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A walker is a droplet bouncing on a liquid surface and propelled by the waves that it generates.
This macroscopic wave-particle association exhibits behaviors reminiscent of quantum particles.
This article presents a toy model of the coupling between a particle and a confined standing wave.
The resulting 2D iterated map captures many features of the walker dynamics observed in different
configurations of confinement. These features include the time decomposition of the chaotic trajec-
tory in quantized eigenstates, and the particle statistics being shaped by the wave. It shows that
deterministic wave-particle coupling expressed in its simplest form can account for some quantum-
like behaviors.
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I. INTRODUCTION

FIG. 1. (Color online) Macroscopic wave-particle coupling. A
walker is a millimetric oil droplet that bounces onto a verti-
cally vibrated liquid pool. The Faraday waves generated by
the droplet impacts propel this latter horizontally.

In recent experiments, Y. Couder and co-workers have
investigated the coupling between a classical particle and
a wave. The particle is a millimetric droplet that bounces
at the surface of a vertically vibrated liquid bath (Fig.1)
[1–3]. The droplet creates a circular capillary wave every
time it impacts the surface. As this wave travels away, it
excites standing Faraday waves in its wake. The damp-
ing time of Faraday waves increases as the amplitude of
the forcing vibration approaches the Faraday instability
threshold. Memory M is defined as this damping time
divided by the time between successive rebounds. Con-
sequently, the droplet impacts on a liquid surface cor-
rugated by the Faraday waves resulting from its last M
impacts. When M � 1, the wavy surface then gives
a small horizontal impulse to the droplet, which starts
walking on the liquid surface. The Faraday wave is only
sustained by the local excitation of the droplet, which in
turn moves horizontally only because of the wave. There-
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fore, this system, now referred as a walker, exhibits a
strong coupling between a wave and a particle.

At high memory (typically M & 30), walkers show
properties that are highly reminiscent of quantum par-
ticles in many different contexts (incl. diffraction and
double-slit interferences [4], tunneling [5], Zeeman effect
[6]). A recent review summarizes our current understand-
ing of this analogy after a decade of investigations [7].
Of more interest for the present work, individual walkers
have been experimentally observed to follow quantized
orbital trajectories in three different contexts that all in-
volve some confinement:

(i) in a rotating frame (Coriolis force) [8–10],

(ii) in a central force field (harmonic potential) [11],

(iii) in a confined geometry (potential well) [12, 13].

Several properties are invariantly seen in experiments (i–
iii). For example, in (i) and (ii), it has been shown that
at relatively low memory (M ∼ 10), the walker follows
stable regular orbits which spatial extension varies con-
tinuously with the control parameter [rotation rate in (i),
potential width in (ii)] as in classical mechanics. It is also
expected that in (iii) these orbital radii would vary con-
tinuously with cavity size. At higher memory (M ∼ 50)
the walker often revisits regions where the waves from
previous visits are still present, and the trajectory usually
becomes chaotic. More exactly, it follows unstable reg-
ular orbits assimilated to eigenstates. The walker stays
in each of them for a certain time before it switches to
another (Fig.10 in [9], Fig.6 in [11]). These orbital eigen-
states are quantized and now insensitive to the control
parameters. Their spatial extension is always an integer
multiple of half the Faraday wavelength 2π/kF , which
can then be seen as the analog of the de Broglie wave-
length [8]. The probability to find the walker in a given
state is proportional to the relative amount of time spent
in this state. In addition, in the confined geometry (iii),
it was shown that the Probability Distribution Function
(PDF) of the walker position is directly shaped by the
resonant eigenmodes of the cavity. A realistic model of
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walker dynamics has recently been developed by A. Oza
et al. [3, 10]. The resulting integro-differential equation
for the droplet horizontal position accurately reproduces
the experimental results obtained for (i). Nevertheless,
the evident similarity of walker behavior in different con-
figurations (ii–iii) suggests that this dynamics is shared
by a much larger set of wave-particle systems.

In section II, a general framework for the description
of wave-particle interaction with geometry confinement is
first established. The model is then particularized (sec-
tion III) and simplified to the point where both wave
and particle dynamics are each represented by a single
scalar recurrence relation. The iterated map involves a
wave function Ψ(x) which prescribes the shape of the
standing wave. Fixed points and stability are then cal-
culated analytically. In section IV, numerical simulations
are performed for seven particular functions Ψ(x). The
transition to chaos is analyzed in section V, as well as
the statistical behavior in the chaotic regime. Finally,
the intermittent switch between unstable eigenstates is
discussed in section VI.

II. WAVE-PARTICLE COUPLING IN A
CONFINED GEOMETRY

This paper first presents a model of a walker confined
to a domain Ω. This model is intended to represent the
geometry confinement of experiment (iii), though most of
its features are thought to be generic of any confinement.
The standing Faraday wave field hn(x) resulting from
the n first impacts is decomposed in the discrete basis of
eigenmodes Ψk(x) of the domain.

hn(x) =
∑
k

Wk,nΨk(x), Wk,n =

∫
Ω

hn(x)Ψ∗k(x)dΩ

(1)
where Ψ∗k is the conjugate of Ψk. These eigenmodes are
orthonormal on Ω and satisfy n · ∇Ψk = 0 at the bound-
ary ∂Ω of normal vector n. Traveling capillary waves are
neglected since they spread their initial energy in 2D and
they are not energized by the vertical forcing [1], so they
do not likely affect the long term statistics. Only when
the particle comes close to the boundary could these cap-
illary waves significantly modify the local trajectory. But
this effect would then be localized in space and time, so
it is not expected to strongly affect the particle statistics.

At rebound n, the walker impacts the liquid bath at
position xn and creates a crater of shape z = f(y) in the
wave-field, where y = r − xn and y = ||y||. This crater
can be decomposed in the basis of Ψk:

f(y) =
∑
k

ckΨk(r), ck =

∫
Ω

f(y)Ψ∗k(r)dΩ (2)

The crater is localized in a region of radius R about the
impact point, so

ck '
∫ 2π

0

dθ

∫ R

0

f(y)ydyΨ∗k(xn + y) (3)

If R is much smaller than the characteristic wavelength
of Ψk, then Ψ∗k(xn + y) ' Ψ∗k(xn) + y · ∇Ψ∗k]xn

and
therefore

ck ' Ψ∗k(xn)

∫ 2π

0

dθ

∫ R

0

f(y)ydy

+ ∇Ψ∗k]xn
·
∫ 2π

0

dθ

∫ R

0

yyf(y)dy (4)

The second term is zero by symmetry, so ck ' AΨ∗k(xn),
where the constant

A =

∫ 2π

0

dθ

∫ R

0

f(y)ydy '
∫

Ω

f(y)dy (5)

corresponds to the volume of liquid displaced by one im-
pact. The crater is finally represented by

f(y) = A
∑
k

Ψ∗k(xn)Ψk(r) = Aδ(r− xn) (6)

The crater is thus assumed equivalent to a delta function
at the impact point, weighted by the volume of liquid
displaced. The contribution of the impact to each wave
eigenmode AΨ∗k(xn) strongly depends on the particle po-
sition. We now normalize the wave field hn(x) by A.

For every forcing conditions, a damping factor µk ∈
[0, 1] can be associated to each Ψk(x). It is defined as the
amplitude of mode k right before impact n+1, divided by
its amplitude right after impact n. It can be estimated
by spectral methods [14] and by definition µMk

k = e−1,
where Mk is the memory associated to mode k. The
Faraday threshold instability corresponds to max(µk) =
1. The amplitude of each mode Wk,N then satisfies the
recurrence relation

Wk,n+1 = µk

(
Ψ∗k(xn) +Wk,n

)
(7)

At each impact, the particle is shifted proportionally to
the gradient of the wave field at the impact position:

xn+1 = xn − C
∑
k

Wk,n ∇Ψk]xn
(8)

where C > 0 is a constant that represents the strength of
the wave-particle coupling. This hypothesis is different
from previous models (e.g. [13]) where the force (instead
of the velocity) is proportional to the wave slope. Equa-
tions 7 and 8 form an iterated map that describes the
evolution of the walker in configuration (iii). Neverthe-
less, this modal approach is also likely relevant to config-
urations (i) and (ii) where confinement does not originate
from physical boundaries. Especially in (ii) [11], Graf’s
addition theorem states that the wave field can always
be decomposed in cylindrical harmonics centered on the
force field. Each harmonic is then excited according to
the walker position, similarly to (7).
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III. A TOY MODEL FOR THE
WAVE-PARTICLE COUPLING

A detailed analysis of this map (7–8) and comparison
to the experiments in (iii) is the object of another publica-
tion. This work aims at reaching the simplest model that
still captures the features of confined wave-particle cou-
pling observed experimentally. We thus now consider the
map where only one direction x and one mode Ψ(x) ∈ R
of damping µ are kept:{

wn+1 = µ [wn + Ψ(xn)]
xn+1 = xn − CwnΨ′(xn)

(9)

The map allows for two families of fixed points:

(xa, wa), where Ψ(xa) = 0, wa = 0 (10)

and

(xb, wb), where Ψ′(xb) = 0, wb =
µ

1− µ
Ψ(xb) (11)

For convenience, we denote Ψa = Ψ(xa), Ψ′b = Ψ′(xb)
and so on.

Fixed points of the first family correspond to a posi-
tion where an impact does not excite any wave. Their
linear stability is assessed by analyzing the growth rate
of a small perturbation (x̃, w̃) = (x − xa, w − wa). The
resulting linear map{

w̃n+1 = µw̃n + µΨ′ax̃n
x̃n+1 = x̃n − CΨ′aw̃n

(12)

has a characteristic equation

z2 − (µ+ 1)z + µ
[
1 + CΨ

′2
a

]
= 0 (13)

that is solved by substituting z = ρeiθ: cos θ = ρ(1+µ)

ρ2+µ(1+CΨ′2
a )

sin θ
[
ρ2 − µ

(
1 + CΨ

′2
a

)]
= 0

(14)

Each fixed point xa gets marginally stable (ρ = 1) for a
specific damping µ = µa. When the eigenvalues z of the
linear map are real (θ = 0), imposing ρ = 1 yields µa =
0. It is also straightforward to show that when θ = 0,
ρ ∈ [0, 1] for every µ ∈ [0, 1] so real eigenvalues always
correspond to stable fixed points. If θ 6= 0 (complex
conjugate eigenvalues) then ρ2 = µ

(
1 + CΨ

′2
a

)
so the

stability condition ρ ≤ 1 becomes

µ < µa =
1

1 + CΨ′2
a

∈]0, 1] (15)

Eigenvalues are complex when

µ > µc = 1 + 2CΨ
′2
a −

√
(1 + 2CΨ′2

a )2 − 1 (16)

Since µc < µa, the bifurcation in µ = µa is a Neimark-
Sacker bifurcation (discrete equivalent of the Hopf bifur-
cation). It is shown numerically that this bifurcation is
supercritical. It gives rise to a stable limit cycle centered
on (xa, wa) when µ > µa.

The linear map for the perturbations (x̃, w̃) = (x −
xb, w − wb) about fixed points of the second family is:{

w̃n+1 = µw̃n

x̃n+1 =
[
1− µC

1−µΨbΨ
′′
b

]
x̃n

(17)

The manifold along the w-direction is always stable, as
µ ∈]0, 1[. The x-direction is stable when

z = 1− µC

1− µ
ΨbΨ

′′
b ∈]− 1, 1[ (18)

If ΨbΨ
′′
b < 0, this x-manifold is unstable for all µ ∈]0, 1[

and the fixed point is a saddle. If ΨbΨ
′′
b > 0, the fixed

point is stable when

µ < µb =
1

1 +
CΨbΨ′′

b

2

(19)

For µ > µb, the fixed point is a saddle again.
The behavior of this simplified iterated map (9) is very

similar to the radial component of walker trajectory in ex-
periments (i–iii), especially when the wave function Ψ(x)
is considered equivalent to J0(kF r), where r is the radial
position on the orbit and kF the Faraday wavelength.
The fixed points of the map are then equivalent to cir-
cular orbits in the experiments. In configurations (i–ii)
at intermediate memory M (i.e. small µ), stable circular
orbits are indeed observed in ra with J0(kF ra) = 0. The
stable orbit reported in configuration (iii) [12] also ap-
proximately corresponds to a node of the axisymmetric
Faraday wave pattern right above threshold. At these lo-
cations, the walker does not generate any radial velocity
component so the trajectory remains circular. At higher
memory, these orbits destabilize and start wobbling and
drifting. In (i) it was shown that orbits of larger radius
ra, i.e. smaller J ′0(kF ra), destabilize at higher M , which
is consistent with the fact that fixed points of smaller |Ψ′a|
destabilize at higher µ. The analytical model of (i) [15]
shows that wobbling originates from a Hopf bifurcation
and is then associated to a pair of complex eigenvalues.
The same model [10] reveals the presence of unstable or-
bits in rb with J ′0(kF rb) = 0, again analog here to the
second family of fixed points. These orbits have always
real eigenvalues, some positive and some negative, so they
behave as saddles. The simplified iterated map thus cap-
tures well the existence and stability of circular orbits in
all three configurations of confined walker trajectories.

IV. TEST FUNCTIONS AND NUMERICAL
RESULTS

In the following, the map dynamics is further investi-
gated numerically for a specific set of functions Ψ and a
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FIG. 2. (Color online) Family of test functions Ψ(x, β). (a-b) Nullclines and fixed points for (a) β = π/3 and (b) β = π/6.
(c) Position of the fixed points xa (blue tones, in w = 0) and xb (red tones, extrema of Ψ(x, β)) as functions of the shape
parameter β. (d) Parameters Ψ

′2
a (blue tones – three upper curves) and ΨbΨ

′′
b (red tones – three lower curves) as functions of

β. In (c-d), the dashed lines indicate the seven values of β selected for the numerical analysis. Each of them corresponds to
a different symbol: (•) β = 0, (�) β = π/12, (F) β = π/6, (I) β = π/3, (N) β = π/2, (J) β = 3π/4, and (�) β = 11π/12.
Colors correspond to different fixed points (Blue tones are always used for xa while red tones refer to xb).

given constant C. The eigenfunctions of a cavity depend
on its geometry as well as on possible inhomogeneities
(e.g. depth). With other confinements, eigenfunctions
may even be more complicated. Nevertheless, they are
usually qualitatively similar to trigonometric functions:
they oscillate about zero with a characteristic frequency.
So we here aim at exploring a variety of functions Ψ that
qualitatively represent an eigenfunction. We choose a
family of test functions

ψ(x, β) =
cosβ√
π

sin 3x+
sinβ√
π

sin 5x (20)

These functions are defined orthogonal (and periodic)
over x ∈ [−π/2, 3π/2], but they can be represented on
x ∈ [0, π/2] owing to their symmetry. Varying the shape
parameter β ∈ [0, π[ allows for the exploration of many
different configurations of fixed points, as confirmed in
figure 2. Seven specific values of β have been chosen that

give a comprehensive overview of the different behaviors
of ψ(x, β).

In the present numerical simulations, the coupling con-
stant C is chosen equal to 0.05, resulting from the fol-
lowing compromise. The average step size (xn+1 − xn)
increases with C. Consequently, the particle interacts
less often with the wave when C is large. It behaves as
if it had more inertia. Inertia is a key ingredient for the
occurrence of chaos in this model. This can be proven
by considering the continuous version where flight times
between successive impacts are infinitely short. Position
and wave amplitude [x(t), w(t)] are then given by

αẍ+ ẋ = −CwΨ′(x) and ẇ = −µcw + Ψ(x) (21)

where α is an inertia coefficient and µc ∈ [0,∞[ the con-
tinuous analog of the damping factor µ. When α = 0 (no
inertia), the system of non-linear ODEs becomes two-
dimensional, and therefore cannot exhibit any chaotic
behavior. Discretization and inertia somehow play the
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same role. Inertia should however be limited, as the par-
ticle is not expected to travel more than the cavity size
in a single step. The choice C = 0.05 is shown to repre-
sent a good compromise in terms of inertia, which gives
the particle a behavior comparable to the walkers. In the
vicinity of the saddles, the position increment xn+1− xn
may be close to the machine epsilon. In order to limit
the resulting numerical noise, the map is rewritten as a
function of x̃n = xn − xb as soon as |Ψ′(xn)| < 10−6.

V. TRANSITION TO CHAOS

Figure 3 shows the evolution of the trajectory with
increasing µ in the (x,w) plane for β = π/3 [16]. At
µ = 0.8682 (Fig. 3a), only the rightmost fixed point xa
is still a stable focus about which every trajectory ulti-
mately spirals. This focus experiences a Neimark-Sacker
bifurcation at µa = 0.8795, so when µ = 0.9088 (Fig.
3b), the focus is unstable and surrounded by a stable
limit cycle. In general, the extension of the limit cycles
increases with µ, until they collide with the stable mani-
folds of the saddles in x = xb. For β = π/3, this happens
at µ ' 0.917. Similarly in (i), the wobbling amplitude is
shown to increase with memory until the wobbling orbit
collides with the most adjacent unstable orbit [9]. At this
stage, a chaotic attractor is revealed as no other stable
regular attractor is left (Fig.3c, with µ = 0.9369). The
strange attractor has a characteristic multilayered frac-
tal topology. It inflates along w with increasing µ, as
shown in Fig.3d for µ = 0.9924. The Lyapunov exponent
is positive in the chaotic regime (Figure 4): trajecto-
ries initially separated by ∆x = 10−10 (and ∆w = 0)
are fully decorrelated after about 170 iterations. This
corresponds to the approximate time required to travel
once along the chaotic attractor. So a strong dependence
to initial conditions is indeed observed in this chaotic
regime. A typical chaotic trajectory is shown in Figure
5 [17]. The particle is attracted to the stable manifold
of a saddle xb. Then, the wave amplitude w builds up
as the particle moves along this manifold. Ultimately,
the particle is ejected along the unstable manifold. The
direction of ejection is very sensitive to initial conditions.
Once ejected, the particle quickly reaches another adja-
cent saddle.

Transition to chaos is summarized in the bifurcation di-
agram (x, µ) of Figure 6(a-b) for β = 0 and β = π/3. The
likelihood (Probability Distribution Function - PDF) to
find the particle at a given position x is also represented.
In the chaotic regime, peaks of the PDF (resp. troughs)
are observed at positions xb (resp. xa), which simply
reflects that the faster a particle moves, the less time it
spends about a given location. Figure 6(c-d) represents
the PDF for a given value of µ > µc. It shows that in
the chaotic regime, the PDF (here calculated over 2 · 106

successive positions from the initial condition x0 = 0.1

and w0 = 0.1) approximately satisfies

PDF (x) ' 1

c0|Ψ′(x)|
(22)

where c0 is a fitting parameter. So in this iterated map
(9) aimed at capturing wave-particle coupling, the wave
function Ψ(x) directly shapes the PDF of the particle
position. A similar behavior has been observed in (iii),
where both the radial velocity of the walker and its subse-
quent PDF are also shaped by the eigenmode of the cav-
ity. There, in the chaotic regime, peaks [resp. troughs] of
likelihood are systematically observed in rb [resp. ra]. It
has to be noted that equation (22) is approximative and
empirical. The apparent noise in the PDF correspond to
higher frequency oscillations that are not removed with
either a larger sample of impacts or more bins.

VI. INTERMITTENT DYNAMICS

A closer look at a chaotic sequence (Fig. 5) confirms
that the particle spends most of its time in the immedi-
ate vicinity of the stable manifolds xb. It switches from
one manifold to the next after a certain time τb, different
for each xb. The statistical distribution of τb for a large
number of successive passages of the same particle is rep-
resented in Figure 7(a). Saddles with Ψb · Ψ′′b < 0 have
a sharp asymmetric distribution from which an average
time < τb > can unambiguously be defined. By contrast,
as soon as a saddle with Ψb · Ψ′′b > 0 is present (here at
β = π/6, cf. Fig. 2b), the time distribution is signifi-
cantly broader and the average is less representative.

Figure 7(b) shows that the ensemble average < τb >
over many passages about the saddle point xb is directly
related to its largest eigenvalue:

< τb >'
3.5

C|ΨbΨ′′b |
(23)

This relationship has been tested for seven different val-
ues of β and the corresponding 15 different saddles rep-
resented in figure 2. The agreement is excellent, and the
proportionality constant only slightly depends on µ. The
only points that fail to satisfy this equation are the ones
for which the distribution of τb is not a sharp peak (i.e.
when there is a saddle for which ΨbΨ

′′
b < 0). So here

again, the wave function Ψ(x) determines the probabil-
ity to find the particle in the vicinity of saddles xb. One
could see these saddles as discrete eigenstates of the sys-
tem, which probability is weighted by 1/(ΨbΨ

′′
b ). Any

linear superposition of these eigenstates can be achieved
with an appropriate Ψ(x). In the chaotic regime of all
configurations (i-iii), the walker trajectory can also be de-
composed into segments of regular orbits considered as
the eigenstates of the system. The walker stays in each
eigenstate for a certain time before it quickly switches to
another. In case (iii), these eigenstate orbits are precisely
located about rb. In case (i) though, the eigenstates are
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(a) (b)

(c) (d)

FIG. 3. (Color online) Phase diagrams (x,w) for β = π/3. (a) Stable fixed point (right) at µ = 0.8682. (b) Limit cycle at
µ = 0.9088. (c) Strange attractor (early chaos) at µ = 0.9369. (d) Strange attractor (fully-developed chaos) at µ = 0.9924.
Blue tone (resp. red tone) symbols represent fixed points xa (resp. xb). The solid line is the null cline w = µΨ(x)/(1− µ).

located in ra at high memory [15]. This is one of the few
qualitative differences between predictions of the simpli-
fied map and the radial dynamics in experiments.

The "unfolded" trajectory xn (considering that ψ(x, β)
is a periodic function) indicates that the particle switches
randomly from one stable manifold to the next, either left
or right (Fig.8a). Therefore, the long term behavior of
the particle is equivalent to a 1D random walk. The par-
ticle diffuses, and the variance of the travelled distance
(xn+N − xn) grows linearly with time N , as shown in
Fig.8b. The diffusion coefficient D ' 0.019 can be esti-
mated from the average intermittency time < τb >' 22
and the average spacing between saddles ∆xb ' 0.63:

D ' (∆xb)
2

< τb >
(24)

This diffusion coefficient increases linearly with C for
C < 0.08, which reflects that < τb >∼ C−1. The order
of magnitude chosen for C ∼ 0.05 can now be justified.

A close examination at the chaotic trajectory in configu-
ration (iii) [12] reveals that the walker changes direction
about every Faraday wavelength. This distance can then
be considered as the elementary step of an analog ran-
dom walk, or the equivalent of ∆xb in this model. It is
travelled in approximately 17 rebounds in [12], which is
of the same order of magnitude as the intermittency time
< τb > for C = 0.05.

VII. DISCUSSION

In 1927, Louis de Broglie presented his pilot-wave in-
terpretation of quantum mechanics [18] at the fifth Solvay
conference. In this deterministic theory, quantum parti-
cles are guided by a pilot wave that satisfies Schrodinger
equation. The particles do not exert any instantaneous
and individual feedback on the wave. The theory was
later extended by Bohm [19]. If the wave is regular,
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FIG. 4. Diverging distance between two trajectories initially
separated by ∆x = 10−10 and ∆w = 0. Parameters are β =
π/3 and µ = 0.9369.

the particle trajectory predicted by pilot-wave theories is
usually regular, although it may become chaotic in some
confined geometry [20]. One shortcoming of Bohmian
mechanics is that the particle does move only when mul-
tiple eigenmodes are considered. Indeed, the particle ve-
locity is proportional to ψ∗∇ψ − ψ∇ψ∗ which amounts
to zero for a single cavity mode ψ(x, t) = Ψ(x)e−iEt/~.
The statistical behavior of quantum mechanics is more
often explained by the inherently chaotic wave field gen-
erated by the presence of a large number of particles
[21]. By contrast, the walkers discovered by Couder and
co-workers represent a macroscopic wave-particle cou-
pling where the guiding wave originates from the par-
ticle itself. When confined, individual walkers experi-
ence chaotic trajectories during which they permanently
switch between unstable orbits analog to discrete eigen-
states. The resulting statistics of walker position reflects
the geometry of the wave field.

In this paper, a two-dimensional iterated map (Eq.9)
is proposed that models the wave-particle coupling of
confined walkers in a mathematically simple way, orig-
inating from spectral decomposition. It does not have
the shortcoming of Bohmian mechanics, as chaotic mo-
tion is produced in any cavity from a single eigenmode.
Another model was previously proposed by D. Shirokoff
[13] to describe walkers in a square cavity (for which no
experiments have been reported yet). There the math-
ematical description is significantly more complex. The
consideration of boundaries was not addressed with spec-
tral decomposition, but rather with the method of mirror
images. Unfortunately this method becomes impractica-
ble at high memory, where a prohibitively large number
of images resulting from previous impacts has to be con-
sidered. Consequently, Shirokoff’s model could only be
investigated in the low memory regime. Chaos is never-
theless observed when the coupling parameter F (equiv-
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FIG. 5. (Color online) Trajectory in the chaotic regime
(β = π/3, µ = 0.9369). The particle switches intermittently
between the different manifolds xb (red-tone dash-dot lines)
and constantly avoids the unstable fixed points (blue-tone
dashed lines). The trajectory has been folded on the interval
x ∈ [0, π/2], owing to the symmetry and periodicity of Ψ(x).

alent to C in the present model) is sufficiently large. The
PDF of the trajectory at high F also seems to reflect the
symmetry of the cavity and the shape of stable orbits at
small F , although this similarity has not been quantified.

The present map overcomes these shortcomings. When
thought as the radial component of the walker trajectory,
it captures many features of walker behavior in confined
environments. Similarities include (1) the families of reg-
ular orbits in the low memory regime; (2) the sequence of
destabilization of these trajectories and route to chaos as
the memory parameter is increased; (3) the chaotic tra-
jectory being a composition of eigenstates reminiscent
of the unstable regular orbits; and (4) the relationship
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FIG. 6. (Color online) – (a-b) Bifurcation diagram (x, µ) for Ψ = ψ(x, β) for β = 0 (a) and β = π/3 (b). Yellow to green color
(light to dark gray) represents the likelihood to find the particle at a given position x, normalized by the probability of a uniform
distribution. A position coded 16 : 1 (resp. 1 : 16) is 16 times more (resp. less) likely than if the distribution was uniform.
Fractions below 1 : 16 are set to white. The horizontal line indicates the value of µ selected in (c-d). (c-d) Correlation between
the inverse of the Probability Distribution Function (symbols) and |Ψ′(x)|. The black solid line corresponds to c0|Ψ′(x)|.
Parameters are (c) µ = 0.9241, c0 = 10; and (d) , µ = 0.99, c0 = 3.3. In (a-d), vertical lines correspond to the fixed points.
Line style refers to fixed point stability: (solid) stable, (dashed) unstable, (dash-dot) saddle.

between the wave field and the PDF of the walker po-
sition. It is shown here that these four properties are
almost not dependent on the wave shape Ψ(x). They are
also shared by several configurations of confinement in
which walkers have been observed. Consequently, they
are unaffected by the extreme simplification of the math-
ematical description proposed herein. Nevertheless, the
exact relationship between Ψ(x) and the probability dis-
tribution depends on the nature of the coupling between
the wave and the particle. Future work could include the
search for a wave-particle coupling dynamics that yields

PDF (x) ∼ |Ψ(x)|2 as observed in quantum mechanics.
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