
Cover Songs Retrieval and Identification
PhD collaboration with the Center for Digital Music

Julien OSMALSKYJ

University of Liège
Montefiore Institute

Belgium

josmalsky@ulg.ac.be

www.montefiore.ulg.ac.be/~josmalskyj

January 12, 2015

1 / 57

mailto:josmalsky@ulg.ac.be
www.montefiore.ulg.ac.be/~josmalskyj

Contents

1 Introduction

2 Problem Formulation

3 Background

4 Rejectors

5 Evaluation

6 Experiments

7 Conclusions

8 References

2 / 57

Contents

1 Introduction

2 Problem Formulation

3 Background

4 Rejectors

5 Evaluation

6 Experiments

7 Conclusions

8 References

3 / 57

Introduction

Initial goal

Identify a live (unknown) performance track, that is, find any
information related to the original track. The unknown track is
usually a different version of the original track.

audio recording

Database

Original track info

Artist
Title
Year

Album
etc.

FIGURE: General goal

4 / 57

Cover Songs

The problem of identifying an unknown track is related to the
problem of cover songs recognition.

Definition
A cover song is a possibly unknown version of an existing
musical track, that can differ in tempo, pitch, instrumentation,
timbre and other parameters.

Because of these differences, finding covers automatically is not
an easy problem.

5 / 57

Applications

Cover songs recognition could be useful for a wide range of
applications :

plagiarism detection
live music recognition
browsing music collections
query-by-example
discovering music through covers
etc.

6 / 57

Search Engine

A cover song recognition system is an Information Retrieval

System (IRS) relying internally on a Content Based Retrieval

System (CBRS).

For an audio query q, features are computed and used by the
CBRS to identify samples in a database that are related to the q.

A search engine can be implemented in two steps :

A pruning algorithm that returns only samples related to the
query q.
An expert that predicts the requested information based on
the pruned set.

7 / 57

Search Engine

T1

T2

T3

T4

T5

T6

T7

T8

T

N�1

T

N

query track

Pruning Algorithm

T2,T5,T6,TN�1

Search database Features

Expert

8 / 57

Contents

1 Introduction

2 Problem Formulation

3 Background

4 Rejectors

5 Evaluation

6 Experiments

7 Conclusions

8 References

9 / 57

Definitions

Let O be the space of input objects (tracks, sounds, etc.) ;
Let I be the space of output information (author, album,
etc.) ;

Definition
f : O ! I is a function that associates an object to an
information.

Definition
s : O ⇥O ! B is a similarity function such that
s(o1,o2) = T , f (o1) = f (o2), where B = {T ,F} is the set of
booleans and o1,o2 2 O.

10 / 57

Similarity function

An IRS aims at defining a functionbf as close as possible to f .

A CBRS defines a function b
s that approximates s.

In practice, s can only be approximated by a function b
s.

An expert knowing s but not f is often available (even human
expert).

The pruning is based on the function b
s.

11 / 57

IRS based on a CBRS I

q q

search set

D 2 O ⇥ I
labelled with f

S L) f̂ (q) = ⌅

q 2 O
query

with ŝ

pruning expert

knowing

s but not f

A search database D is defined as a set of samples drawn from
O ⇥ I , with the samples (o, i) 2 D such that f (o) = i .

For a query q, the CBRS prunes the database and returns the
subset

S = {(o, i)|(o, i) 2 D ^b
s(o,q) = T}

12 / 57

IRS based on a CBRS II

q q

search set

D 2 O ⇥ I
labelled with f

S L) f̂ (q) = ⌅

q 2 O
query

with ŝ

pruning expert

knowing

s but not f

Then, an expert knowing s finishes the identification. It returns
the subset

L = {(o, i)|(o, i) 2 S ^ s(o,q) = T}

If |L | 6= 0, it returnsbf (q) = i , where (o, i) is any element in L .

13 / 57

Rejector

The estimated similarity function b
s used for pruning has been

called a rejector.

query track

database track

Rejector

⌘

True

False

A rejector takes two tracks as an input and returns whether it
considers them similar or not.

14 / 57

Two possible situations
Identification : at least one match in the pruned set.
Retrieval : as many matches as possible.

Identification Retrieval

Pruned sets

15 / 57

This PhD

Focus mainly on the first case : identification of cover songs.

Work on rejectors

Analysis of performances.
Rejectors mainly with machine learning.
Combination of rejectors : many schemes studied.

Evaluation

Work towards a standard evaluation method.
Design of an evaluation space : Prune-Loss.
Evaluation with standard large dataset.
Development of an evaluation framework : CAROLYNE.

16 / 57

Contents

1 Introduction

2 Problem Formulation

3 Background

4 Rejectors

5 Evaluation

6 Experiments

7 Conclusions

8 References

17 / 57

Two Techniques

Cover songs have been widely studied in the litterature.

Two main methods used by researchers :

Index-based methods
Extract features, build an inverted file.

Comparison-based methods
Compare query to entire database.

Several references for both cases given below. Many more exist.

18 / 57

Index-based Methods

Methods based on an inverted file, similar to text retrieval
systems.

Casey et. al., 2007 [2] : using Locally Sensitive Hashing
(LSH) with audio shingles.
Kurth et. al., 2008 [6] : codebook with CENS chroma
vectors.
Lu et. al., 2012 [7] : codebook of chroma features with
KMeans.
Other methods such as Shazam or SoundHound : not
suitable for cover songs.

19 / 57

Comparison-based Methods

Methods based on an exhaustive comparison of the query with
the tracks of a database.

Ellis et. al., 2007 [3] : beat-synchronized chromas.
Kim et. al., 2008 [5] : chromas and deltas between
chromas.
Grosche, 2012 [4] : large audio shingles.
Bertin-Mahieux, 2013 [1] : cover songs with a large-scale
database.
Van Baelen et. al., 2014 [10] : mid and high level music
analysis.

20 / 57

Problems

Cover songs recognition is still an active field of research.

No ideal system yet in a large-scale setup.

Difficult to compare results : No common dataset, no
common metrics, no common evaluation method.

Huge lack of evaluation databases : biggest one is the
Second Hand Song Dataset.

Not so much machine learning in the litterature.

Still a lot of work to do !

21 / 57

Contents

1 Introduction

2 Problem Formulation

3 Background

4 Rejectors

5 Evaluation

6 Experiments

7 Conclusions

8 References

22 / 57

Experimental setup

We need a large search database to design effective and
efficient rejectors.
Lack of large-scale database for MIR in general :

Dataset Songs / samples Audio available

Cover80 80 Yes
RWC 465 Yes
Bimbot et al. 500 No
CAL-500 502 No
GZTAN genre 1,000 Yes
Billboard 1,000 No
MusiCLEF 1,355 Yes
SALAMI 1,400 No
USPOP 8,752 No
CAL-10K 10,870 No
Magnatagatune 25,863 Yes
Second Hand Song Dataset (SHSD) 18,196 No
Million Song Dataset (MSD) 1,000,000 No

TABLE: List of standard datasets for MIR tasks

23 / 57

Million Song Dataset

Definition
The Million Song Dataset (MSD) is a freely-available collection
of audio features and metadata for a million contemporary
popular music tracks.

The Second Hand Song Dataset (SHSD) is a subset of the
MSD.

The SHSD is organized in 5,824 cliques of cover songs.

Tracks within a clique are different versions of the same song.

Unfortunately, no audio data is available with the dataset.

24 / 57

Million Song Dataset

MSD : 106 Tracks

SHSD
18,196 Tracks

Clique 1

Clique 2

Clique 3

Clique 4

version 1

version 2

Clique 4
5,824 Cliques

25 / 57

MSD Features

Rejectors can only use pre-computed features from the MSD.
Many features are provided with the MSD.

Feature Type Descripttion

energy float energy from listener point of view
key int key the song is in
key confidence float confidence measure
loudness float overall loudness in dB
mode int major or minor
mode confidence float confidence measure
segments pitches 2D array float chroma feature, one value per note
segments start array float musical events, note onsets
segments timbre 2D array float texture features (MFCC+PCA-like)
...

TABLE: Examples of features in the Million Song Dataset

26 / 57

Two types of rejectors

Rejectors can be based on a distance or a probability.

For a distance, two tracks are considered similar when the
distance between both tracks is small.

For a probability, two tracks are considered similar when the
probability of similarity is high.

Probability based rejectors are built using machine learning
algorithms, typically, random forests.

27 / 57

Build probabilistic rejector

Probabilistic rejectors use a machine learning algorithm to learn
a similarity measure.

SHSD is split in two parts : a Learning Set (LS) and a Test Set
(TS).

Tracks of the LS are used to build a dataset file :

Two tracks of the same clique are labelled similar.
Two tracks of two different cliques are labelled dissimilar.

The LS dataset is sent to the learning algorithm, for example a
Random Forest.

28 / 57

Build probabilistic rejector

LS

TS

Dataset file

Random forest

Model

SHSD

29 / 57

Use probabilistic rejector

query track

database track

True

False

Rejector

Model

Probability

> t

 t

The rejector uses the machine learning model to compute a
probability of similarity. The probability is compared to a
threshold t.

30 / 57

Single Rejectors I

Various rejectors were implemented for several features,
including low-level and mid-level features.

Low-level features :

compactness
zero-crossings
spectral flux, rolloff, variability and centroid
root mean square (RMS)
tempo
duration
number of beats

Low-level features studied in order to combine them later.

31 / 57

Single Rejectors II
Mid-level features :

chroma-based features
MFCCs-based features

Example : Bag-of-words of chroma features [8].

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

Clusters

O
cc

u
re

n
ce

s

Little Liar − Original version (Joan Jett)

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

Clusters

O
cc

u
re

n
ce

s

Little Liar − Cover band version

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

Clusters

O
cc

u
re

n
ce

s

Summer of 69 − Original version (Bryan Adams)

32 / 57

Composite Rejectors

Combine single rejectors into a composite rejector.

Several ways of combining rejectors :

Boolean combination : Union, Intersection, Majority vote [8]
Probabilistic combination : sum, product, etc. [9]
Machine learning combination : model grouping many
features.
Combination in the Evaluation Space, e.g. ROC space :
e.g. IBCAll technique

33 / 57

Composite Rejectors

query

database track

R1 R2 R

N

composite rejector

True

False

Each single rejector R

i

takes its decision based on a different
feature.

34 / 57

Contents

1 Introduction

2 Problem Formulation

3 Background

4 Rejectors

5 Evaluation

6 Experiments

7 Conclusions

8 References

35 / 57

Evaluation

Reminder : No large-scale database with audio-data available.

Researchers often use personal collections.

It makes the results difficult to compare.

Very few databases organized in groups of cover songs.

As stated before, the only solution for now to develop scalable
systems is the MSD + the SHSD.

We need a common database, common metrics, and a common
evaluation algorithm to compare systems.

36 / 57

Metrics

Most research is about retrieving as many matches as possible
for a given query.

Therefore, metrics are used according to that goal : Mean

Average Precision (MAP), Average Rank, Number of covers in

top 10, Precision-Recall, Accuracy.

Flaws :

If database organized in cliques, we do not need all

matches.
With poor performance, is it useful to know that first cover is
at position e.g. 300,000 ?

37 / 57

Introducing Prune-Loss space

For evaluating search engines for cover songs using a pruning

algorithm, it makes sense to plot the pruning rate against the
loss rate.

FIGURE: Example of Prune-Loss curve
38 / 57

Loss rate

With an evaluation database organized in cliques :

Definition
The loss rate is the mathematical expectation, over all possible
queries, of the probability to discard all matching samples in D .

For an entire database, we can show that

loss =
1
N

N

Â
i=1

p [ŝ = 0|s = 1]| {z }
FNR

|C
i

|�1

Where |C
i

| is the size of the clique i , N is the number of cliques.

39 / 57

Pruning rate

Definition
The pruning rate is the mathematical expectation, over all
possible queries, of the proportion of irrelevant samples from a
database D that are pruned.

prune = p(bs = F |s = F)| {z }
TNR

For a pruning algorithm, what matters is to have a high pruning
rate with a minimum loss rate.

40 / 57

Fast evaluation algorithm

Pre-compute thresholds and evaluate prune, loss and any other
metrics for all thresholds directly.

For thresholds selection, compute N similarity values using a
rejector and sort them.

Compute per track values and store them.

Compute clique values by averaging tracks values by the
number of items in a clique.

Finally, compute global values by averaging by total number of
cliques.

41 / 57

Fast evaluation algorithm

Prune
Loss
TPR
TNR

T1 T2 T

N

Prune
Loss
TPR
TNR

T1 T2 T

N

Prune
Loss
TPR
TNR

T1 T2 T

N

Track 1

Track 2

SHSD

Cliques values

FIGURE: Evaluation algorithm
42 / 57

Evaluation Framework

All the above-mentioned considerations have been implemented
in an Evaluation Framework Software.

The framework is a first attempt toward a standard evaluation
method for cover songs identification and retrieval.

Software written in C++ for fast processing.

It is still a work in progress : 6,984 lines of code.

Designed to be easily improved : new metrics, new evaluators,
new learning algorithms, etc.

Name of the framework : CAROLYNE.

43 / 57

Evaluation Framework : CAROLYNE

Framework entirely written in C++ for fast processing.
Oriented-object code with design patterns (builders,
loaders, etc.).
Full integration with the MSD and the SHSD.
Easy to build and experiment new rejectors.
Easy to combine rejectors using several combination
schemes.
Allows to use machine learning to build rejectors models.
Outputs results using common metrics and ROC, PR and
PL spaces.

44 / 57

Contents

1 Introduction

2 Problem Formulation

3 Background

4 Rejectors

5 Evaluation

6 Experiments

7 Conclusions

8 References

45 / 57

Experiments

Several experiments made with the framework that led to
publications.

Analysis of simple rejectors and their combination [8]

Analysis of low-level features using various combination
schemes for cover songs [9]

Combination of classifiers in the ROC space and
application to the PL space.

46 / 57

Boolean combination of rejectors

Combination of rejectors based on tempo, duration, beats and
chromas. Introduction of the bag-of-words of chroma features.

FIGURE: Simple and more complex rejectors

47 / 57

Boolean combination of rejectors

Analysis of the behavior of combined rejectors using union,
intersection and majority vote combinations.

48 / 57

Combination of weak low-level rejectors

Investigation of the combination of weak rejectors using
probabilistic and boolean fusion schemes.

0 20 40 60 80 100
0

20

40

60

80

100

Pruning rate (%)

L
o
ss

 r
a
te

 (
%

)

AND fusion
OR fusion
Random rejector

0 20 40 60 80 100
0

20

40

60

80

100

Pruning rate (%)

L
o
ss

 r
a
te

 (
%

)

Majority Vote fusion
ExtraTrees fusion
Random rejector

FIGURE: Boolean and meachine learning fusion of rejectors

49 / 57

Combination of weak low-level rejectors

Investigation of the combination of weak rejectors using
probabilistic and boolean fusion schemes.

0 20 40 60 80 100
0

20

40

60

80

100

Pruning rate (%)

L
o
ss

 r
a
te

 (
%

)

Product fusion
Sum fusion
Random rejector

0 20 40 60 80 100
0

20

40

60

80

100

Pruning rate (%)

L
o
ss

 r
a
te

 (
%

)

Product fusion
Zero crossings
Random rejector

FIGURE: Probabilistic fusion of classifiers

50 / 57

Contents

1 Introduction

2 Problem Formulation

3 Background

4 Rejectors

5 Evaluation

6 Experiments

7 Conclusions

8 References

51 / 57

Conclusions

Summary of the accomplished work so far.

Formulated the problem of cover songs identification and
the organization of compatible databases.

Developped a new evaluation space based on Pruning and
Loss.

Developped a fast evaluation algorithm compatible with the
PL space and other spaces.

Designed an evaluation framework software to experiment
quickly and easily with cover songs recognition problems.

Experienced features with the framework.

52 / 57

Future Work

Improve the evaluation framework.

Experiment with many features in the MSD.

Explore new combinations of rejectors : e.g. machine
learning, IBCAll, etc.

Experiment with real audio data and integrate it to the
framework.

53 / 57

Thank you for your attention !

Looking forward to work with you !

54 / 57

Contents

1 Introduction

2 Problem Formulation

3 Background

4 Rejectors

5 Evaluation

6 Experiments

7 Conclusions

8 References

55 / 57

References I

[1] BERTIN-MAHIEUX, T. Large-Scale Pattern Discovery in Music. PhD
thesis, Columbia University, 2013.

[2] CASEY, M., AND SLANEY, M. Fast recognition of remixed audio. In Int.

Conf. Acoustics, Speech and Signal Process. (ICASSP) (2007).

[3] ELLIS, D., AND POLINER, G. Identifying cover songs with chroma
features and dynamic programming beat tracking. In Int. Conf.

Acoustics, Speech and Signal Process. (ICASSP) (2007), vol. 4.

[4] GROSCHE, P., AND MULLER, M. Toward characteristic audio shingles
for efficient cross-version music retrieval. In Acoustics, Speech and

Signal Processing (ICASSP), 2012 IEEE International Conference on

(2012), IEEE, pp. 473–476.

[5] KIM, S., UNAL, E., AND NARAYANAN, S. Fingerprint extraction for
classical music cover song identification. In IEEE Int. Conf. Multimedia

and Expo (ICME) (2008), pp. 1261–1264.

56 / 57

References II
[6] KURTH, F., AND MULLER, M. Efficient index-based audio matching.

Audio, Speech, and Language Processing, IEEE Transactions on 16, 2
(2008), 382–395.

[7] LU, Y., AND CABRERA, J. Large scale similar song retrieval using
beat-aligned chroma patch codebook with location verification. In
SIGMAP (2012), pp. 208–214.

[8] OSMALSKYJ, J., PIÉRARD, S., VAN DROOGENBROECK, M., AND

EMBRECHTS, J.-J. Efficient database pruning for large-scale cover
song recognition. In Int. Conf. Acoustics, Speech and Signal Process.

(ICASSP) (Vancouver, Canada, May 2013), pp. 714–718.

[9] OSMALSKYJ, J., VAN DROOGENBROECK, M., AND EMBRECHTS, J.-J.
Performances of low-level audio classifiers for large-scale music
similarity. In International Conference on Systems, Signals and Image

Processing (IWSSIP) (Dubrovnik, Croatia, May 2014), pp. 91–94.

[10] VAN BALEN, J., BOUNTOURIDIS, D., WIERING, F., AND VELTKAMP, R.
Cognition-inspired descriptors for scalable cover song retrieval. In Int.

Symp. Music Inform. Retrieval (ISMIR) (Taipei, Taiwan, Oct. 2014),
pp. 379–384.

57 / 57

	Introduction
	Problem Formulation
	Background
	Rejectors
	Evaluation
	Experiments
	Conclusions
	References

