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ABSTRACT 
The paper is concerned with the seismic design of lock gates. During an earthquake, it is evident that the liquid contained in the 

lock chamber is responsible for an additional hydrodynamic pressure acting on the structure. This one is known to have three 
different contributions, which are respectively called the convective, rigid and flexible impulsive parts. The two first ones have 
already been extensively studied in the literature and are quite easy to evaluate. Nevertheless, characterizing the flexible contribution 
is more difficult, as it is largely influenced by the coupling occurring between the fluid and the gate. The only relevant way to 
overcome this difficulty seems to resort to finite elements software, which is not always convenient. Therefore, some research have 
been undertaken to provide a rapid meshless method leading to an approximation of the flexible pressure on lock gates. As detailed 
in the present paper, this is achieved by applying an analytical approach based on the virtual work principle. As a matter of 
validation, the results obtained analytically are compared to numerical solutions. The agreement between both of them is found to be 
satisfactory. 

1. INTRODUCTION 

As depicted on Figure 1, we consider a basic lock chamber 
made of two identical downstream and upstream gates, having 
a height H and a width l. These two structures are separated by 
a certain distance L corresponding to the total length of the 
lock chamber. This one is filled with water up to a level hs.  

During an earthquake, this configuration is submitted to 
three different seismic acceleration components respectively 
applied along the x, y and z axes. In this paper however, the 
effect of the vertical and transversal contributions will not be 
considered, so only the longitudinal acceleration applied along 
the x axis will be investigated here. This one is denoted by Ẍ(t) 
and is assumed to exhibit the typical time evolution 
represented on Figure 1. 

As the structure is submitted to the ground acceleration 
Ẍ(t), an additional hydrodynamic pressure is applied on the 
gates. This phenomenon is due to the fact that the water 
confined between the gates is also accelerated. The resulting 

total pressure is known to have the three different following 
contributions: 
 The convective part, which is coming from the sloshing 

appearing at the free surface of the lock chamber. This 
wave motion is responsible for a water pressure that is said 
to be convective. 

 The rigid impulsive part, which is derived under the 
assumption of perfectly rigid gates. With this hypothesis, 
the structure is supposed to move in unison with the ground 
without exhibiting any vibration. This rigid-body motion 
results in a water pressure that is said to be rigid impulsive. 

 The rigid flexible part, which is coming from the fact that 
the gates are not ideal rigid structures and therefore 
superimpose their own vibrations to the basic ground 
accelerations. This movement also produces an additional 
water pressure that is said to be flexible impulsive. 
The two first contributions have already been extensively 

studied in the literature. Many developments are therefore 
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available, such as those performed by Housner (1974), Ibrahim 
(2005), Haroun (1984) or Epstein (1976) amongst others. All 
these authors provide various analytical formulae for deriving 
the rigid and convective pressures. Nevertheless, dealing 
properly with the third contribution is more difficult. This is 
due to the fact that the flexible pressure is directly influenced 
by the vibrations of the gate, which turns out to have 
consequences on the dynamic response of the structure itself. 
This means that there is a coupling between the own 
accelerations of the gate and the pressure acting on it. Solving 
analytically this kind of fluid-structure interaction problem is 
almost impossible, so it is of current practice to resort to finite 
elements methods to get numerical solutions. 

Even if this kind of software constitutes a precious tool for 
engineers, finite elements also have some drawbacks. Indeed, 
to perform coupled fluid-structure analyses, it is of course 
required to model both the liquid and the gates, but such an 
approach may be time demanding because it is not easy to 
develop a consistent model for the fluid. Moreover, the 
calculation time may become prohibitively long if the liquid 
domain has to be entirely represented, in particular in very 
large structures such as lock chambers. This way of working is 
of course not well-suited when engineers are still pre-
designing a structure because they do not necessarily have time 

to perform heavy calculations. For all the aforementioned 
reasons, it is clear that another approach is required to include 
the seismic effect in the early design of lock gates, particularly 
if these structures are located in sensible areas. 

Exposing a new simplified method is precisely the goal of 
the paper. In this article, we consider the case of a lock gate 
having a single plating and an orthogonal stiffening system, as 
depicted on Figure 2(a). The vertical reinforcing elements 
(oriented along the y axis, Figure 2(b)) are called the frames, 
while the horizontal reinforcing ones (oriented along the z 
axis, Figure 2(c)) are called the girders. In addition to this 
basic system, some supplementary horizontal and/or vertical 
smaller stiffeners may be added to reinforce the portion of the 
plating located between two frames and two girders. All these 
components have a T-shaped cross-section (Figure 2(d)). The 
web height and thickness are respectively denoted by hw and tw, 
while the flange width and thickness are designated by hf and 
tf. 

Regarding the boundary conditions of the gate, it is worth 
mentioning that the structure is assumed to be simply 
supported along the two lines located in z = 0 and z = l. On the 
contrary, the top and bottom edges in y = H and y = 0 are free 
to move.

 
Figure 1. Three dimensional view of a lock chamber. 
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(a) 

 

(c) 

 

(b) (d) 

 
Figure 2. Three dimensional view of a simple gate; Longitudinal view of the lock chamber. 

2. FREE VIBRATION ANALYSIS OF A DRY GATE 

2.1 Analytical Derivation 
The first step in the seismic analysis is to find the modal 

properties of the dry structure. In other words, our goal now is 
to get an analytical approximation of the natural frequencies 
ωi and mode shapes δi characterizing the gates without 
considering the water present in the lock chamber. To do so, 
we will follow the Rayleigh-Ritz method. This approach is 
extensively described by Shames [9] and has been successfully 
applied in references [1, 7, 10] to derive the vibration 
properties of stiffened plates in various circumstances. 

To apply the Rayleigh-Ritz procedure, we first need to 
decompose the mode shapes δi as a set of admissible functions 
ψj. Consequently, we have: 

   



M

j
jjii zyvzy

1

,,   (1) 

where vji are unknown coefficients and M is the number of 
terms used in the decomposition process. The functions ψj may 
be arbitrarily chosen, provided that they satisfy the boundary 
conditions detailed in section 1. In this paper, we propose the 
following combination: 

)()(),( zgyfzy jjj   (2) 

in which fj and gj are some functions characterizing the 
free vibrations of the vertical and horizontal reinforcing 
elements respectively. As the gate is always supported along 
the edges  z = 0 and z = l, it seems reasonable to choose gj as 
being the eigenmodes of a doubly supported beam with a span 
l. Similarly, as the structure is free along the horizontal lines y 
= 0 and y = H, it may be convenient for fj to consider the mode 
shapes of a free-free beam. In the literature, it is easy to find 
that: 
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where Aj is the modal amplitude. The parameters λj, γj and Bj 
are found to satisfy the following equations: 

    lnHH jjjj /1coshcos    (4a) 
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Finally, we see that Eq. (2) and (3) allow us to find a set of 
admissible functions ψj. These ones may then be introduced in 
Eq. (1) to get the approximate decomposition of the 
eigenmodes characterizing the dry gate. Once this operation is 
achieved, the second step in the Rayleigh-Ritz method is to 
evaluate the internal and kinetic energies U and T associated to 
the structural vibrations. According to Shames [9], U may be 
seen as the sum of two contributions Up and Ur. The first one is 
coming from the plating, while the second one is due to the 
reinforcing system. It may be shown [9] that: 
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where ν and E are respectively the Poisson ratio and Young 
modulus. The plate is characterized by its surface A and 
bending flexibility D, while the horizontal and vertical 
reinforcing elements have a T-shaped cross section with an 
inertia designated by Ih,n and Iv,n. It is worth noting that these 
latter are calculated with respect to the neutral bending axis of 
the plating (see the line n-n on Figure 2(d)). Finally, in Eq. (5), 
yn and zn denotes the discrete locations occupied by the 
stiffeners along the y vertical and z horizontal axes. 

Similarly, the kinetic energy ωi
2T may also be obtained by 

summing up the two individual contributions ωi
2Tp and ωi

2Tr 
(where ωi

 is the eigenfrequency associated to the mode shape 
δi). According to Shames [9], we have: 
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where ρ is the mass density and tp the plate thickness. Ah,n and 
Av,n are the cross section areas of the horizontal and vertical 
stiffeners.  

In order to find the unknown coefficients vji appearing in 
Eq. (1), we may further introduce this expression in Eq. (5) 
and Eq. (6). This operation is quite fastidious and leads to a 
matrix formulation for U and T. After performing all the 
calculation, it can be shown that: 
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where vi is a vector containing vji. The terms Tjk and Ujk 
associated to the matrices [T] and [U] may be found by 
introducing Eq. (1) in Eq. (5) and Eq. (6). They are defined by 
the expressions detailed in the Appendix. With these results, 
the final step in the procedure is then to evaluate the Rayleigh 
quotient R. This one is simply defined by: 
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in which the unkwnown coefficients contained in vi are to be 
found by minimizitation of R. As detailed in [9], this last 
operation is achieved by solving the following classical 
problem: 

          00det 22  iii vTUTU   (9) 

2.2 Numerical Validation 
In order to corroborate the analytical developments 

realized in the previous sections, we can compare them with 
finite element analyses. The idea is to check if the theoretical 
prediction of the main eigenfrequencies of a chosen gate sticks 
to the solutions obtained numerically. For the conciness of the 
paper, we will limit our presentation to the case of the gate 
depicted on Figure 3. This structure has a square plating, with 
H = l = 13.1 m and a thickness tp of 1.2 cm. It is reinforced by 
six vertical frames and five horizontal girders. The first ones 
are regularly placed over the width l, with a spacing of 2.62 m. 
The disposition of the girders is not regular, as the 
reinforcement is more important near the bottom of the gate. 
Some smaller horizontal stiffeners are also present. The 
geometrical and material properties are summarized in Tables 
2 and 3. 

The modal properties of the gate are obtained numerically 
by using the software NASTRAN. To do so, the plating is 
modeled by using isoparametric shell elements, while classical 
beam elements are used for the reinforcing system. 
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The modal analysis realized with NASTRAN shows that the 
gate has only two dominant global modes and a great amount 
of local ones. The natural frequencies derived by the simplified 
procedure of section 2.1 and the values given by NASTRAN are 
listed in Table 1 for these two first modes of vibration. An 
estimation made by the software LS-DYNA is also provided in 
this table. We see that the agreement is quite satisfactory. This 
is particularly true if we consider the results of LS-DYNA, for 
which the maximal relative error is not exceeding 7 %. The 

discrepancy with NASTRAN is a bit more important, as an error 
of 12 % may be reached. 

From, Table 3 it transpires that the analytical approach 
tends to overestimate the natural frequencies. This observation 
may be justified mathematically (Shames and Dym 1995), as 
the Rayleigh-Ritz method always gives an upper estimation of 
the eigenvalues. 
 

Table 1. Comparison of the natural frequencies obtained numerically and analytically 

Mode Frequency (Hz) Error (%) 

/ NASTRAN LS-DYNA Analytical NASTRAN LS-DYNA 

1 19.17 19.99 21.3 11.11 6.54 

2 23.33 25.27 26 11.43 2.89 

Table 2. Properties of the reinforcing system 

Horizontal girders 

hw (m) 0.980 

tw (m) 0.020 

hf (m) 0.400 

tf (m) 0.025 

Vertical frames 

hw (m) 0.980 

tw (m) 0.020 

hf (m) 0.500 

tf (m) 0.025 

Horizontal stiffeners 

hw (m) 0.210 

tw (m) 0.006 

hf (m) 0.000 

tf (m) 0.000 

Table 3. Material properties 

Mass density ρ (kg/m³) 7850 

Young modulus E (MPa) 210000 

Poisson ratio ν (-) 0.3 

 
Figure 3. Numerical model of the gate used for validation. 
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3. DYNAMIC ANALYSIS OF LOCK GATES 

3.1 Analytical Derivation 
The goal of this section is to go one step further in the 

seismic analysis of lock gates by considering this time the 
situation depicted on Figure 1. Our aim is now to estimate the 
hydordynamic pressure acting on the structure in this case. As 
a first step, we can start by assuming that the out-of-plane 
displacements u exhibited by the gate are predominant and 
may be expressed as a combination of the dry eigenmodes δj 
calculated in section 2.1: 

   
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,),,(   (10) 

where the time coefficients qj are the unknown we have to 
determine and N is the number of eigenmodes involved in the 
decomposition. To do so, we will apply the virtual work 
principle, which simply states that a necessary and sufficient 
condition for equilibrium is to equate the external and 
internal virtual works for any kinematically compatible 
displacements field. 

Let us start by evaluating the internal virtual work δWint. 
This one may still be seen as the sum of a contribution 
coming from the plating δWp and another one δWr due to the 
reinforcing system. If we follow a similar development than 
the one exposed in [9], we get: 
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where δu is the virtual displacements field obtained by taking 
the incremental form of Eq. (10) and by involving the virtual 
coefficients δqk: 
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On the other hand, the external virtual work δWext has to 
be calculated by considering all the forces acting on the 
structure. In the present application, we will only consider the 
following ones: 
 The inertia forces associated to the plating and to the 

reinforcing system. For a given virtual displacement δu, 
their contribution to the external work δWext is given by: 
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(13
) 

 The damping forces associated to the mass and to the 
stiffness of the gate. These ones are simply denoted by fd 
(which is a force by unit of surface) and may be expressed 
as a functions of the velocity field. However, in this paper, 
we will not go into more details and we will simply write 
the external work done by fd in the following way: 

dydztzyutzyf
A

d ),,(),,(   (14) 

 The pressure forces coming from the water in contact with 
the gate. As stated in section 2.1, the impulsive pressure is 
the sum of the rigid and flexible contributions. These ones 
are denoted by pr and pf and are responsible for the 
subsequent work: 

  dydztzyutzyptyp
A

fr  ),,(),,(),(   (15) 

In Eq. (15), it is worth noting that the time evolution of pr is 
ruled by the ground acceleration Ẍ, while the time 
dependence of pf is directly related to the own accelerations ü 
and δü of the gate. Some detailed expressions for pr and pf 
may be found in the literature and are reported in the 
Appendix. 

In order to find the unknown coefficients qj mentioned in 
Eq. (10), the next step is now to replace u and δu by their 
expressions given by Eq. (10) and Eq. (12). This operation is 
quite fastidious. For the sake of simplicity, we will simply 
mention that doing so leads to a matrix form for δWint and 
δWext: 
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where α and β are the classical coefficients used for a 
Rayleigh-type damping. The other terms are defined by the 
next expressions: 
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in which the matrices [T] and [U] have been introduced in 
section 2.1. The matrix [W] and the vector V may be 
calculated with help of the relations provided in the 
Appendix. In Eq. (17), it is worth noting that the matrices 
[M] and [K] associated to Mjk and Kjk may be seen as the usual 
mass and stiffness terms characterizing the lock gate. In a 
similar way, the vector P related to Pk includes the effect of 
the rigid pressure pr, while the matrix [J] based on Jjk 
translates the action of the flexible pressure pf. 

Finally, if we equate the internal and external virtual 
works by considering their expressions given in Eq. (16), we 
get: 

            XPqKqKMqWM     (18) 

where q contains the unknown terms qj. For a given time 
evolution of Ẍ, this equation may be solved by applying the 
classical Newmark integration scheme for example. Doing so 
leads to the coefficients qj, which may be introduced in Eq. 
(10) to find the displacements u characterizing the seismic 
behavior of the gate. These ones may then be used in Eq. (A1) 
to find the total pressure acting on the structure. 

3.2 Numerical Validation 
The goal of this section is to check if the analytical 

procedure detailed here above may lead to a reasonable 
approximation of the total hydrodynamic pressure induced on 
a lock gate during a seism. To do so, we will consider a lock 
chamber with a total length L of 50 m and filled with water 
up to a level hs of 8 m.  

The numerical analyses are performed using the software 
LS-DYNA. The fluid is modeled as an elastic medium, with 
constant stress solid elements [3] affected by a fluid material 
law with no shearing. The mesh of the fluid domain is 
regular, with an approximate size of 19 × 19 × 19 cm. 

The upstream and downstream gates are identical and 
depicted on Figure 3. The plating is modeled with 
Belytschko-Tsay shell elements (Hallquist 2006). To reduce a 
little bit the size of the model, the reinforcing system is not 
explicitly represented with shell elements, but rather with 
Hughes-Liu beams (Hallquist 2006).  

The two previous entities do not share any node in 
common, which means that the fluid nodes are distinct from 
the solid ones. The LS-DYNA contact algorithm is then used 
to simulate the interaction between the plate and the 
surrounding liquid. This allows the fluid to slide on the 
flexible walls without friction, but prevent it from passing 
through the structure. 

The boundary conditions are as described in section 1 
and the supports are submitted to the longitudinal 
acceleration Ẍ of Figure 4. 

As a matter of validation, we can compare the analytical 
prediction of the time evolution charecterizing the total 

resulting hydrodynamic pressure force applied on the gate 
with the solution calculated by LS-DYNA. The results are 

plotted on  
Figure 5 from which we can see that there is a quite good 

agreement between the two curves. From this picture, it 
transpires that the two solutions sometimes tends to be out-of-
phase and that the analytical curve tends to be greater than 
the numerical one. However, this is conservative as it means 
that the total resulting pressure force applied on the gate is 
overestimated. 
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Figure 4. Time evolution of the longitudinal acceleration Ẍ applied to the gate. 
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Figure 5. Comparison of the total resulting pressure force calculated analytically and numerically. 
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4. CONCLUSIONS 

The main conclusions are: 
1. In this paper, we presented a consistent analytical 

procedure to estimate the modal properties of a plane 
lock gate having a single plating and a simple 
reinforcing system. 

2. The dry modal properties of the gate derived 
analytically have been compared with those obtained 
by performing simulations using the finite elements 
code NASTRAN. The agreement on the natural 
vibration frequencies was found to be satisfactory. 

3. We also presented a consistent analytical procedure 
to derive the hydrodynamic pressure applied on a 
flexible lock gate. 

4. These developments were also corroborated by 
comparing them with solutions provided by using the 
finite elements code LS-DYNA. 

5. The simplified methodology exposed in this paper 
allows for a rapid estimation of the hydrodynamic 
pressure applied on a lock gate, without having to 
perform heavy numerical simulations. 

6. It is therefore well-suited for integrating the seismic 
action in the pre-design of lock gates. 
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APPENDIX 

In this appendix, we provide some additional formulae useful for evaluating different terms introduced in the analytical 
processes exposed in sections 2.1 and 3.1. Let us start by considering the expressions of the rigid and flexible impulsive pressures 
mentioned in section 1. In the literature [9], the following results may be found: 
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(A1) 

where αn = (2n − 1)π/2hs, βn = (2n − 1)π/L, κm = mπ/L and ρf is the fluid density. The coefficient Cmn is expressed as: 
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(A2) 

with lm = l if m = 0 and lm = l/2 if m > 0. From Eq. (A1), we see that the rigid impulsive term pr is not dependant from the proper 
displacements u of the gate, while it is not the case for the flexible part pf. This means that the fluid-structure coupling is directly 
coming from pf and not from pr. Let us now introduce the mathematical equations leading to the matrices used in section 3.1. The 
subsequent results may be derived analytically: 
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where ψk are the admissible functions defined by Eq. (2). The terms fjk, gjk, hjk and Imn are defined as follow: 
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(A4) 

With all the expressions provided in this Appendix, it is possible to apply the method exposed in section 3.1 to get an analytical 
estimation of the total hydrodynamic pressure pr + pf. 


