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Abstract: Effective ecosystem-based management requires understanding ecosystem responses to multiple
human threats, rather than focusing on single threats. To understand ecosystem responses to anthropogenic
threats holistically, it is necessary to know how threats affect different components within ecosystems and
ultimately alter ecosystem functioning. We used a case study of a Mediterranean seagrass (Posidonia oceanica)
food web and expert knowledge elicitation in an application of the initial steps of a framework for assessment
of cumulative human impacts on food webs. We produced a conceptual seagrass food web model, determined
the main trophic relationships, identified the main threats to the food web components, and assessed the
components’ vulnerability to those threats. Some threats had high (e.g., coastal infrastructure) or low impacts
(e.g., agricultural runoff) on all food web components, whereas others (e.g., introduced carnivores) had very
different impacts on each component. Partitioning the ecosystem into its components enabled us to identify
threats previously overlooked and to reevaluate the importance of threats commonly perceived as major. By
incorporating this understanding of system vulnerability with data on changes in the state of each threat (e.g.,
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decreasing domestic pollution and increasing fishing) into a food web model, managers may be better able
to estimate and predict cumulative human impacts on ecosystems and to prioritize conservation actions.

Keywords: conservation actions, ecosystem-based management, expert knowledge elicitation, multiple threats,
seagrass, vulnerability

Hacia un Marco de Trabajo para la Evaluación y el Manejo de los Impactos Humanos Acumulativos sobre las Redes
Alimenticias Marinas

Resumen: El manejo efectivo con base en los ecosistemas requiere entender la respuesta de los ecosistemas a
múltiples amenazas humanas en lugar de enfocarse en amenazas individuales. Para entender hoĺısticamente
la respuesta de los ecosistemas a las múltiples amenazas antropogénicas es necesario saber cómo estas
amenazas afectan a los diferentes componentes dentro de los ecosistemas y cómo alteran finalmente el
funcionamiento de los ecosistemas. Usamos el estudio de caso de la red alimenticia del pasto marino del
Mediterráneo (Posidonia oceanica) y la obtención de conocimiento de expertos en una aplicación de los
pasos iniciales de un método para la evaluación de los impactos humanos acumulativos sobre las redes
alimenticias. Produjimos un modelo de red alimenticia de pastos marinos, determinamos las principales
relaciones tróficas, identificamos a las principales amenazas para los componentes de la red y evaluamos
la vulnerabilidad de los componentes a esas amenazas. Algunas amenazas tuvieron impactos altos (p. ej.:
infraestructura costera) o bajos (p. ej.: escorrent́ıa agŕıcola) sobre todos los componentes de la red, mientras
que otros (p. ej.: carnı́voros introducidos) tuvieron impactos muy diferentes sobre cada componente. Partir
al ecosistema en sus componentes nos permitió identificar amenazas no vistas previamente y reevaluar la
importancia de las amenazas percibidas comúnmente como mayores. Al incorporar este entendimiento de la
vulnerabilidad del sistema con datos sobre los cambios en el estado de cada amenaza (p. ej.: disminución de
la contaminación doméstica e incremento de la pesca) al modelo de red alimenticia, los manejadores pueden
ser capaces de estimar y predecir de mejor manera los impactos humanos acumulativos sobre los ecosistemas
y priorizar las acciones de conservación.

Palabras Clave: acciones de conservación, amenazas múltiples, manejo con base en los ecosistemas, obtención
de conocimiento de expertos, pastos marinos, vulnerabilidad

Introduction

Ecosystems are affected by multiple human threats si-
multaneously (Halpern et al. 2008a). Recently, there
has been increased emphasis on ecosystem-based man-
agement (EBM) approaches to address this challenge.
EBM aims to sustain ecosystems and their services to
humans considering the complexity of human pressures
on ecosystems (Levin et al. 2009).

Management decisions ideally should be guided by an
understanding of how ecological components or specific
ecosystem services respond to multiple threats in a given
location. Management actions that focus on threat miti-
gation will have different and, sometimes, contradictory
consequences for different ecosystem components and
services based on how directly or indirectly those ecosys-
tem attributes are affected by the threat (Halpern et al.
2008b), and on how each service is linked to specific
ecosystem components. Thus, for effective and efficient
EBM implementation, it is important to understand not
only how anthropogenic threats diffuse across space,
but also how those threats affect different components
within complex ecosystems, ultimately affecting ecosys-
tem structure and functioning. To date, cumulative im-
pact assessments have focused on entire ecosystems,
essentially averaging the effect across all species (e.g.,
Halpern et al. 2008a; Ban et al. 2010) or on single species

or taxa (e.g., Maxwell et al. 2013). We devised a frame-
work that accounts for food web interactions (Fig. 1)
to better understand how human threats affect differ-
ent ecosystem components and consequently ecosystem
functioning. We used a food web of the endemic Mediter-
ranean seagrass Posidonia oceanica (L.) Delile ecosys-
tem as a case study in which we applied steps 1–4 of
our proposed method (Fig. 1). To assess the vulnerability
of food web components to multiple threats, we applied
an expert knowledge elicitation method. In the absence
of sufficient empirical data, expert knowledge elicitation
has emerged as a key tool for rational decision making
in conservation (Burgman et al. 2011). Our framework
should be relevant and applicable to other ecosystems at
any location.

Methods

Case Study

In the Mediterranean Sea, meadows formed by P. ocean-
ica are widespread, spanning the coastal waters of
16 countries, but they have been subjected to rapid de-
cline over the past decades (Giakoumi et al. 2013). The
P. oceanica ecosystem has been studied more than any
other in the Mediterranean; there are more than 2100 ISI
publications (search on Web of Science for the period
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1. DefiniƟon of a conceptual food web model

3. IdenƟficaƟon of major threats to the food web 

4. Assessment of vulnerability of each food web component to 
threats

7. EsƟmaƟon of cumulaƟve impacts on the food web

6. IncorporaƟon of threats into the food web model 

8. SelecƟon of conservaƟon acƟon based on objecƟves 
related to specific ecosystem services 

5. ConstrucƟon of a dynamic food web model 

2. DeterminaƟon of relaƟonships within the food web 

9. EvaluaƟon of effects of conservaƟon acƟons 
miƟgaƟng threats on food webs

Figure 1. Framework for the selection of management actions accounting for cumulative human impacts on food
webs. Steps 1 to 4 (black type) are presented through the seagrass case study, and steps 5–9 are discussed.

1864–2014) and a substantial amount of gray literature
on the ecosystem (e.g., Boudouresque et al. 2012). Yet,
empirical data are still missing regarding the vulnerability
of various components of the seagrass food web to hu-
man threats. Therefore, an expert knowledge elicitation
process was followed to obtain information.

Expert Knowledge Elicitation

We convened a 3-day workshop of 14 experts on the
P. oceanica ecosystem and its threats in 2013 to acquire
information that would allow us develop the initial steps
of a framework for assessing cumulative human impacts
on food webs. Before and during the workshop, expert
knowledge was used to identify: the main components
of the seagrass food web; the relationships among these
components; the main human threats to the food web;
and the vulnerability of the different components of
P. oceanica food web to human threats (see Support-
ing Information for elicitation process description and
summary of literature review). Experts consulted the con-
ceptual P. oceanica food web in Personnic et al. (2014)
and key references that describe trophic relationships in
the P. oceanica ecosystem (e.g., Buia et al. 2000; Vizzini
2009).

Vulnerability Assessment

To assess each components’ vulnerability to human
threats, we used vulnerability measures based on those
developed by Halpern et al. (2007) for ecosystems and
Maxwell et al. (2013) for marine predators. The 4 adapted
vulnerability measures were scale of impact, frequency of
impact, sensitivity to the impact, and recovery time (Sup-
porting Information). Scale and frequency of impact de-
fine level of exposure to the impact of a threat, sensitivity

is the likelihood and magnitude of an impact on a food
web component once the impact occurs, and recovery
is the adaptive capacity of the food web component. We
assessed level of certainty (i.e., available evidence) for
each food web component and threat interaction. We
took the grand mean of these weighted averages of the
4 vulnerability measures to get a single score (from 0 to
4) that indicated how a given threat affects a particular
food web component (Supporting Information).

Framework Steps 1–4

The information acquired by the experts and the develop-
ment of the vulnerability assessment method described
allowed us to implement the first 4 steps of the pro-
posed framework (Fig. 1). We produced a static food
web model that encompassed the major trophic groups
in the seagrass ecosystem (step 1). We considered trade-
offs between complexity and data availability. Then, we
defined the major trophic interactions and organic matter
flows in the system (step 2). We also identified the major
threats to each ecosystem component (step 3). To ad-
dress the challenge of tracking impacts on different food
web components, we teased apart the direct and indirect
responses of ecosystem components to each threat type
(step 4). This step is necessary to produce a more com-
prehensive understanding of why and how ecosystems
respond to the cumulative impact of human activities at
a later stage (step 7 in Fig. 1).

Results

Conceptual P. oceanica Food Web Model and Trophic
Relations

Experts identified the principal components of the
P. oceanica food web (step 1) and major trophic
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Figure 2. Conceptual P. oceanica food web model (colored rectangles, food web components; outer green dashed
line, P. oceanica system; gray dashed line, clusters of functional groups that share a common link to some other
compartments; black arrows, transfer of energy among different compartments; gray arrows, energy transfer
among clusters of food web components; DOC, dissolved organic carbon; BAFHS, bacteria, archaea, fungi, and
heterotrophic stramenopiles; SPOM, suspended particulate organic matter). Top left picture courtesy of S. Ruitton.

interactions and organic matter flows in the system
(step 2). The model included functional compart-
ments from producers to high-level predators (Fig. 2 &
Supporting Information).

Main Threats and Food Web Components’ Vulnerability

Experts identified 21 main human threats on the P. ocean-
ica ecosystem (step 3), 9 of which are sea-based and
12 of which are land-based (see Supporting Informa-
tion for threats’ definitions). Some threats appeared to
have high impacts on all food web components (Fig. 3,
right-hand side), whereas others had lower and very
different impacts across functional compartments (e.g.,
introduced herbivores, climate change—sea-level rise).
A third group had even lower effects on all compo-
nents (e.g., introduced carnivores, agricultural runoff)
(step 4). All threats related to climate change, except
for acidification, presented a high variation in their im-
pacts across functional compartments, possibly reflecting
limited available information.

The majority of food web components were most
vulnerable to broad-scale irreversible coastal construc-
tion, such as ports, except for carnivores and omnivores
and high-level predators. Carnivores and omnivores and

high-level predators seemed to be more vulnerable to
trawling and other fishing techniques, respectively, be-
cause these components are specifically targeted by such
activities. Large fish farms, through increased sedimenta-
tion, nutrient load, and light restriction, were believed to
be a second major threat for P. oceanica leaf canopy and
associated epibiota, but to have less influence on higher
trophic levels (Fig. 3). For most organisms, except for
endofauna, trawling was among the top 5 threats. How-
ever, its rank differed among functional compartments.
Industrial pollution was also among the top 5 threats
for all food web components. Figure 3 shows also the
threats food web components were less vulnerable to.
However, such low vulnerability should be treated with
caution because most of the low-ranked threats (e.g., agri-
cultural runoff and sea-level rise) had the least certainty
(Supporting Information).

Gaps in Knowledge

According to experts, P. oceanica leaves were the best
documented food web component in terms of impacts
from human threats followed by epibiota, P. ocean-
ica roots and rhizomes, and macrograzers. The most
poorly documented components were: endofauna, filter
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Figure 3. Radar chart of the relative vulnerability (0 [lowest] to 4 [highest]) of P. oceanica food web components to
human threats. Each food web component is a different color and each threat corresponds to a spoke.

feeders, and high-level predators. Overall, the impacts
with the greatest level of certainty were related to the
following threats: fish farms, irreversible coastal infras-
tructure, domestic pollution, and trawling. In contrast, in-
formation on impacts was almost nonexistent for threats
such as agricultural runoff, thermal pollution, introduced
carnivorous species, and sea-level rise. Impacts from an-
choring, fish farming (in adjacent area), and introduc-
tion of alien macrophytes could be more or less certain
depending on whether they affected lower or higher
trophic levels. Unsurprisingly, the greatest variation in
the scores attributed by experts to vulnerability measures
was observed for the most poorly studied food web com-
ponents and threats (Fig. 2 & Supporting Information).

Discussion

Marine coastal ecosystems are threatened by multiple
land- and sea-based threats acting in concert. Our results
show that food web components differ in their vulner-
ability to human threats and are expected to react in
different ways when exposed to them. These results can
be the basis of more accurate predictions of how hu-
man impacts affect ecosystem components. When such
information is incorporated into a trophic model that
includes trophic dynamics, one can obtain a more pre-
cise estimate of how overall ecosystems will respond to
the cumulative effect of anthropogenic threats. Conse-
quently, detailed knowledge of the impacts of threats on

ecosystems can identify threat mitigation actions with po-
tential benefits to ecosystems and their ability to deliver
desired ecosystem services. EBM should be more effec-
tive if it were to take into account direct and indirect
impacts of threats to different ecosystem components,
rather than using ecosystem-wide or taxa-specific mea-
sures of impacts (Carey et al. 2014).

Partitioning the ecosystem into its components fa-
cilitated the identification of main threats to the
ecosystem as a whole. For instance, when threats to
P. oceanica ecosystem were initially identified based on
Boudouresque et al. (2009), fishing practices (other than
trawling) were not included as a major threat on P. ocean-
ica because the focus of that review was the plant itself
and not the food web. However, when considering all
ecosystem components, this threat was added because
it directly threatens higher trophic levels of the food
web. This has implications in prioritizing actions for the
maintenance of ecosystem services. More specifically, the
objective of maintaining seagrass meadows as a source
for food provision may prioritize restrictions to fishing
practices as an appropriate management action.

In contrast, threats widely considered as major threats
to seagrasses, such as agricultural runoff (Grech et al.
2012), appeared to be less important for P. oceanica
(Fig. 2), whose meadows are always absent from areas
near large river discharges due to low salinity. In the
absence of empirical data, experts attributed very low
certainty to the impacts of this threat on all food web com-
ponents. Such findings are particularly important from a
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management point of view because further research is
needed to assess the impacts of agricultural runoff on
P. oceanica before investing conservation resources to
mitigate this threat. The lack of impact assessment im-
pairs the estimation of potential benefits from conser-
vation actions mitigating this threat. At the same time,
actions directed to address other threats where the im-
pacts are more certain may be more efficient and reduce
the risk of failure.

Food web components showed a great variation in
expected vulnerability to climate change–related threats.
This variation reflects the low level of certainty regard-
ing the impacts of climate change on most functional
compartments and the need for further research in this
field. Overall, ecosystem components seemed to be more
vulnerable to local rather than global threats. This find-
ing contrasts with evidence from previous studies in the
region (e.g., Micheli et al. 2013) and elsewhere (e.g., Ban
et al. 2010). Certainty about the impacts of threats on
whole ecosystems seems to decrease when experts focus
on impacts to each ecosystem component separately. Just
as segregating vulnerability into its components can pro-
vide a more accurate estimate of an ecosystems’ vulnera-
bility to threats (Halpern et al. 2007), identifying human
impacts on each ecosystem component can help in the
estimation of overall impacts of threats on ecosystems
and provide insights on how these can be mitigated.

To assess the overall benefits of different sets of
management actions on food webs, additional steps
are needed (Fig. 1). A further step is the construction
of a quantitative food web model from data on the
biomass of functional compartments and fluxes between
compartments (step 5). Interactions among organisms
or functional compartments within food webs that are
precipitated by the introduction or removal of multiple
threats (step 6) will determine the cumulative impacts
on the food web (step 7). When a full model is available,
relations between threats (synergistic, antagonistic,
or additive) can be quantified taking into account the
structure of the food web and its dynamics. Then,
the vulnerability values of food web components to
human threats estimated here can be incorporated into
the dynamic food web model for the parameterization
of each food web component. Efficient prioritization
of resources demands that actions to address specific
threats and their corresponding costs and conservation
benefits be identified (Evans et al. 2011). Better
estimation of cumulative impacts on the food web will
allow better estimation of conservation benefits resulting
from management actions (steps 8 and 9).
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Appendix S1: Methods including a) Expert knowledge elicitation, b) Vulnerability 
assessment, c) experts’ questionnaire, d) literature related to impacts of threats on 
functional compartments (Table S1.2), e) threats definitions, as well as ranks of 
vulnerability measures (Table S1.1) and  threats – stressors table (S1.3) 

a) Expert knowledge elicitation 

Experts were selected by assessing the scientific literature on the impacts of threats on the P. 

oceanica ecosystem. Experts’ experience of the Posidonia oceanica ecosystem ranged from 2 

to 35 years, with an average of 19 years. A Nominal Group Technique (NGT) was followed (Van 

de Ven & Delbecq 1971, 1974) and consisted of three stages: 1) estimate, 2) feedback, and 3) 

re-estimate. Experts were asked to fill in a questionnaire prior to their attendance to the 

workshop, in order to elicit information from them independently. The questionnaire required 

evaluation of the vulnerability of food web components to a number of threats. The initial 

selection of food web components and threats was based on Boudouresque et al. (2009, 2012). 

Facilitated face-to-face group discussions followed during the workshop. Experts were shown a 

visual summary of responses from all participants and discussed about the initial evaluations, 

which later allowed them to update their values. Experts were not required to form a single 

group estimate, but to provide arguments for their initial evaluations.  

 

During the workshop, the principal components of the seagrass food web and their main threats 

were discussed and revised (see definitions and threats/stressors relations in part E; pages 26-

28). Furthermore, a part of the workshop was dedicated to an update of the conceptual 

representation of the P. oceanica food web and the identification of trophic relations between 

components. After workshop discussions, questionnaires were modified according to experts’ 

suggestions, and experts were asked to make individually second final private estimates (see 

questionnaire on pages 6-17). Experts had access to literature containing empirical data for all 

food web components/threat combinations available (Table S1.2). This list of references was 

the product of an extensive search in ISI Web of Knowledge (period covered 1864 – 2014) 
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using within the ‘‘Topic” field a combination of threats and food web components (i.e. names of 

family, genus or species belonging to each food web component) as keywords.  We retrieved 

numerous studies on the impacts of threats on P. oceanica food web components across the 

Mediterranean Sea at various spatial scales (see Table S1.2, pages 18 &19).  

"

b) Vulnerability assessment  

Values for each component/threat combination were obtained using methods described in 

Halpern et al. (2007). For each vulnerability measure and each of the 189 component/threat 

combinations, we resized “scale” and “sensitivity” values to range from 0 to 4, so that all 

vulnerability measures are in the same scale (Table S1.1). Average scores across experts’ 

responses for each component (i) / threat (j) combination were estimated by: 1) multiplying the 

0-4 rank given by each expert (xij) by the corresponding certainty value (cij), and 2) dividing the 

sum of these weighted values for each vulnerability measure by the sum of the certainty values 

provided by the experts: 

 

Then, we took the grand mean of these weighted averages of the four vulnerability measures to 

get a single score (from 0 to 4) that indicated how a given threat affects a particular food web 

component (see Halpern et al. 2007 for a detailed description). We assumed equal weighting of 

the four vulnerability measures because it is difficult to attribute them different weights based on 

available information: each plays an important and variable role depending on the threat 

considered and context (Halpern et al. 2007). Vulnerability was assessed for the most important 

and well-studied components described in the conceptual model of the P. oceanica food web. 

Literature 

Van de Ven, A. and A.L. Delbecq. 1971. Nominal versus interacting compartment processes for 
committee decision making effectiveness. Academy of Management Journal 14: 203-212.  
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Van de Ven, A. and A.L. Delbecq. 1974. The effectiveness of nominal, Delphi, and interacting 
compartment decision making processes. Academy of Management Journal 17: 605-621 

Halpern, B.S., Selkoe, K., Micheli, F., and C. Kappel. 2007. Evaluating and ranking the 
vulnerability of global marine ecosystems to anthropogenic threats. Conservation Biology 21: 
1301-1315. 
 
Table S1.1: Ranks of vulnerability measures for impact assessment on food web components. 

Vulnerability measure Category Rank Descriptive Notes  Example 

Scale (m2) 

What is the scale of the 
threat impact? 

No threat 0   

<10 1  Anchor damage 

10-100 2  Reduced light due to 
fish farm pens 

100-1000 3  Sediment runoff 

1000-10000 4  Single trawl drag 

>10000 5  Land-based 
pollution from runoff 
of rivers 

Frequency 

What is the frequency 
of the impact? 

Never 0   

Rare 1 Infrequent enough to 
affect long-term dynamics 
of a given population or 
location 

Large oil spill 

Occasional 2 Frequent but irregular in 
nature 

Toxic algal blooms 

Annual or 
regular 

3 Frequent and often 
seasonal or periodic in 
nature 

Runoff events due 
to seasonal rains 

Persistent 
or 

permanent 

4 More or less constant 
year-round lasting 
through multiple years or 
decades 

Coastal 
infrastructure 

Sensitivity No impact 0   
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How likely is that 
impact to affect the 
species in the affected 
trophic level? 

Low 1 Unlikely to result in 
change in cover, density, 
abundance or community 
structure (0-33%) 

Anchor damage 

Medium  2 Moderate likelihood of 
change in cover, density, 
abundance or community 
structure (33-66%) 

Introduction of 
invasive species 

High 3 High likelihood of change 
in cover, density, 
abundance or community 
structure (66-100%) 

Use of explosives in 
fishing 

Recovery time (years) 

How long does it take to 
recover from exposure 
to the impact? 

No impact 0   

<1 1  MPO leaf epibiota 
recovery after 
disturbance 

1-10 2  Short-lived species 
recovery from 
episodic toxic 
pollution 

10-100 3  Long-lived species 
recovery from 
overfishing 

>100 4  P. oceanica above 
ground recovery 
after trawl damage 

Certainty 

How well are the 
impacts documented? 

None 0   

Low 1 Very little or no empirical 
work exists 

 

Medium 2 Some empirical work 
exists or the expert has 
some personal 
experience 
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High 3 Body of empirical work 
exists or the expert has 
direct personal 
experience 

 

Very high 4 Extensive empirical work 
exists or the expert has 
extensive personal 
experience  

 

"
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c) Questionnaire 

1. General information  

Please provide the following information. 

1. Name:  

2. Affiliation: 

3. How many years have you been working on Posidonia oceanica ecosystem:    

4. Number of relevant publications including, peer reviewed papers, books, book chapters, 
official reports (grey literature):  

5. Which part(s) of the food web has been the main focus of your research (please enter an X 
next to the trophic level you have been studying): 

P. oceanica above ground 

P. oceanica below ground 

MPO and UPO leaf and rhizomes epibiota 

Endofauna 

Benthic suspension and filter feeders (e.g. Pinna nobilis, sponges, Sabella spallanzanii) 

Mesograzers (e.g. Amphipoda, Isopoda, Tanaidacea, Gastropoda, Polychaeta) 

Macrograzers (e.g. Sarpa salpa, Paracentrotus lividus) 

Carnivores/ Omnivores (e.g. Diplodus spp.  Labrus spp. Sparus spp., Symphodus spp. 
Hippocampus spp.,  Echinaster sepositus, Asterina pacerii) 

High level predators (e.g. adults of Scorpaena spp., Conger conger, Serranus spp.) 

6. Which of the following threats and their impacts on P. oceanica ecosystem have you 
investigated (please enter an X next to the threats you have been studying)? 

Coastal development – permanent infrastructure 

Coastal development – small periodic interventions 

Industrial pollution  

Domestic pollution 
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Thermal pollution 

Desalination  

Agricultural runoff 

Trawling 

Fish farms 

Anchoring 

Mooring  

Introduced species – macrophytes 

Introduced species – herbivores 

Introduced species – carnivores  

Climate change – temperature rise 

Climate change – acidification 

Climate change – sea level rise 

Climate change – native species change of abundance and/or distribution 

7. At what scale are you working on P. oceanica? (please enter an X next to the appropriate 
scale) 

 

a. Plant   Habitat   Ecosystem 

 

b.  <1 km  1-10 km 10-100km >100km  >1000km
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2. Vulnerability information. Please complete the tables having in mind a Posidonia oceanica meadow. 

Please fill out the following tables based on your own experience and knowledge from literature review. If evaluation is not based 
on literature or on personal experience but on logical conclusions please insert a cross (+) next to the number (rank) you have 
inserted in the cell. Please insert only one rank value in each cell. Not determined (ND) is used when we know that there is no 
information relating a particular threat to a particular trophic group. If you do not know about the impact of a threat on a trophic 
group because we do not have information from literature, personal experience or cannot make logical assumptions, please leave 
the field in the table blank.  

Table 1. Scale (m2) of threat impact. What is the scale of the impact of the threat? Please enter in each cell one of the following numbers: 0= no threat, 1= less 
than 10 m2, 2= 10 – 100 m2, 3= 100 – 1000 m2, 4= 1000 – 10000 m2, 5=more than 10000 m2 ND = Not determined. Spatial scale is not the scale at which 
threats exist (most can be found almost everywhere). For example, a single pass of a demersal trawl may cover approximately 1–10 km2, whereas 
demersal trawling overall affects 1000s of km2 of continental shelf ecosystems each year. The vulnerability measure focuses on the first scale. For 
details on trophic component definition see point 5 at the beginning of this questionnaire. 

Threat / 
Trophic level 

P. 
oceanica 
above 
ground 

P. 
oceanica 
below 
ground  

MPO & 
UPO leaf 
and 
rhizomes 
epibiota 

Mesograzers  Macrograzers  Endofauna  Benthic 
suspension 
and filter 
feeders  

Carnivores/ 
Omnivores  

High level 
predators  

Coastal 
Infrastructure 
(irreversible 
e.g. ports) on 
the site  

         

Coastal 
Infrastructure 
(irreversible 
e.g. ports) 
adjacent area 

         

Small periodic 
interventions 
(e.g. beach 
replenishment, 
dredging) 

         

Industrial 
pollution 

         

Domestic 
pollution 

         

Desalination          
Thermal 
pollution 
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Agricultural 
runoff 

         

Fisheries 
(commercial 
and non-
commercial) 

         

Trawling          
Fish farms on 
the site 

         

Fish farms on 
adjacent area 

         

Anchoring 
(anchor and 
anchor chain 
system) 

         

Mooring (fixed 
points) 

         

Introduced 
species - 
macrophytes 

         

Introduced 
species - 
herbivores 

         

Introduced 
species - 
carnivores 

         

Climate 
change – 
Temperature 
rise 

         

Climate 
change – Sea 
level rise 

         

Climate 
change - 
Acidification 

         

Climate 
change – 
Native species 
changes in 
distribution 
and 
abundance 
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Table 2. Frequency.  What is the frequency of the threat? Please enter in each cell one of the following numbers: 0=never, 1=rare, 2= occasional, 3= annual or 
regular, 4=permanent or persistent, ND = Not determined. Frequency describes how often discrete threat events occur in a given ecosystem. For those 
threats that occur as discrete events, frequency represents how often new events occur, not duration of a single event. . For details on trophic 
component definition see point 5 at the beginning of this questionnaire. 

Threat / 
Trophic level 

P. 
oceanica 
above 
ground 

P. 
oceanica 
below 
ground  

MPO & 
UPO leaf 
and 
rhizomes 
epibiota 

Mesograzers  Macrograzers  Endofauna  Benthic 
suspension 
and filter 
feeders  

Carnivores/ 
Omnivores  

High level 
predators  

Coastal 
Infrastructure 
(irreversible 
e.g. ports) on 
the site  

         

Coastal 
Infrastructure 
(irreversible 
e.g. ports) 
adjacent area 

         

Small periodic 
interventions 
(e.g. beach 
replenishment, 
dredging) 

         

Industrial 
pollution 

         

Domestic 
pollution 

         

Desalination          
Thermal 
pollution 

         

Agricultural 
runoff 

         

Fisheries 
(commercial 
and non-
commercial) 

         

Trawling          
Fish farms on 
the site 

         

Fish farms on          
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adjacent area 
Anchoring 
(anchor and 
anchor chain 
system) 

         

Mooring (fixed 
points) 

         

Introduced 
species - 
macrophytes 

         

Introduced 
species - 
herbivores 

         

Introduced 
species - 
carnivores 

         

Climate 
change – 
Temperature 
rise 

         

Climate 
change – Sea 
level rise 

         

Climate 
change - 
Acidification 

         

Climate 
change – 
Native species 
changes in 
distribution 
and 
abundance 
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Table 3. Sensitivity to impact. How likely is that impact to affect the species in the affected trophic level? Please enter in each cell one of the following numbers: 
0=no impact, 1=low (0-33% change in cover, density, abundance or community structure), 2= medium (33-66% change in cover, density, abundance or community 
structure), 3= high (66-100% change in cover, density, abundance or community structure), ND = Not determined. For details on trophic level component 
definition see point 5 at the beginning of this questionnaire. 

Threat / 
Trophic level 

P. 
oceanica 
above 
ground 

P. 
oceanica 
below 
ground  

MPO & 
UPO leaf 
and 
rhizomes 
epibiota 

Mesograzers  Macrograzers  Endofauna  Benthic 
suspension 
and filter 
feeders  

Carnivores/ 
Omnivores 

High level 
predators  

Coastal 
Infrastructure 
(irreversible 
e.g. ports) on 
the site  

         

Coastal 
Infrastructure 
(irreversible 
e.g. ports) 
adjacent area 

         

Small periodic 
interventions 
(e.g. beach 
replenishment, 
dredging) 

         

Industrial 
pollution 

         

Domestic 
pollution 

         

Desalination          
Thermal 
pollution 

         

Agricultural 
runoff 

         

Fisheries 
(commercial 
and non-
commercial) 

         

Trawling          
Fish farms on 
the site 

         

Fish farms on 
adjacent area 

         

Anchoring          
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(anchor and 
anchor chain 
system) 
Mooring (fixed 
points) 

         

Introduced 
species - 
macrophytes 

         

Introduced 
species - 
herbivores 

         

Introduced 
species - 
carnivores 

         

Climate 
change – 
Temperature 
rise 

         

Climate 
change – Sea 
level rise 

         

Climate 
change - 
Acidification 

         

Climate 
change – 
Native species 
changes in 
distribution 
and 
abundance 
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Table 4. Recovery time (years). How long does it take to recover from exposure to the impact? Please enter in each cell one of the following numbers: 0=No 
impact, 1= less than a year, 2= between 1 and 10 years, 3= between 10 and 100 years, 4= more than 100 years, ND = Not determined. Recovery time is the 
average time required for the affected trophic level to return to its pre-threat state. Because populations, communities, and ecosystems are dynamic in 
nature, they need not (and are unlikely to) return to their exact pre-threat condition to be deemed “recovered”. For persistent threats we consider 
recovery time following removal of the threat. For details on trophic level component definition see point 5 at the beginning of this questionnaire. 

Threat / 
Trophic level 

P. 
oceanica 
above 
ground 

P. 
oceanica 
below 
ground  

MPO & 
UPO leaf 
and 
rhizomes 
epibiota 

Mesograzers  Macrograzers  Endofauna   Carnivores/ 
Omnivores  

High level 
predators  

Coastal 
Infrastructure 
(irreversible 
e.g. ports) on 
the site  

         

Coastal 
Infrastructure 
(irreversible 
e.g. ports) 
adjacent area 

         

Small periodic 
interventions 
(e.g. beach 
replenishment, 
dredging) 

         

Industrial 
pollution 

         

Domestic 
pollution 

         

Desalination          
Thermal 
pollution 

         

Agricultural 
runoff 

         

Fisheries 
(commercial 
and non-
commercial) 

         

Trawling          
Fish farms on 
the site 

         

Fish farms on 
adjacent area 
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Anchoring 
(anchor and 
anchor chain 
system) 

         

Mooring (fixed 
points) 

         

Introduced 
species - 
macrophytes 

         

Introduced 
species - 
herbivores 

         

Introduced 
species - 
carnivores 

         

Climate 
change – 
Temperature 
rise 

         

Climate 
change – Sea 
level rise 

         

Climate 
change - 
Acidification 

         

Climate 
change – 
Native species 
changes in 
distribution 
and 
abundance 
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Table 5. Certainty. How well are the impacts documented? Please enter in each cell one of the following numbers: 0=none, 1= low, 2=medium, 3=high, 4= very 
high (refer to the vulnerability measure table at the end of the document). For details on trophic level component definition see point 5 at the beginning of 
this questionnaire. 

Threat / 
Trophic level 

P. 
oceanica 
above 
ground 

P. 
oceanica 
below 
ground  

MPO & 
UPO leaf 
and 
rhizomes 
epibiota 

Mesograzers  Macrograzers  Endofauna  Benthic 
suspension 
and filter 
feeders  

Carnivores/ 
Omnivores  

High level 
predators  

Coastal 
Infrastructure 
(irreversible 
e.g. ports) on 
the site  

         

Coastal 
Infrastructure 
(irreversible 
e.g. ports) 
adjacent area 

         

Small periodic 
interventions 
(e.g. beach 
replenishment, 
dredging) 

         

Industrial 
pollution 

         

Domestic 
pollution 

         

Desalination          
Thermal 
pollution 

         

Agricultural 
runoff 

         

Fisheries 
(commercial 
and non-
commercial) 

         

Trawling          
Fish farms on 
the site 

         

Fish farms on 
adjacent area 

         

Anchoring 
(anchor and 
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anchor chain 
system) 
Mooring (fixed 
points) 

         

Introduced 
species - 
macrophytes 

         

Introduced 
species - 
herbivores 

         

Introduced 
species - 
carnivores 

         

Climate 
change – 
Temperature 
rise 

         

Climate 
change – Sea 
level rise 

         

Climate 
change - 
Acidification 

         

Climate 
change – 
Native species 
changes in 
distribution 
and 
abundance 
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d) Literature review on human threats’ impacts on Posidonia oceanica food components 

Table S1.2: Available literature on impacts of threats on food web components. Numbers correspond to the references listed below. 

Threat / 
Trophic level 

P. 
oceanica 
above 
ground 

P. 
oceanica 
below 
ground  

MPO & UPO 
leaf and 
rhizomes 
epibiota 

Mesograzers  Macrograzers  Endofauna/ 
Detritus 
feeders  

Benthic 
suspension 
and filter 
feeders  

Carnivores/ 
Omnivores  

High level 
predators  

Coastal 
Infrastructure 
(irreversible 
e.g. ports) on 
the site  

7, 8, 18, 
24, 45 

7, 8, 18, 
24, 45 

       

Coastal 
Infrastructure 
(irreversible 
e.g. ports) 
adjacent area 

7, 8, 18, 
24, 45, 41 

7, 8, 18, 
24, 45, 41 

       

Small periodic 
interventions 
(e.g. beach 
replenishment, 
dredging) 

3, 7, 8, 18, 
23, 27 

3, 7, 8, 18, 
23 

       

Industrial 
pollution 

4, 7, 8, 25, 
26, 50 

4, 7, 8, 25, 
26, 50 

       

Domestic 
pollution 

4, 7, 8, 10, 
11, 18, 50, 
52 

4, 7, 8, 10, 
18, 50, 52 

10, 11, 18, 42 11, 42      

Desalination 7, 18, 29 7, 18, 29 29       
Thermal 
pollution 

30, 43, 48 43        

Agricultural 
runoff 

7, 18 7, 18 18       

Fisheries 
(commercial 
and non-
commercial) 

       9 9 

Trawling 7, 8, 18, 
33, 39 

7, 8, 18, 
33, 39 

 59, 60 59 5, 59 59 59" 59"

Fish farms on 
the site 

2, 7, 8, 13, 
14, 18, 20, 
34, 20, 57 

2, 7, 8, 14, 
18, 19, 21, 
34, 57 

13, 14, 18, 34, 
20, 57 

1, 34, 19 1, 19 1, 34    

Fish farms on 2, 7, 8, 13, 2, 7, 8, 14, 12, 14, 18, 34, 1, 34, 19 1, 19,  1, 34    
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adjacent area 14, 18, 20, 
34, 19, 57, 
58 

18, 33, 19, 
57, 58 

19, 57, 58 

Anchoring 
(anchor and 
anchor chain 
system) 

7, 8, 12, 
18, 28, 44, 
47 

7, 8, 12, 
18, 28, 44, 
47 

       

Mooring (fixed 
points) 

7, 8, 18 7, 8, 18        

Introduced 
species - 
macrophytes 

5, 7, 8, 
16,17, 18, 
22, 35, 36, 
38, 39, 40, 
46, 49, 51, 
55    

7, 8, 16, 
17,18, 39, 
40, 46, 49, 
51, 55 

15, 54, 56       

Introduced 
species - 
herbivores 

51      51   

Introduced 
species - 
carnivores 

       37, 51 51 

Climate 
change – 
Temperature 
rise 

7, 18, 43, 
48, 49, 51 

7, 18, 47, 
49, 51 

       

Climate 
change – Sea 
level rise 

7, 51 7, 51        

Climate 
change - 
Acidification 

51  51 31, 51 51 51    

Climate 
change – 
Native species 
changes in 
distribution 
and 
abundance 

       51 51 
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e) Threats’ definitions 
 
Coastal Infrastructure on the site:  Direct impacts from large-scale permanent coastal 

constructions, such as ports, or reclamation for coastal development at the location where the 

construction takes place. 

 

Coastal Infrastructure in adjacent area: Indirect impacts from the coastal constructions e.g., 

change in sedimentation flow, water movement in adjacent areas. 

 

Periodic interventions: Impacts from non-permanent coastal actions, such as small beach 

nourishment or dead Posidonia leaves (banquette) removal. 

 

Trawling: Impacts from trawling activities, producing mechanical damage (e.g., shoots uproot, 

matte erosion) and hypersedimentation. 

Fishing (other than trawling): Impacts from fishing practices both commercial and non-

commercial which have a low mechanical impact because they act as passive fishing gears. 

Fish farms on the site: Direct impacts of fish farms and aquaculture, such as increased 

nutrients, hypersendimentation, and limited light penetration, at the location where the farm is 

established, at scale of 100's m. 

Fish farms in adjacent area:  Indirect impacts of the fish farms/aquacultures in adjacent areas 

because dilution of pollutants and dispersion at scale of 1000's m. 

Industrial pollution: Impacts from industrial discharge or sewage, which can contain toxic 

chemical product in addition to organic and nutrient enrichment. 

Domestic pollution: Impacts from urban sewage, wastewater which can contain mainly organic 

matter, with some kind of domestic chemical pollution. 

Thermal pollution: Impacts from power plants discharges because the use of water as 

refrigerate, increasing average value of water temperature in the environment. 

Desalination: Impacts from the waste water from the inverse osmosis, which produce a high 

salinity discharge of brine water.  
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Agricultural runoff: Impacts from river or ground water because agricultural activities, such as 

nutrient enrichment, herbicides, and modified sediment dynamic. 

Anchoring: Impacts from mechanical damage caused by anchor and anchor chain.  

Mooring (fixed points): Impacts from mechanical damage caused by chains of fixed mooring 

installations.  

Introduced species – macrophytes: Impacts from invasive alien macrophyte species. 

Introduced species – herbivores: Impacts from invasive alien low trophic level (<3) species. 

Introduced species – carnivores: Impacts from invasive alien high trophic level (> 3) species. 

Climate change – Temperature rise: Impacts from sea water temperature rise due to climate 

change (including extreme events). 

Climate change – Acidification: Impacts from sea water pH decrease and carbonate 

chemistry alteration due to climate change. 

Climate change – Sea level rise: Impacts from sea level rise due to climate change.  

Climate change – Native species changes: Impacts from native species biogeographic 

changes and relative dominance due to climate change. 

 
 
 
Table S1.3: Stressors caused by each threat. 

Threat Stressors 

Coastal Infrastructure on the site Direct burial 

Coastal Infrastructure in adjacent area Increase in turbidity, upstream 
hypersedimentation and downstream erosion 
with modifying effects of coastal drift and 
pollution 

Periodic interventions  Direct burial, hypersedimentation and 
downstream erosion with modifying effects of 
coastal drift 

Trawling Mechanical damage (uproot), sediment erosion 

Fishing other than trawling Direct removal of higher level food web 
components 
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Fish farms on site Pollution and eutrophication, turbidity, reduction 
in light intensity, hypersedimentation, sediment 
anoxia 

Fish farms in adjacent area Eutrophication, turbidity, hypersedimentation 

Industrial pollution Pollution, turbidity, hypersedimentation, 
eutrophication 

Domestic pollution Pollution, turbidity, hypersedimentation, 
eutrophication 

Thermal pollution Turbidity, increased temperature 

Desalination Increased salinity, salinity variability 

Agricultural runoff Pollution and eutrophication, turbidity, 
hypersedimentation 

Anchoring Mechanical damage, changes in sediments 
biogeochemistry, erosion 

Mooring  Mechanical damage, changes in sediments 
biogeochemistry, erosion 

Introduced species – macrophytes Competition, direct shading 

Introduced species – herbivores Predation (overgrazing), competition 

Introduced species – carnivores Predation, competition 

Climate change – temperature rise Increased sea temperature, increased CO2 
concentration, increased ultraviolet irradiance 

Climate change – acidification Increased CO2 concentration, carbonate 
chemistry and pH alteration 

Climate change - sea level rise Shoreline erosion, increased wave action 

Climate change – native species changes Predation, competition 
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Appendix S2: Description of the conceptual Posidonia oceanica food web  

Organisms found in Posidonia oceanica meadows are bound together by intricate trophic 

interactions forming a complex food web (Fig. 2 in manuscript).  

Complexity starts at the base of this food web that features multiple primary producers and 

organic matter sources (green boxes on Fig. 2). P. oceanica itself is the main producer of the 

system in terms of biomass. Aboveground (leaves) and belowground (roots and rhizomes) 

tissues of the seagrass have different physical and chemical features, and consequently 

different potential roles in the food web. They can therefore be seen as two different 

compartments (Fig. 2). Although biomass of available seagrass tissues is very high, few 

direct grazers are able to exploit them efficiently. The reasons for this limited consumption 

include poor nutritional value, low palatability (abundance of lignin or cellulosic compounds) 

and chemical defense through polyphenolic compounds (Vizzini, 2009). 

Due to its large size and long life span, the epibiotic cover of P. oceanica is one of the most 

diverse and abundant of all seagrasses (Hemminga & Duarte, 2000; Mazzella et al., 1989). 

Many multi- and unicellular photosynthetic organisms (MPO and UPO, respectively) grow on 

its leaves. Rhizomes also bear MPO's. Since the habitat they offer is different from leaves, 

in terms of structure and microclimatic conditions, rhizome and leaf MPO communities are 

different (Buia et al., 2000), and are not necessarily consumed by the same organisms 

(Michel et al., 2014). They accordingly constitute two different compartments of our model 

(Fig. 2). Nutritional value of plant epibiota is typically higher than the one of seagrass 

tissues. Their palatability is also better, since they usually contain less structural compounds 

(e.g. Raven et al., 2002). In addition, the diversity of epiphytic structures and functions 

makes them adequate for different feeding techniques and food intake mechanisms of 

consumers (Buia et al., 2000). As a result, photosynthetic epibiota support diverse 

communities. 
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Most of P. oceanica tissues are not consumed while alive, and instead enter a detritus pool 

along with the epibiota they bear. All living organisms contribute to detritus, but the greatest 

contribution comes from primary producers. Therefore only this connection was depicted in 

Figure 1, while connections with other organisms are not presented for the sake of 

readability. This pool, often called "Posidonia litter" is a heterogeneous compartment that 

also contains remains of organisms originating from adjacent habitats (e.g. algae from 

surrounding rocky shores). Detritus can be exploited by various consumers, but can also be 

exported to the terrestrial realm (beach wrack, or banquette) or to deeper zones. Finally, it 

can be buried in the matte (Cebrian & Duarte, 2001; Mateo & Romero, 1997). This terrace-

like formation is typical of P. oceanica meadows. It is formed by several strata of intertwined 

rhizomes and roots, as well as vast amounts of trapped sediment, and it constitutes an 

important carbon sink (Boudouresque et al., 2012; Gobert et al., 2006). Besides these 

organic matter sources that are located inside the meadow, P. oceanica-associated food 

webs also receive inputs from production that takes place outside the seagrass system itself 

(limits of this system are pictured on Fig. 2 by the green dashed line). This is notably the 

case of phytoplankton and suspended particulate organic matter that can sink from the 

water column to the Posidonia meadow (Velimirov, 1987) and be retained because of the 

reduced hydrodynamism due to the canopy modification of the boundary layer (Gacia & 

Duarte, 2001). 

Primary consumers (purple boxes on Fig. 2) have a central role in seagrass-associated 

food webs (Buia et al., 2000). In the Mediterranean Sea, large herbivores such as sea turtles 

are relatively rare. Their overall grazing pressure at the scale of the whole basin is therefore 

likely low. Other herbivores mostly fall into two categories. Mesograzers were initially 

described as small invertebrate grazers whose size exceeds the one of a typical copepod, 

but is smaller than 2.5 cm, and who live permanently in the same habitat they exploit 

(Brawley, 1992). They include peracarids (e.g., amphipods, tanaids, isopods) and decapod 

crustaceans, gastropod mollusks and polychaetes (Gambi et al., 1992; Scipione, 2013). 
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Some species can occasionally consume tissues of their host plant. However, actual 

contribution of seagrass leaves to their diet is typically low or nil, and mesograzers primarily 

rely on seagrass epibiota, such as benthic diatoms and macroalgae, for their subsistence 

(Lepoint et al., 2000; Michel et al., 2014; Vizzini, 2009). These vagile organisms can move 

along the different strata of the meadow, and therefore consume epibiota from leaves and/or 

rhizomes (Michel et al., 2014). Moreover, some of them are not strict herbivores, but also 

feed on the sessile epifauna growing on P. oceanica (Lepoint et al., 2000), that is dominated 

by bryozoans and hydrozoans (purple box on Fig. 2). Macrograzers are of larger size than 

the former category. In P. oceanica meadows, they are mostly represented by the fish Sarpa 

salpa and the sea urchin Paracentrotus lividus. These two organisms are responsible for 

most of the direct seagrass herbivory (Tomas et al., 2005b; Vizzini, 2009). While ingesting 

seagrass leaves, they also consume the photosynthetic epibiota and sessile epifauna that 

they bear. Albeit it is still a matter open to discussion, the percentage of organic matter they 

derive from these food sources, which are more easily digestible and have higher nutritional 

value than the seagrass itself, seems significant (Havelange et al., 1997; Prado et al., 2007; 

Tomas et al., 2005a).    

Epifaunal filter and suspension feeders are sessile organisms living inside the meadow, 

between the shoots, but fixed directly on the substrate rather than on the seagrass. This 

compartment contains mainly sponges, sessile polychaetes, bryozoans, tunicates, and also 

protected bivalves such as Pinna nobilis. Like P. oceanica sessile epifauna (orange box on 

Fig. 2), they primarily rely on phytoplankton, zooplankton and SPOM for their organic matter 

intakes. 

As mentioned earlier, seagrass tissues predominantly enter the food webs under detrital 

form (Vizzini, 2009). Detritus is readily colonized by a number of micro-organisms, including 

bacteria, archaea, fungi (modern meaning) and heterotrophic stramenopiles (the BAFHS 

compartment). Heterotrophic stramenopiles of the BAFHS compartment mainly belong to 

oomycota and labyrinthulomycota. Activity of these organisms cause degradation of detritus. 
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Detritus-feeders consume (‘licking’) BAFHS, rather than proper detritus. All organisms 

contribute to the production of DOC (Dissolved Organic Carbon) but, for reasons of 

readability, arrows were not inserted in the diagram. Although DOC belongs to the detritus 

pool, for the ease of the food web representation, it was separated from the detritus 

compartment which represents particulate organic carbon (Velimirov, 1991). DOC is 

consumed by a number of heterotrophic prokaryotes which are in turn consumed by 

unicellular eukaryotic predators, mostly flagellated heterotrophic stramenopiles. These 

flagellates are in turn eaten by larger micro-organisms such as ciliates (Azam et al., 1983; 

Bratbak et al., 1994). 

A wide assemblage of detritus feeders ingest P. oceanica litter. It includes gastropods, 

amphipod, isopod and decapod crustaceans, as well as echinoid, ophiuroid and holothuroid 

echinoderms (Buia et al., 2000; Mazzella et al., 1992; Vizzini, 2009). The unique guild of 

sheath borers, represented by specialized polychaetes (Eunicidae) and the isopod Limnoria 

mazzella, should also be included in the detritus feeders (Guidetti et al., 1997; Gambi et al., 

2003). The interest of P. oceanica litter as a food source is questionable. Since structural 

carbohydrates are refractory to chemical degradation, appreciable amounts remain in the 

litter fragments. Nutritional quality is even worse than the one of living tissues, as most labile 

organic C, N and P is lost by remobilization from the senescent leaves or by decomposition 

after tissue death (Romero et al., 1992). It is commonly accepted that detritivores feeding on 

litter rely on micro-organisms colonizing detritus (BAFHS, flagellates, ciliates) to achieve 

nutritional balance (Vizzini, 2009). Moreover, dead P. oceanica material is not their only food 

source, as they also consume multicellular photosynthetic organisms present on dead 

rhizomes and leaf fragments (Lepoint et al., 2006). Trophic activity of detritus feeders as well 

as water movements cause mechanical breakdown (fragmentation) of detrital items into 

smaller particles that can be buried in the sediment underlying the meadow, and that on 

surface is consumed by large holoturians (Holoturia spp.). The infaunal invertebrates, 

known as endofauna, include mainly sub-surface detritus feeders that dwell in the matte 
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(notably peracarid and decapod crustaceans, mollusks, and polychaetes; see Borg et al., 

2006) and feed on finer detritus, as well as on seston that sank to the bottom.  

Many secondary consumers (light blue box on Fig. 2) also live in P. oceanica meadows 

(Mazzella et al., 1992). They include meso-carnivores (mainly Syllidae polychaetes, 

opistobranch mollusks, and decapod crustaceans) that rely on the sessile epibiota, and 

carnivores as decapod crustaceans (various species of crabs, but also shrimps, hermit 

crabs, and squat lobsters), cephalopods (Sepia spp., Octopus spp.) and gastropod mollusks 

(e.g., Hexaplex trunculus), echinoderms (Echinaster sepositus, Asterina spp., Marthasteria 

glacialis) and fishes (Diplodus spp., Labrus spp., Symphodus spp., etc.). A large number of 

feeding strategies exist among these organisms, which predominantly feed on primary 

consumers mentioned above. Some of them occasionally consume photosynthetic epibiota 

and/or seagrass tissues, therefore displaying a certain degree of omnivory (Lepoint et al., 

2000; Vizzini et al., 2002). 

Besides these organisms, some tertiary or higher level consumers (dark blue box on Fig. 2) 

are strict predators that feed only on secondary consumers. This is the case of some fishes 

such as Scorpaena spp. or Conger conger, whose diet is exclusively piscivorous 

(Boudouresque et al., 2012). Many of these secondary or higher level consumers are highly 

motile organisms, such as fish or large invertebrates. While some of them spend most of 

their lives inside the P. oceanica meadow, others move to other neighboring ecosystems. 

These migrations can be related to ontogenetic changes. Some fishes can indeed spend 

their larval and/or juvenile phases among seagrass meadows while adults live in pelagic 

zones (e.g. Sardinella aurita or Engraulis encrasicolus; del Pilar Ruso & Bayle-Sempere, 

2006) or rocky habitats (e.g. Epinephelus marginatus; Harmelin & Harmelin-Vivien, 1999). 

There can also be movements of adult animals: fishes of the genus Diplodus are mostly 

benthic feeders, but can exploit items originating from the water column (Pinnegar & Polunin, 

2000). Finally, regular migrations also occur. For example, the fish Chromis chromis spends 

nighttime resting in seagrass meadows, but actively hunts zooplankton during the day 
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(Boudouresque et al., 2012). In all cases, these animal movements cause cross-ecosystem 

transfers of organic matter. These transfers can go in both directions. For example, while 

outside the P. oceanica system, typical residents of meadows could be eaten by predators 

that do not belong to the seagrass system. Conversely, pelagic fish venturing inside the 

meadow could be preyed upon by predatory organisms that spend most of their life in it. The 

net result of these linkages in terms of input or output of biomass for the P. oceanica system 

is currently hard to assess due to the lack of adequate data.  
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Appendix S3: Uncertainty related to each food web component/threat combination. 

"

Figure S3.1: Radar chart presenting the relative availability of data for each food web component (color lines) and threat (spokes) combination. 


