

achieving yields that were at least superior to the mean of the distribution values, thus 14 

reducing risk for the farmers.  15 

The practice based on applying the highest amounts (60-60-100 kgN.ha-1) produced 16 

the best yield distribution results. When simple economical criteria were computed, the 60-17 

60-80 kgN.ha-1 protocol was found to be optimal for 80-90% of the time. There were no 18 

statistical differences, however, between this practice and Belgian farmers’ current practice. 19 

When the taxation linked to a high level of potentially leachable N remaining in the soil after 20 

harvest was considered, this methodology clearly showed that, in 3 years out of 4, 30 kgN.ha-1 21 

could systematically be saved in comparison with the usual practice. 22 

 23 

Keywords: climatic variability, stochastically generated weather, LARS-WG, crop model, 24 
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 1.  Introduction 1 

Within the context of precision nitrogen (N) management, the rapid intensification of 2 

agricultural production systems since 1950 has resulted in a dramatic increase in inputs in 3 

general, and in fertilisers in particular (Van Alphen and Stoorvogel, 2000).In order to ensure 4 

that the yield potential (defined here as yield limited only by water availability) (Reid, 2002; 5 

Robertson et al., 2008), could be reached each year, farmers often applied quantities of N 6 

fertiliser that were far greater than the amount actually required to achieve the yield potential 7 

(Lemaire et al., 2008). Through N leaching, agriculture is an important source of N emissions 8 

to groundwater and surface waters (Basso and Ritchie, 2005; Basso et al., 2012b), and the 9 

European Community therefore issued several directives aimed at reducing water pollution 10 

caused or induced by nitrates from agricultural sources (EC-Council Directive, 1991). Thus, 11 

in 2002 the Walloon Government integrated the Nitrate Directive 91/676/EEC into the law 12 

and initiated the Sustainable Nitrogen Management in Agriculture Program (PGDA) 13 

(Vandenberghe et al., 2011). In order to maintain high yields while reducing environmental 14 

impact, it appears necessary to increase N-use efficiency through the promotion of good 15 

farming practices. 16 

A promising approach for studying the effect of farming practices and optimising N 17 

fertiliser rates is based on using crop models. Since most of their processes are physically 18 

based, crop models are well suited to supporting decision-making and planning in agriculture 19 

(Basso et al., 2011; Ewert et al., 2011). As most physically based soil-crop models work on a 20 

daily time basis and therefore simulate the evolution of agronomic variables of interest 21 

through daily dynamic accumulation, climatic variables play a crucial role in the accuracy of 22 

model outputs (e.g., grain yield). For this reason, weather conditions need to be described as 23 

accurately as possible. It is first of all the sequencing of weather events, which induce 24 

interacting stresses, that has the greatest effect on the dynamics of crop growth simulation 25 
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(Riha et al., 1996).  1 

One important reason for using crop models in advisory systems is that these models 2 

can take several factors into account, such as soil characteristics, management practices and 3 

climatic variables. Far more importantly, though, they take the possible interactions between 4 

these factors into account (Houlès et al., 2004). The complexity of decision-making, however, 5 

is linked to little or no knowledge of future weather conditions. A feasible approach for 6 

addressing such uncertainty is to quantify the one associated to different historical weather 7 

scenarios (Basso et al., 2011; Basso et al., 2012b; Houlès et al., 2004) or use seasonal weather 8 

forecasts (Asseng et al., 2012). Even more consistent methodologically is the use of a 9 

stochastic weather generator, instead of historical data, which are often rare (Dumont et al., 10 

2013; Lawless and Semenov, 2005; Semenov and Porter, 1995). In conjunction with a crop 11 

simulation model, a stochastic generator allows the temporal extrapolation of observed 12 

weather data for agricultural risk assessment linked to the experiment site-specific historical 13 

weather data (e.g., to improve N-use efficiency) (Semenov and Doblas-Reyes, 2007). 14 

The form of yield distribution is another important parameter to consider when the 15 

final decision has to be taken. A wide variety of methods has been used to forecast this 16 

parameter (Day, 1965; Du et al., 2012; Dumont et al., 2013, 2014c; Hennessy, 2009a, b; Just 17 

and Weninger, 1999). It is clear that field crop yields have a finite lower limit (zero). 18 

Similarly, a given crop variety has a finite upper limit that, under consistent cultural practices 19 

but variable weather conditions, reflects the maximum amount that can be expected even 20 

under the most favourable circumstances. Recent studies have demonstrated the importance of 21 

linking the theory of yield distribution analysis with on-farm data in order to reduce 22 

environmental risk while maximising farmer profit (Kyveryga and Blackmer, 2012; Kyveryga 23 

et al., 2013). 24 

Although these major steps have been made in research on N practice optimisation, 25 
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determining the optimum amount of N fertiliser remains an important task and needs to be 1 

investigated on a case-by-case basis. A promising approach involves optimising the economic 2 

impact of N practices. In essence, this means maximising the benefits derived from yields 3 

increases under varying N fertilisation levels, allowing plant needs to be met while 4 

simultaneously minimising the costs of N purchase and taxation liabilities linked to the 5 

environmental impact of poor N management (Basso et al., 2011; Houlès et al., 2004). 6 

The objectives of this research were to develop a crop model-based approach for 7 

evaluating the economic impact of various N management strategies. In order to refine N 8 

fertilisation recommendations, crop growth linked to N strategies was simulated under a wide 9 

variety of climatic conditions. Stochastically generated climate conditions were derived so 10 

that the most advantageous and disadvantageous climatic variable combinations could be 11 

explored. In order to assess how various combinations of input constraints affect yield 12 

distribution, the crop model responses were analysed using the Pearsons system of 13 

distribution. Finally, N management was optimised on the basis of marginal net revenue 14 

(MNR) and environmentally friendly net revenue (ENR). The latter was designed according 15 

to the market prices observed over last-years and the Belgian's law for what concerns the 16 

environmental constraint. 17 

 18 
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 2.  Material and methods 1 

 2.1.  Nitrogen management strategy 2 

In Belgium, the current N fertiliser management practice consists of splitting the total 3 

180 kgN.ha-1 application into three equal fractions and applying them at the tillering (Zadoks 4 

stage 23), stem extension (Zadoks stage 30) and flag-leaf (Zadoks stage 39) stages. 5 

Depending on the plant physiology, the number of grains is set by the plant between flowering 6 

(Zadoks stage 50) and the end of anthesis (Zadoks stage 69), and is driven by prevailing 7 

climate conditions. In terms of end-of-season yield prediction, as long as the final number of 8 

grains has not been fixed, the uncertainty linked to grain yield and climatic variability remains 9 

very high (Dumont et al., 2014a; Lawless and Semenov, 2005). The detrimental impact of 10 

climatic conditions before the flowering or anthesis stages can generally be mitigated by the 11 

ability of a crop to compensate for this during its growth period (e.g., lower plant density rates 12 

are compensated for a higher number of tillers produced). Once the number of grains is fixed, 13 

the end-of-season yield is driven mainly by the climatic conditions that influence grain filling, 14 

in terms of both carbohydrates and N exportation. In recent studies, Dumont et al. (Dumont et 15 

al., 2013, 2014c) successfully transposed the theory of yield distribution analysis to the study 16 

of crop model solutions. They found that the maximal skewness of yield distribution was 17 

reached at the N practice currently used by Belgian famers, ensuring that the probability of 18 

achieving yields greater than the distribution mean was the highest. 19 

It was therefore decided to fix the first two N applications according to current Belgian 20 

practice (i.e., 60 kgN.ha-1). As a strategic approach, different N levels where then applied on 21 

the third application, rising from 0 kgN.ha-1 to 100 kgN.ha-1. This application strategy was 22 

referred to as the ‘modulo-60 (M60-X) treatment’. 23 

 24 
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 2.2.  Agro- economico-environmental decision criteria 1 

The optimal N fertiliser rate for each of the simulation sets was based on marginal net 2 

revenue (MNR) as a function of yield response to the amount of N applied, taking account of 3 

the grain selling price and the cost linked to N (Basso et al., 2012a; Houlès et al., 2004) : 4 

( ) ( )PPN NNGYMNR .. −=         Eq.  1 5 
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 9 

where MNR is the marginal net revenue (€.ha-1), YN is the grain yield (ton.ha-1), GP is 10 

the grain price (€.ton-1), N is the total amount of fertiliser applied during the season (kgN.ha-11 

1), NP is the price of N (€.kgN-1) and ENR is the environmentally friendly net revenue (€.ha-1) 12 

computed according to taxation related to environmental risks. The grain and N prices were 13 

fixed at 180 and 300 €.ton-1, respectively, reflecting observations made in recent years (2011 14 

and 2012). 15 

In the Wallonia region of Belgium, since the Nitrate Directive 91/676/EEC was 16 

integrated into Belgian law in 2002, a survey system has been put in place to control N 17 

leaching in sensitive areas. The system’s taxation levels used in this study (Eq. 2 and 3) are 18 

based on the most stringent requirements of this directive, whereby a maximum tax of 120 19 

€.ha-1 is levied if the total amount of N remaining in the soil profile (soil N content [SNC] 20 

kgN.ha-1) is higher than the mean of the same data computed over 35 reference farms. As 21 

SNC varies depending on the climatic year and the preceding culture, in this study it was set 22 

at 40 kgN.ha-1, which was deemed a strict threshold (crop culture with N trap-crop). 23 

 2.3.  Weather database, weather generator and climate variability 24 

The Ernage weather station, located 2 km from the experimental site and forming part 25 

of Belgium’s Royal Meteorological Institute (RMI) observation network, was used in this 26 
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study. The complete 31-year (1980-2011) weather database (WDB) was used to provide the 1 

inputs for the crop model (i.e., solar radiation, wind, precipitation, ambient temperature and 2 

relative humidity). 3 

The WDB was initially analysed using the LARS-Weather Generator (WG) (Racsko et 4 

al., 1991; Semenov and Barrow, 1997). Thereby, a set of parameters representative of the 5 

experimental site were computed, involving (i) the daily maximum, minimum, mean and 6 

standard deviation values of analysed climatic variables, (ii) the seasonal frequency 7 

distribution of rainy events and (iii) the return period of wet and dry series. 8 

As a second step, the LARS-WG was used to stochastically generate a set of synthetic 9 

time-series scenarios representative of the climatic conditions. The software enabled to 10 

generate synthetic data that have the statistical characteristics of the historical records 11 

(Semenov and Barrow, 2002). As recommended by Semenov and Barrow (2002), long 12 

weather sequences were used to perform the risk assessment study: the longer the time period 13 

of simulated weather, the higher the chances of covering the full range of possible weather 14 

events. Based on the work of Lawless and Semenov (2005), 300 stochastically generated 15 

weather time-series were used to ensure stability in predicted mean grain yield.  16 

The stochastically generated daily climatic scenarios were then used as inputs for the 17 

STICS crop model. This approach ensured that a variety of combinations of climatic variables 18 

could be explored, leading to the simulation of stress conditions not previously observed 19 

during field experiments, but reflecting local weather conditions. As discussed and 20 

demonstrated in Dumont et al. (2014c), using a high number of synthetic time-series instead 21 

of a limited set of historical records as input of the model allow to finely and properly 22 

characterise the model behaviour. This issue is of major importance when probability risk 23 

assessment analysis have to be conducted.   24 
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 2.4.  Field trial for model calibration and validation 1 

A field experiment was designed to study the growth response of wheat (Triticum 2 

aestivum L., cv. Julius) in the agro-environmental conditions of the Hesbaye region in 3 

Belgium. A complete randomised block design was used. The experimental blocks (2m*6m) 4 

were implemented on a classic loam soil. For each experimental unit there were four 5 

replicates. Four N fertilisation strategies were analysed, with different rates of fertilizer being 6 

applied, as described in Table 2. The experiment was designed to explore the complete 7 

response curve of wheat to N, with practices that range from non-nitrogen applied (Exp. 1) to 8 

over-fertilisation (Exp. 4).  9 

Biomass growth, grain yield and N export by the whole plant were measured over 4 10 

successive years (the 2008-09, 2009-10, 2010-11 and 2011-12 crop seasons). In 2008-2009, 11 

the yields were fairly high, close to the optimum for the cultivar. This was due mainly to good 12 

weather conditions and adequate N rates. In the 2009-2010 and 2010-11 seasons, there was 13 

severe water stress, resulting in yield losses. In 2009-10, water stress occurred in early spring 14 

and early June, but remained limited. In 2010-11, there was water stress from February to the 15 

beginning of June. That summer, rainfall returned early enough to allow normal grain filling, 16 

but the straw yield was very low. Apart from the fact that important rainfall occurred in early 17 

summer, overall the 2011-12 season was normal. 18 

 2.5.   Crop model 19 

The STICS crop growth model has been described in many papers (Brisson et al., 20 

2003; Brisson et al., 2009; Brisson et al., 1998). It simulates the carbon, water and N 21 

dynamics of plants in the soil-atmosphere environment on the basis of daily weather data (i.e., 22 

minimum and maximum temperatures, total radiation and total rainfall, vapour pressure and 23 

wind speed). It allows the effect of water and nutrient stress on development rates (Palosuo et 24 

al., 2011) to be taken into account.  25 
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STICS model parameterisation (i.e., its calibration and validation) was performed 1 

according to the 4-year database used in the field trial previously described. The root mean 2 

square error (RMSE), Nash-Sutcliffe efficiency (NSE) and normalised deviation (ND) indices 3 

were used to judge the quality of the model (Table 3) (Beaudoin et al., 2008; Brisson et al., 4 

2002; Dumont et al., 2014b; Loague and Green, 1991). The calibration process was performed 5 

using the DREAM Bayesian algorithm (Dumont et al., 2014b; Vrugt et al., 2009). Dumont et 6 

al. (2014b) provide more details on this procedure. 7 

The parameters driving phenology (stlevamf, stamflax), leaf area development (adens, 8 

dlaimaxbrut, durvieF), biomass growth (efcroijuv, efcroirepro, efcroiveg), grain yield 9 

elaboration (cgain, irmax) and related to water and N stresses (psisturg, psisto, INNmin) were 10 

selected for optimisation. The parameters driving N exportation did not need to be optimised. 11 

The remaining parameters were considered representative of the species and fixed at the 12 

suggested default values (Brisson et al., 1998; 2003). The parameters were calibrated for all 13 

the crop seasons but only for the Exp.1 and Exp.3 treatments in the field trial (Table 2). The 14 

model was then validated for the treatments (Exp.2 and Exp.4) for all crop seasons.     15 

The experimental cases were selected to present important contrasts in terms of N 16 

management (0 and 180 kgN.ha-1). This made the calibration process challenging but 17 

unavoidable to properly simulate nutrition stress. The 2009-10 and, in particular, 2010-11 18 

crop seasons were clearly going to be challenging in terms of modelling because of the 19 

significant water deficit compared with the Belgian seasonal norm. Using all the seasons in 20 

the calibration process was considered necessary in order to improve the relevance of this 21 

process, bearing in mind that the model would be run on stochastically generated climate 22 

scenarios that would sometimes reflect highly disadvantageous combinations of climatic 23 

variables. 24 
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 2.6.  Simulation process 1 

In order to simplify the simulation process, the same management techniques were 2 

applied to the different simulations. Wheat was simulated as being sown in late October, on 3 

Julian day 295. The sowing date was always used as the starting point of the simulations. The 4 

same soil description, corresponding to the soil used in the calibration process, was used for 5 

all simulations. The soil-water content was set at field capacity. The soil initial inorganic N 6 

content measurements conducted in 2008-09, considered to be representative of real field 7 

conditions, were used to initialise the model. Finally, as a first insight of the proposed method, 8 

the N fertilisation dates were fixed at the same value for all the simulated years (Table 2). 9 

The taxation system applied in Belgium is based on the remaining SNC. More 10 

precisely, in Belgian law ‘potentially leachable N’ is defined as the amount of N-NO3 11 

contained in the soil in autumn and being susceptible to being leached from the root zone 12 

during winter. In this study, the focus was therefore put on the SNC below plough level (about 13 

30 cm). 14 

Matlab software and toolboxes (Matlab, Mathworks Inc., Natick, Massachusetts, 15 

USA) were used for the data analysis and treatment. 16 

 17 
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 3.  Results  1 

 3.1.  Grain yield probability risk assessment in response to N practices 2 

Fig. 1 provides the model grain yield results as a function of N fertilisation 3 

management and cumulative probability density function (CDF) drawn from 300 synthetic 4 

climate scenarios. The characteristic values of each distribution (i.e., the mean, the median 5 

and the mode) were numerically derived and overlaid on the response surfaces. The y-axis 6 

(CDF) was inverted in order to reflect the risk facing farmers in attempting to achieve at least 7 

the expected corresponding yield. 8 

The difference among the three characteristic values (mean, median and mode) was 9 

fairly constant. It exhibited a fairly consistent probability for the means, at about 58%. For the 10 

mode, however, there was a slight decrease in probability, from 42 to 36%.  11 

The asymmetry level seemed to be generally very high under the modulo-60 12 

strategies, whatever the third application level. A corresponding skewness value of -1.00 was 13 

observed under a 60-60-00 kgN.ha-1 treatment, whereas the absolute lowest value was reached 14 

under the 60-60-30 kgN.ha-1 (-1.06) treatment.  A skewness value of -1.02 was obtained for 15 

the Belgium current practice (60-60-60 kgN.ha-1).  16 

The various N strategies were also analysed and compared in terms of yield associated 17 

with given return times (i.e., 1 year out of 2; 3 years out of 4; and 9 years of 10; see Table 4). 18 

The return time was directly proportional to the computed probability (e.g., the yield obtained 19 

at a probability of 90% corresponded to a minimum yield observed in at least 9 years out of 20 

10). As an example, yields corresponding to the probability of achieving at least the median 21 

value (p0.50) (i.e., yield obtained in at least 1 year out of 2) ranged between 9.8 t.ha-1 (M60-1) 22 

and 11.3 t.ha-1 (M60-11). 23 

The distribution data were compared in pairs, using the Wilcoxon test, in order to 24 

evaluate their equivalence (Tables 5). The practices based on the modulo-60 N set with the 25 
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last fraction of 0 and 10 kgN.ha-1 were judged as having a non-equivalent median. Where 20-1 

50 kgN.ha-1 was applied as the third fraction, each increase of 10 kgN.ha-1 was judged as 2 

having a median statistically equivalent to the practice immediately prior to it. For treatments 3 

where the third fraction was 60-90 kgN.ha-1, the equivalence of median distribution was 4 

confirmed up to a difference of 20 kgN.ha-1. Finally, applying 100 kgN.ha-1 at the last-leaf 5 

stage was evaluated as giving a yield distribution equivalent to lower fractions where up to -6 

30 kgN.ha-1 was applied (60-60-70 kgN.ha-1).  7 

 3.2.  Marginal net revenue analysis 8 

Fig. 2 shows the marginal net revenue (MNR) as a function of N fertilisation 9 

management and CDF drawn from 300 synthetic climate scenarios. For each probability level, 10 

ranging from 1 to 99% in 5% steps, the N treatments giving the optimal MNR were 11 

highlighted (black dots). Table 6 gives the result of the comparison between distribution data, 12 

using the Wilcoxon test. 13 

The modulo-60 set of N strategies showed that, for 99% of the time, a farmer can 14 

choose not to fertilise (M60-1). Under such a practice, the farmer could still achieve an 15 

adequate revenue. An important gap in terms of the optimal N to apply was also observed 16 

between the 5 and 10% probability lines, for which optimal amounts were obtained under the 17 

60-60-20 kgN.ha-1 and 60-60-80 kgN.ha-1 strategies, respectively. Below a probability level of 18 

70%, the highest N level was always the one that maximised the MNR. 19 

Overall, the Wilcoxon test (Table 6) produced the same conclusions as those drawn 20 

when analysing grain yield distribution values. There was, however, an increasing 21 

significance level of no-statistical differences between the distribution values. 22 

 3.3.  Environmental considerations 23 

Tables 7 shows the results of comparing the environmentally friendly net revenue 24 

(ENR) distribution values using the Wilcoxon test. The lack of statistical differences among 25 
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these values clearly increased this time, especially under higher N application levels. 1 

Fig. 3 shows the MNR as function of the potentially leachable N amount and for the 2 

different N practices. The practices are ordered according to N level. The different probability 3 

levels, ranging from 5 to 95% in 5% steps, are represented by darkening grey lines.  4 

It is worth noting that potentially leachable N was clearly reduced with a decreasing 5 

expected return time of favourable climatic conditions (darkest grey lines). At very low 6 

probability levels, the potentially leachable N amount did not increase with the N practice, 7 

whereas the net revenues clearly improved. Contrarily, at high probability levels of 8 

occurrence of climatic conditions (lightest grey lines), increasing the N practice led to 9 

increasing amount of N available for leaching, while MNR rapidly stagnated. 10 

It is also worth noting that the expected revenue was far more dependent on climatic 11 

conditions than on the N amount applied. For all practices, for 95% of the time the revenue 12 

was limited to about 1,040 €.ha-1 (lightest grey line), whatever the practice. In contrast, for 5 13 

years out of 100, the minimal expected revenue would be 2,110 €.ha-1, even if the last N 14 

application was omitted, whereas the revenue would rise only to 2,340 €.ha-1 under actual 15 

farmer practice. 16 

Fig. 4 shows the MNR and ENR as functions of the potentially leachable N amount 17 

and for the different N practices and puts the emphasis on three characteristic probability level 18 

(respectively 75%, 60% and 50%). The first (75% level) corresponded to the recommendation 19 

level that need special attention according to Basso et al. (2012). The 60% level was close to 20 

the expected return time of the mean of the distributions (58%) and the last (50% level) 21 

equalled the median.  22 

As illustrated for these three specific return period, with decreasing probability levels 23 

(darkening grey lines), the MNR and ENR curves tended to become closer. Above the 24 

probability of 90%, the two curves were clearly separated (unshown results), and the ENR 25 
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curve led to obviously lower revenues. At 75% probability level, the ENR and MNR curves 1 

were very close up to an application of 60-60-40kgN.ha-1 (first five dots). For higher 2 

practices, at that return time, ENR and MNR diverged. At a 60% probability level, one had to 3 

reach the 60-60-60kgN.ha-1 practice to observe differences between both curves. At a 35% 4 

probability level and beneath, the curves were confounded whatever the practice (unshown 5 

results). 6 

 7 
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 4.  Discussions 1 

Displaying grain yield solutions in a new 3D format was attractive because it allowed 2 

the model solutions to be extrapolated treatment by treatment. The lack of discontinuity on the 3 

surface argued in favour of a properly stabilised response curve, which supported the use of a 4 

build-up methodology in order to explore any kind of combination of N practices, under the 5 

range of climate conditions prevalent in the area.  6 

The asymmetry levels observed under the modulo-60 strategy were generally very 7 

high and in good agreement with those observed by Dumont et al. (2013, 2014c). With this 8 

strategy, the degree of asymmetry seemed to be optimised, suggesting that the probability of 9 

achieving yields that were at least as high than the mean of the distribution values was 10 

maximal. 11 

Whatever the probability level (or expected return time), the highest yields were 12 

always obtained under the highest N practice. The Wilcoxon test revealed, however, that 13 

applying 100 kgN.ha-1 at the flag-leaf stage led to a yield distribution equivalent to that when 14 

60-60-70 kgN.ha-1 was applied. This made the M60-8 practice the best one to optimise grain 15 

yields. 16 

Overall, the observed yield levels were higher than the reasonable expectations, while 17 

simultaneously the probability of achieving them was maximised. This argued in favour of 18 

systematically applying 60 kgN.ha-1 at the tillering and stem elongation stages under Belgian 19 

conditions (climate and cultivar). Such a practice would give farmers the opportunity to 20 

decide, depending on crop growth at the last-leaf stage, if they had to increase or decrease the 21 

last N application.  22 

The analysis then focused on simple economic considerations based on MNR 23 

computation. Basso et al. (2012) suggested that a suitable solution would be to select the N 24 

application rate that would perform better than others 75% of the time (highlighted by the 25 
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dotted black line in Figure 2). At this expected return time, the corresponding optimal practice 1 

was the M60-10 protocol, where 90kg N.ha-1 is applied at the flag-leaf stage. A parallel 2 

analysis conducted with the Wilcoxon test, however, showed no statistical differences 3 

between the M60-10 and M60-7 protocols. This led to the conclusion that the current practice 4 

(M60-7: 60-60-60 kgN.ha-1) would be the optimal solution in terms of economic return. 5 

When environmental constraints were considered in the ENR criteria and using the 6 

same 3D response surface approach (graph not shown), at a probability level of 75%, the 7 

60-60-50 kgN.ha-1 practice appeared to be the optimal one. The Wilcoxon test revealed that 8 

this practice was statistically equivalent to the 60-60-30 kgN.ha-1 practice. This meant that, on 9 

a basis of environmental considerations, the current Belgian practice should be 10 

revised/decreased in many of the climatic situations (for at least 3 years out of 4), saving 30 11 

kgN.ha-1 compared with the amount used under current practices. 12 

Finally, the analysis focused on three characteristic probability levels: the ones 13 

corresponding to the median and the mean, and the 75% recommendation probability level 14 

(Fig. 4). Initially, the emphasis was put on the MNR curves. The optimal practice was seen as 15 

one where the effects of increased N led to increased leaching without substantially improving 16 

gain (i.e., where the curves tended to become horizontal). Following the recommendations put 17 

forward by Basso et al (2012), the N practice was statistically limited in 3 years out of 4 to a 18 

maximum amount of 30 kgN.ha-1 for the application at the flag-leaf stage. Under more 19 

favourable conditions, the current practice of 60-60-60 kgN.ha-1 was used as a reference. This 20 

practice would allow good revenue (1,805 €.ha-1) to be obtained under an expected return 21 

time of 3 years out of 5 (probability level of 60%). In most cases, applying more N would 22 

then increase the likelihood of N leaching without substantially increasing revenue (1,841 23 

€.ha-1). Finally, in 1 year out of 2, the last N fraction could be increased beyond the actual 24 

practice. 25 
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The comparison of the MNR and ENR curves confirmed these recommendations. 1 

Where the curves separated tended to correspond to the recommendation we had formulated. 2 

As a reminder, the ENR values were computed based on the highest taxation level (120 €.ha-3 

1), reflecting a low expected SNC remaining in the whole soil profile (40kgN.ha-1). The 4 

allowed remaining N, however, might be much higher in some seasons, depending on the 5 

mean of the surveyed farms used to determine the acceptance threshold. It is highly probable 6 

that, under unfavourable climatic conditions in a given on-going season, which would 7 

therefore mean that the N level at which tax was levied would be higher, the separation 8 

between MNR and ENR curves would occur at a higher level of potentially leachable N. Our 9 

analysis demonstrated, however, that crop models have the potential to deal easily with 10 

systematically low tolerable thresholds of potentially leachable N in order to reduce the 11 

environmental risk. 12 

 13 
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 5.  Conclusions  1 

This research sought to demonstrate the importance of a sound statistical basis when 2 

investigating optimal N management practice in the context of agronomic, economic and 3 

environmental considerations. A methodology for analysing crop model solutions was 4 

developed and applied. A calibrated soil-crop model (STICS) was coupled with a weather 5 

generator (LARS-WG) to achieve simulations of expected yields. Specific 3D response 6 

surfaces were produced in order to analyse the optimal economic N practices, with or without 7 

considering environmental constraints.  8 

Overall, whatever the farmer strategy (optimising grain yield, optimising net revenue 9 

or reducing environmental pressure), the results showed that, under Belgian growing 10 

conditions, systematically applying 60kgN.ha-1 at tiller and stem extension stages appeared to 11 

be an optimal solution. The last dose could be modulated in front of the development and the 12 

in-field implementation of the plant achieved at the flag-leaf stage. 13 

Using the proposed methodology, an investigation was conducted to identify the 14 

optimal N treatment economically. It showed that, in most (70%) climatic situations prevalent 15 

in Belgium, the costs of increasing N application rates were compensated by the 16 

corresponding yields simulated. It was also shown, in the 3D MNR response surface analyses, 17 

that the current farmer practice in Belgium (60-60-60 kgN.ha-1) was equivalent to the 18 

recommendation that would produce a significant gain in at least 3 years out of 4 (60-60-90 19 

kgN.ha-1).  20 

When the taxes levied for environmental impact were considered, however, it 21 

appeared that the optimal N strategies should be reduced in order to meet the agro-economic-22 

environmental criteria. Our analysis showed that a 60-60-30 kgN.ha-1 strategy was sufficient 23 

to ensure a good revenue. In at least 3 years out of 4, 30 kgN.ha-1 could be saved in 24 

comparison with the amount currently applied by farmers.  25 
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In conclusion, the potential of using a crop model as a decision tool for improving 1 

economic returns for farmers by maximising yield while reducing N input and protecting the 2 

environment was demonstrated. The methodology of N management analysis proposed in this 3 

study, based on stochastically generated climate scenarios, in combination with appropriate 4 

data analysis, appeared to be a powerful tool for accelerating the decision making process and 5 

determining the optimal N strategy in line with the climatic variability of the considered area. 6 

This research therefore has the potential to provide a basis for developing alternative 7 

management strategies that will optimise real-time N application practices. 8 

 9 
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List of tables : 1 

 2 

Table 1: Fertilisation calendar for simulated nitrogen management practices  3 

Fertilisation calendar  
(according to Zadoks stage and Julian day) 

 Tiller  Stem ext. Last leaf  

Zadoks 23 30 39 
Julian day 445 475 508 

Fertilisation rate (in kgN.ha-1) 
Treat.# Tiller  Stem ext. Flag leaf Total 

M60-1 60 60 0 120 
M60-2 60 60 10 130 
M60-3 60 60 20 140 
M60-4 60 60 30 150 
... ... ... ... ... 
M60-11 60 60 100 220 

 4 

Table 2: Field trial 5 

Fertilisation level (in kgN.ha-1) 
Treat.# Tiller  Stem ext. Flag leaf Total 
Zadoks 23 30 39 

Exp 1 0 0 0 0 
Exp 2 30 30 60 120 
Exp 3 60 60 60 180 
Exp 4 60 60 120 240 

 6 

Table 3: Model evaluation conducted in the experiments 7 

Variable Unit RMSE RRMSE NSE ND 
  [unit] [%] [/] [/]  

Biomass [t.ha-1] 2.01 0.27 0.88 0.10 
Grain yield [t.ha-1] 1.81 0.35 0.74 0.13 

 8 

Table 4 : Yields (t.ha-1) associated with a given return time (probability of occurrence), respectively 1 year 9 
out of 2 (p= 0.50), 3 years out of 4 (p=0.75) and 9 years out of 10 (p=0.90), respectively, for N fertiliser 10 
applied as a modulation of the third N fraction 11 

T# M60-1 M60-2 M60-3 M60-4 M60-5 M60-6 M60-7 M60-8 M60-9 M60-10 M60-11 

p0.50 9.76 10.0 10.3 10.5 10.7 10.8 11.0 11.1 11.1 11.2 11.3 
p0.75 8.38 8.53 8.75 8.88 9.01 9.10 9.21 9.23 9.34 9.36 9.34 
p0.90 6.80 6.92 7.12 7.13 7.18 7.21 7.26 7.19 7.38 7.28 7.28 

 12 

 13 
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Table 5: Comparison of grain yield distribution values using the Wilcoxon test for various N treatments 1 
involving a modulation of the third application, based on a 60-60-XX kgN.ha-1 protocol 2 

Treat.                  60-60-100 60-60-90 60-60-80 60-60-70 60-60-60 60-60-50 60-60-40 60-60-30 60-60-20 60-60-10 
  (M60-11)  (M60-10) (M60-9) (M60-8) (M60-7) (M60-6) (M60-5) (M60-4) (M60-3) (M60-2) 

60-60-90 (M60-10) 0.607           
60-60-80 (M60-9) 0.288 0.540          
60-60-70 (M60-8) 0.090 0.201 0.459         
60-60-60 (M60-7) 0.016* 0.048* 0.141 0.400        
60-60-50 (M60-6) 0.001** 0.005** 0.021* 0.093 0.345       
60-60-40 (M60-5) 0.000*** 0.000*** 0.001** 0.008** 0.051 0.282      
60-60-30 (M60-4) 0.000*** 0.000*** 0.000*** 0.000*** 0.002** 0.030* 0.233     
60-60-20 (M60-3) 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.001*** 0.012* 0.154    
60-60-10 (M60-2) 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.002** 0.084   
60-60-0 (M60-1) 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.030*  

 3 

Table 6: Comparison of MNR distribution values using the Wilcoxon test for various N treatments 4 
involving a modulation of the third application, based on a 60-60-XX kgN.ha-1 protocol 5 

Treat.                  60-60-100 60-60-90 60-60-80 60-60-70 60-60-60 60-60-50 60-60-40 60-60-30 60-60-20 60-60-10 
  (M60-11)  (M60-10) (M60-9) (M60-8) (M60-7) (M60-6) (M60-5) (M60-4) (M60-3) (M60-2) 

60-60-90 (M60-10) 0.682          
60-60-80 (M60-9) 0.401 0.613         
60-60-70 (M60-8) 0.161 0.287 0.523        
60-60-60 (M60-7) 0.043* 0.090 0.210 0.466       
60-60-50 (M60-6) 0.007** 0.015* 0.044* 0.146 0.398      
60-60-40 (M60-5) 0.000*** 0.001** 0.004** 0.019* 0.087 0.334     
60-60-30 (M60-4) 0.000*** 0.000*** 0.000*** 0.001*** 0.007** 0.052 0.282    
60-60-20 (M60-3) 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.002** 0.022* 0.187   
60-60-10 (M60-2) 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.005** 0.105  
60-60-0 (M60-1) 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.039* 

 6 

Table 7: Comparison of ENR distribution values, using the Wilcoxon test for various N treatments 7 
involving a modulation of the third application, based on a 60-60-XX kgN.ha-1 protocol 8 

Treat.                  60-60-100 60-60-90 60-60-80 60-60-70 60-60-60 60-60-50 60-60-40 60-60-30 60-60-20 60-60-10 
  (M60-11)  (M60-10) (M60-9) (M60-8) (M60-7) (M60-6) (M60-5) (M60-4) (M60-3) (M60-2) 

60-60-90 (M60-10) 0.802          
60-60-80 (M60-9) 0.630 0.761         
60-60-70 (M60-8) 0.389 0.486 0.643        
60-60-60 (M60-7) 0.197 0.251 0.362 0.581       
60-60-50 (M60-6) 0.061 0.079 0.118 0.241 0.467      
60-60-40 (M60-5) 0.009** 0.012* 0.019* 0.046* 0.126 0.369     
60-60-30 (M60-4) 0.001*** 0.001** 0.002** 0.005** 0.016* 0.080 0.350    
60-60-20 (M60-3) 0.000*** 0.000*** 0.000*** 0.000*** 0.001*** 0.004** 0.038* 0.215   
60-60-10 (M60-2) 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.001*** 0.007** 0.122  
60-60-0 (M60-1) 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.001*** 0.052 

 9 
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List of figure captions : 1 

Figure 1: Grain yield as a function of N fertilisation management and cumulative probability density 2 
function (CDF) drawn from 300 synthetic climate scenarios. The dash-empty circle line (--o--) represents 3 
the mode of the distribution. The dash-star line (--*--)represents the mean of the distribution. The dash-4 
empty square line (-□-) represents the median of the distribution. The probability levels represented 5 
correspond to 1%, 5%, 10%, ..., 95%, 99%. 6 

 7 

Figure 2: Marginal net revenue (MNR) as a function of N fertilisation management and cumulative 8 
probability density function (CDF) drawn from 300 synthetic climate scenarios. The dash line (--) 9 
represents the MNR reached 3 years out of 4. The dots (•) represents the N treatment producing the 10 
optimal MNR under different probability levels. The probability levels represented correspond to 11 
1%, 5%, 10%, ..., 95%, 99%. 12 

 13 

Figure 3: Marginal (MNR) as a function of potentially leachable N, N fertilisation management and 14 
probability levels computed for 300 synthetic climate scenarios. The dots (•) represents the N treatment. 15 
The filled circle solid line (-•-) represents the MNR. The dash-empty circle line (--o--) represents the ENR. 16 
The darkening grey lines represent the decreasing probability levels  (95%, 90%, ..., 10%, 5%). 17 

 18 

 19 

Figure 4: Marginal (MNR) and environmentally friend ly net revenue (ENR) as a function of potentially 20 
leachable N, N fertilisation management and probability levels computed for 300 synthetic climate 21 
scenarios. The dots (•) represents the N treatment. The filled circle solid line (-•-) represents the MNR. 22 
The dash-empty circle line (--o--) represents the ENR. The lightest grey, medium grey and dark grey 23 
correspond to the 75%, 60% and 50% probability levels, respectively. 24 

 25 
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probability density function (CDF) drawn from 300 synthetic climate scenarios. The dash line (--) 10 
represents the MNR reached 3 years out of 4. The dots (•) represents the N treatment producing the 11 
optimal MNR under different probability levels. The probability levels represented correspond to 12 
1%, 5%, 10%, ..., 95%, 99%. 13 
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The darkening grey lines represent the decreasing probability levels  (95%, 90%, ..., 10%, 5%). 6 
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Figure 4: Marginal (MNR) and environmentally friend ly net revenue (ENR) as a function of potentially 8 
leachable N, N fertilisation management and probability levels computed for 300 synthetic climate 9 
scenarios. The dots (•) represents the N treatment. The filled circle solid line (-•-) represents the MNR. 10 
The dash-empty circle line (--o--) represents the ENR. The lightest grey, medium grey and dark grey 11 
correspond to the 75%, 60% and 50% probability levels, respectively. 12 


