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Abstract

The failure of carbon fiber reinforced epoxy laminates is studied using an anisotropic gradient-enhanced continuum
damage model embedded in a mean-field homogenization scheme.
In each ply, a homogenized material law is used to capture the intra-laminar failure. The anisotropy of the homogenized
material model results from the homogenization method and from the reformulation of the non-local continuum damage
theory to account for the material anisotropy. As a result the damage propagation direction in each ply is predicted
with accuracy as compared to the experimental results, while the problems of losing uniqueness and strain localization,
which occur in classical finite element simulations when strain softening of materials is involved, can be avoided.
To model the delamination process, the hybrid discontinuous Galerkin/extrinsic cohesive law method is introduced at the
ply interfaces. This hybrid method avoids the need to propagate topological changes in the mesh with the propagation
of the delamination while it preserves the consistency and stability in the un-cracked interfaces.
As a demonstration, open-hole coupons with different stacking sequences are studied numerically and experimentally.
Both the intra- and inter-laminar failure patterns are shown to be well captured by the computational framework.
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1. Introduction

An efficient design using advanced composite materials
relies on the development of accurate analytical and com-
putational tools which are able to predict the response of
composite structures under complex severe loading condi-
tions. In particular, the modeling of the failure process
of such structures becomes an important requirement to
reduce the cost inherent to mechanical tests on large num-
bers of specimens.

Fracture mechanisms of composite materials are com-
plex and require a multiscale approach: from the mi-
croscale within a ply to the laminate macroscale. Different
solutions have been developed to address these particu-
lar topics, such as the damage-based micro-meso-macro
approaches for composites [1–3], or purely numerical ap-
proaches as discussed by LLorca et al. [4]. However, since
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composite materials are aggregates of multiple phases, and
as each phase has its own mechanical properties, the fail-
ure models require the material characterization of many
parameters at the laminate level [2, 3, 5, 6]. Moreover,
the use of mesh-dependent characteristic sizes [5, 6] or of
time regularization [7] is common to simulate the failure
of composite structures since the governing partial differ-
ential equations lose ellipticity at damage induced strain-
softening onset, removing the uniqueness of the finite ele-
ment solution, which becomes mesh-dependent. As a re-
sult, the finite-element solution does not converge with
the mesh refinement. The use of cohesive zones within the
plies using the extended finite element method, see e.g.
[8], or the phantom node method [9] does not suffer from
the loss of solution uniqueness.

An alternative to these approaches consists in using ho-
mogenized material properties at the macro-scale, in which
case only the constituents need to be characterized. Indeed
the macro or mesoscopic material responses of heteroge-
neous materials can be derived from the micro-structure
constituents properties using analytical and/or numerical
homogenization techniques. A comprehensive overview of
different homogenization methods can be found in Refer-
ences [10, 11].
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One semi-analytical efficient homogenization framework
for the modeling of particle or fiber reinforced compos-
ite materials is the mean-field homogenization (MFH) ap-
proach [12]. MFH methods were first developed for linear
elastic structures by extending the Eshelby single inclu-
sion solution [13] to multiple inclusions interacting in an
average way in the composite material. Most common
extensions of the Eshelby solution are the Mori-Tanaka
scheme [14, 15] and the self-consistent scheme [16, 17]. As
the constituents of a composite material can exhibit an
inelastic behavior such as plasticity, visco-elasticity, etc.,
MFH methods were also developed in the non-linear range
[18–26].

Although multiscale homogenization methods in gen-
eral, and MFH schemes in particular, have achieved a
high level of accuracy to capture the non-linear behavior
of composite materials, accounting for material degrada-
tion, through damage or fracture models, remains highly
challenging, see the reviews in [4, 11]. Recently, Wu et
al. [27, 28] have proposed a non-local MFH accounting for
the damage evolution of the matrix phase of the composite
material. In that formulation, an incremental-secant MFH
approach was developed in order to account for the elastic
unloading of one of the composite material phases during
the strain softening of the other phase. When compared
to a finite-element resolution of the micro-structure, the
model was shown to predict accurately the softening re-
sponse of the composite material, as well as the response
of the different phases, even for volume ratios of inclusions
around 60 %, [28]. In order to avoid the strain/damage
localization caused by the matrix material softening, an
implicit non-local formulation [29–32] was adopted during
the homogenization process.

Beside the intra-laminar damage, the inter-laminar fail-
ure is also of importance. The delamination process is
usually modeled by recourse to cohesive interface elements
inserted between the plies, which integrate an intrinsic
cohesive law (ICL), see [33–38] among many others. In
that case, the traction separation law of the cohesive ele-
ment also models the elastic response prior to the delam-
ination process, yielding mesh-dependent effects [37, 38]
due to the lack of consistency of the method (because of
the lack of consistency, convergence is not achieved upon
mesh-refinement). This mesh-dependent effect has moti-
vated the use of extrinsic cohesive laws (ECL), which rep-
resent the fracturing response only, and for which cohe-
sive elements are inserted at the fracture onset [39, 40],
requiring on-the-fly topological changes of the mesh. An
energetically rigorous and computationally efficient way
to integrate a cohesive zone model is to combine the ex-
trinsic cohesive law with a discontinuous Galerkin (DG)
approach [41–45]. With this hybrid method, interface el-
ements are inserted between bulk elements at the begin-
ning of the simulation, but the consistency and continuity
during the pre-fracture stage are ensured by having re-
course to the discontinuous interface terms, contrarily to
a classical intrinsic cohesive zone model, thus avoiding the

mesh-dependence effect and the need to propagate topo-
logical changes in the mesh with the propagation of the
delamination. Efficient implementations of this method
in open-source and commercial software are now available
[46–48].

In this paper, the non-local damage-enhanced MFH
model developed in [27, 28] is applied to predict the fail-
ure of composite laminates such as coupon tests with a
hole. To this end numerical models of the laminates are
obtained by meshing each different ply separately. Within
a ply, the material model follows the MFH, allowing to
represent the damage process corresponding to the dif-
ferent fiber orientations. At the interface between plies,
the hybrid discontinuous Galerkin/extrinsic cohesive law
(DG/ECL) method is used to model the delamination pro-
cess. This paper is organized in two main sections.

Section 2 presents the multi-scale numerical model of
the composite laminate. First, in Section 2.1, the implicit
non-local approach originally derived for isotropic mate-
rials [29–32] is extended to the case of anisotropic ma-
terials, such as UD-fiber reinforced epoxy ones. Indeed,
in that case a single characteristic length l is not enough
to characterize the interactions, of the non-local model,
between material points in all the directions. In the trans-
verse directions of UD-fiber reinforced epoxy composites,
the fibers have the effect of blocking the material points
interactions, and on the contrary, in the longitudinal di-
rection, fibers prolong the interactions between material
points [49, 50]. In order to respect this anisotropic charac-
ter of composite materials, the implicit non-local approach
is derived in an anisotropic framework, and three charac-
teristic lengths l1, l2 and l3 are defined in the three prin-
cipal directions of the materials. The anisotropy of the
homogenized material model results thus from the homog-
enization method and from the reformulation of the non-
local continuum damage theory to account for the material
anisotropy. Because of this anisotropic model, the damage
propagates along the fiber directions, which is not neces-
sarily the case with meso-scale continuum damage models
[51]. As a result the damage propagation direction in each
ply is predicted with accuracy as compared to the experi-
mental results. Then, in Section 2.2, the finite-element dis-
cretization of the hybrid discontinuous Galerkin/extrinsic
cohesive law method is presented in the particular case
of laminate structures: within a ply a classical continuous
Galerkin approximation is used while the hybrid DG/ECL
method is used at ply interfaces, allowing the delamination
to be captured by an adequate cohesive law. Third, the
non-local incremental-secant MFH scheme, accounting for
the damage evolution in the matrix [28], is recalled in Sec-
tion 2.3 to define the material model of the bulk elements
within the plies. Finally, as the delamination models are
usually developed for intrinsic cohesive laws [33–38], their
extrinsic version is proposed in Section 2.4.

Section 3 presents the numerical applications of the de-
veloped framework and its validation. The material pa-
rameters of the carbon fibers and of the epoxy matrix of
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prepreg Hexply M10.1/38% / UD300 / HS (R) are identi-
fied from the manufacturer data and the cohesive energy
required for the delamination model is extracted from a
Double Cantilever Beam (DCB) experiment in Section 3.1.
The effect of the characteristic lengths of the non-local
damage model is studied in Section 3.2, showing the ne-
cessity to consider an anisotropic non-local model for UD
composite material. Eventually the predicted responses of
open-hole laminate coupons are compared to experimental
results. Tensile tests on open-hole laminate involve com-
plex intra- and inter-laminar failure modes which depend
on the geometrical dimensions, stacking sequence etc. For
this reason such tests have been commonly used to vali-
date composite laminate failure models, as in [52] to assess
the meso-scale continuum damage model [1], in [53] to val-
idate the phantom-node method [53] combined to interface
elements and fiber damage models, or in [54] to study the
thickness size effect using the smeared crack model [5], as
a non-exhaustive list. In the present work, experimental
tests with two different stacking sequences are performed
following the setup described in Section 3.3, and the re-
sults are compared to the developed model predictions in
Section 3.4. It is found that the numerical model predicts
the damage bands in locations and with orientations as
observed in the experimental samples loaded up to 90%
of the failure stress and inspected by X-ray computed to-
mography (XCT). Moreover, the fracture load is relatively
well captured by the model as well as the delamination
pattern.

2. Multiscale model for composite laminates
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Figure 1: Multiscale method.

The laminate Ω is made of different plies Ωi which are
separated by interfaces ΓLi+1

i
, see Fig. 1. The unions of

the interfaces between the plies is referred to as ΓL. At
the macro-scale, each ply can be seen as an anisotropic
homogeneous continuum assuming the separation of scales
holds. For a complex material behavior, the material re-
sponse within a ply can be obtained through a multiscale
approach as illustrated in Fig. 1. At each macro-point X
of the structure, the macro-strain tensor ε̄ is known, and
the macro-stress tensor σ̄ is sought from the resolution of

a micro-scale boundary value problem (BVP). In this pa-
per the macroscopic fields obtained from the subsequent
homogenization process are over-lined whereas the micro-
scopic fields are not. At the micro-level, the macro-point
is viewed as the center of a representative volume element
(RVE) of domain ω made of different phases ωi.

In the present paper the multiscale laminate problem
is solved as follows. At the macro-scale the homogenized
material law of each ply follows a damage-enhanced elasto-
plastic anisotropic model. In order to capture the softening
response, this model is formulated in a non-local implicit
form [29–31]. This non-local form is herein reformulated
using anisotropic matrix length scales in order to account
for the anisotropic behavior of the plies. At the micro-
scale, the incremental-secant mean-field homogenization
formulation developed for composite materials whose com-
ponents obey to the elasto-plastic damage governing law
is considered [26, 28]. As delamination can occur between
the plies, along ΓL, the weak form of the non-local macro-
scale governing equations is formulated using a DG/ECL
framework allowing the traction separation delamination
law to be integrated.

2.1. Anisotropic non-local gradient model

To avoid the loss of objective solutions during strain
softening, many enhanced physical or phenomenological
models were proposed. As an example, the smeared for-
mulation uses the characteristic length of the finite ele-
ments in the constitutive model [55]. Other continuum
damage modeling approaches, avoiding the introduction of
a mesh-dependent parameter, are supplied with a higher-
order formulation, such as in the Cosserat model [56], the
non-local model [57] or the gradient model [58].

Besides these damage formulations avoiding the loss of
the solution uniqueness, the so-called implicit non-local
approach was pioneered in [29–31]. In this formulation,
some internal variables a (which can be strains, accu-
mulated plastic strain, damage...) are replaced by their
weighted average ã over a characteristic volume (VC) to re-
flect the interaction between neighboring material points:

ã(X) =
1

VC

∫
VC

a(y)φ(y; X)dV , (1)

where y denotes the position in the infinitesimal volume
dVC . The weight function φ(y; X) determines the influ-
ence of the local internal variables in this infinitesimal vol-
ume on the non-local internal variable at point X. For
convenience, the weight functions are assumed normalized,
such that 1

VC

∫
VC
φ(y; X)dV = 1.

Practically, in order to avoid the direct computation of
Eq. (1) in a finite element framework, this expression can
be substituted by an explicit gradient enhanced approxi-
mated solution as in [59] e.g., or by an implicit form pre-
serving the high order accuracy. In the latter a non-local
internal variable is computed through the resolution of a
new boundary value problem. Therefore there is no need
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to develop higher-order elements, although the elements
have now one additional degree of freedom per node. This
approach is fully non-local as it is constructed on the basis
of an averaging integral under the form of a new partial
differential equation, contrarily to non-local models con-
structed on the incorporation of higher order terms as for
the models of [60, 61]. This implicit non-local gradient
enhanced model has been developed for isotropic mate-
rials [29–31]. With a view toward the modeling of the
anisotropic behavior of composites, we first extend the
gradient-enhanced model to anisotropic materials.

For an anisotropic material, following the same process
as for isotropic materials [32], an alternative gradient for-
mulation can be derived in the local coordinates linked
to the material system, e.g. linked to the fiber orienta-
tion in the unidirectional (UD) continuous fiber-reinforced
composite material case. Using the definition of the char-
acteristic length tensor cl = diag

(
ci
)
, where ci are the

squared values of the characteristic length in direction i,
the Helmholtz-type equation governing the non-local vari-
able is written in the implicit non-local form, see details
in Appendix A, as

ã−∇l · (cl ·∇lã) = a , (2)

where “∇l” and “∇l·” represent the gradient operator and
the divergence operator expressed in the local coordinates,
respectively.

The boundary condition associated with this Helmholtz-
type equation, which guarantees the equivalence of the vol-
ume averages of ã and a on the entire problem domain Ω,
see for details in Appendix A, reads

(cl ·∇lã) · nl = 0 , (3)

with nl the unit normal to Γ, the boundary of the entire
problem domain Ω, expressed in the local coordinates.

As the material is not always oriented along the global
axes, the gradient enhanced formulation should be stated
in the inertial frame. A rotation tensor R is defined to
represent the change of orthonormal coordinates from the
global to the local referential. The anisotropic implicit
gradient formulation (2) is thus stated in the global coor-
dinates as

ã−∇ · (cg ·∇ã) = a , (4)

where the characteristic length tensor is defined in the
global coordinates cg = RT · cl ·R. This equation is com-
pleted by the boundary condition (3), which becomes in
the global coordinates

(cg ·∇ã) · n = 0 . (5)

In these last equations “∇” and “∇·” represent the gra-
dient operator and the divergence operator in global co-
ordinates, respectively, and n is the outward unit normal
expressed in the global coordinates.

For isotropic materials this tensor reads cg = diag (c),
with c = l2 the square of the characteristic size. For com-
posite materials, the anisotropy can be accounted for in

this definition. As an example, for the matrix phase of a
unidirectional (UD) continuous fiber-reinforced composite
material, ci = (li)2 is different in the directions parallel
and transverse to the fibers: cl = diag

(
ci
)
. The tensor is

thus computed from the rotation tensor R describing the
fibers orientation.

2.2. Non-local DG/ECL weak formulation of the laminate
problem

In this section the strong form of the implicit non-local
problem within each ply and the strong form governing the
delamination of ply interfaces behavior are first recalled.
The weak DG/ECL formulation of these strong forms and
the resulting finite-element discretization can then be de-
rived.

2.2.1. Strong formulation of the problem

Let Ω be the laminate illustrated in Fig. 1, which is
subjected to a force per unit mass b̄. Its boundary surface
Γ includes two parts: the Dirichlet boundary ΓD where the
displacement is prescribed to ¯̄u, and the Neumann bound-
ary ΓN where the surface traction is prescribed to ¯̄t. One
has Γ = ΓD ∪ΓT and ΓD ∩ΓT = ∅. The body Ω is divided
into several sub-domains of different material behaviors.
In this paper the body corresponds to a laminate and the
different domains correspond to the different plies with
different fiber orientations, Fig. 1, leading to Ω =

⋃
i Ωi

where Ωi refers to one material domain with its boundary
Γi.

The continuum equations thus read

ρ̄ ¨̄u = ∇ · σ̄T + ρ̄b̄ in Ω , and (6)

p = p̃−∇ · (cg ·∇p̃) in Ωi , (7)

where ρ̄ is the density. The second set of equations results
from the implicit non-local Eq. (4) rewritten within each
ply Ωi in terms of the internal variable p, which represents
the equivalent plastic strain of the composite material ma-
trix, see Section 2.3. As both p and p̃ are related to the
matrix phase only, we do not use the over-lined notation.
These equations are completed by the following spatial
boundary conditions

ū = ¯̄u on ΓD , (8)

σ̄ · n̄ = ¯̄t on ΓN , and (9)

(cg ·∇p̃) · n̄ = 0 on Γ . (10)

Special attention needs to be paid to the interface ΓL

between plies of the laminate. To this end the jump and
average operators are defined on an interface lying in the
body, which separates the parts arbitrarily denoted i + 1
and i, see Fig. 1, by respectively

J•K = [•i+1 − •i] and 〈•〉 =
1

2
[•i+1 + •i] . (11)

On the un-delaminated part of the interface ΓLU, the exact
displacement field is continuous with

q
ūexact

y
= 0 on ΓLU , (12)
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where we have considered the jump operator (11). The
remaining boundary condition to be defined is related to
the non-local field p̃ across these interfaces. A complete
discussion on the thermodynamical aspect of this bound-
ary condition can be found in [62], and can be summarized
as

• Defining a continuous field p̃ between plies, although
not thermodynamically rigorous, results in taking into
account the damage process in the neighboring plies
of a given ply;

• Using a discontinuous field p̃ between plies corre-
sponds to applying the boundary conditions (10) at
the interface between the two materials, restricting
direct energy exchanges between plies;

• A boundary condition could be defined to balance the
energy exchange across interfaces [62].

As in the problem we are studying, the characteristic di-
mension is small along the ply thickness, the effect of the
boundary conditions between plies is reduced. As tensor
cg changes from one ply to another, and as the physical
damaging mechanism between plies will be modeled by co-
hesive zone, for simplicity we choose to apply the boundary
conditions at ply interface, i.e. we allow for this field to
be discontinuous. One thus has

(cg ·∇p̃) · n̄ = 0 on ΓLUi+1 and on ΓLUi . (13)

 


GC 


max



c 

tmax

t

Figure 2: Monotonically decreasing traction separation law (TSL)
linking the opening ∆∗ to the surface traction t̄ and characterized
by the strength σc, the critical energy release rate GC , the maximum
opening reached ∆∗

max, and the corresponding traction t̄∗max. A
single arrow refers to the irreversible parts of the TSL and a double
arrow refers to the reversible parts.

On the delaminated part ΓLC of the interface ΓL we
consider a crack with a traditional traction separation law
governing the opening between the crack lips. In terms
of the surface traction t̄ = σ̄ · n̄ on the crack lips, the
governing equations read

Jt̄K = 0 on ΓLC , (14)

t̄ = ‖t̄‖ ≤ t̄max on ΓLC , (15)

(t̄max − t̄)


> 0 if ∆̇∗ < 0 or

∆∗ < ∆∗max ;

= 0 if ∆̇∗ > 0 and
∆∗ = ∆∗max ,

(16)

(cg ·∇p̃) · n̄ = 0 on ΓLCi+1
and on ΓLCi , (17)

where t̄ represents the surface traction amplitude between
the crack lips, ∆∗ is the opening of the crack, and where
t̄max is the surface traction amplitude at the maximum
crack opening ∆∗max reached during the fracture process,
see Fig. 2. Equation (17) is similar to Eq. (13) and as-
sumes that once the crack is introduced in the discretiza-
tion, the crack surfaces act as free boundaries with regards
to the non-local implicit equations.

2.2.2. Weak formulation of the problem

 

Node m: 
 ̅

    ̃
   

 ̅
      ̃ 

     

i 

i+1 

   
 

     
 

 
  
   

 

Figure 3: Definition of the degrees of freedom.

The equations governing the strong form are discretized
by approximating the unknown fields by continuous ap-
proximations in each ply, i.e. (ū, p̃) ∈ C0 (Ωi), while the
fields are discontinuous across the ply interfaces ΓL, as il-
lustrated in Fig. 3. Thus the kinematically admissible
trial functions wū and wp̃, of the displacement and of the
non-local fields, respectively, are also discontinuous across
the interfaces ΓL which include un-delaminated -or un-
cracked- surfaces ΓLU on which the strong form (12-13)
holds, and delaminated -or cracked surfaces ΓLC on which
the strong form (14-17) holds.

The governing equations can be obtained by weakly en-
forcing the strong form in a weighted-average sense. This
is achieved by multiplying the bulk strong form (6-8) by
the trial functions (wū, wp̃) ∈ C0 (Ωi), and by integrating
by parts on each ply Ωi instead of performing this inte-
gration on the whole domain Ω as it is usually performed.
Using the boundary conditions (8-10, 13 and 17) and def-
initions (11) of the jump and average operators across the
interface ΓLi+1

i
between the surfaces ΓLi and ΓLi+1

, see
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Fig. 3, leads to∑
i

∫
Ωi

(
ρ̄ ¨̄u ·wū + σ̄ : ∇wū

)
dV +

∑
i

∫
Γ
LC
i+1
i

JwūK · t̄i (JūK) ds+

∑
i

∫
Γ
LU
i+1
i

JwūK · 〈σ̄〉 · n̄ids =

∑
i

∫
Ωi

ρ̄b̄ ·wūdV +

∫
ΓN

wū · ¯̄tds , (18)

∑
i

∫
Ωi

(p̃ wp̃ + ∇wp̃ · cg ·∇p̃) dV =

∑
i

∫
Ωi

pwp̃dV , (19)

where n̄i is the outward unit surface normal of the ply i,
and where t̄i is the surface traction evaluated at the surface
ΓLi of the interface ΓLi+1

i
. Note that as the boundary

conditions (10), (13) and (17) have already been used in
the derivation of Eq. (19), they do not have to be explicitly
applied in the finite element formulation.

The weak formulation (18) does not ensure the conti-
nuity of the displacement field at the un-cracked ply in-
terfaces ΓLU and the stability of the method. As usually
done with discontinuous Galerkin methods, see [63] e.g.
for details, the compatibility equation (12) is enforced in
a weak way using the so-called symmetrization terms and
sufficiently large quadratic stabilization terms. With the
addition of the quadratic terms, the displacement jumps
are stabilized in the numerical solution, while the sym-
metrization terms lead to an optimal convergence rate with
respect to the mesh size. The weak formulation (18-19) of
the problem is thus finally stated as finding (ū , p̃) such
that ∑

i

∫
Ωi

(
ρ̄ ¨̄u ·wū + σ̄ : ∇wū

)
dV +

∑
i

∫
Γ
LC
i+1
i

JwūK · t̄i (JūK) ds+

∑
i

∫
Γ
LU
i+1
i

JwūK · 〈σ̄〉 · n̄ids+

∑
i

∫
ΓLUii+1

JūK · 〈C̄0 : ∇wū〉 · n̄ids+

∑
i

∫
ΓLUi+1

JwūK⊗ n̄i : 〈βs
hs

C̄0〉 : JūK⊗ n̄ids =

∑
i

∫
Ωi

ρ̄b̄ ·wūdV +

∫
ΓN

wū · ¯̄tds , (20)

∑
i

∫
Ωi

(p̃ wp̃ + ∇wp̃ · cg ·∇p̃) dV =

∑
i

∫
Ωi

pwp̃dV , (21)

∀ (wū , wp̃) kinematically admissible. In this set of equa-
tions, hs is the mesh size and βs is the penalty parameter
for stabilization purpose. In Eq. (20) the initial homoge-
nized elastic operator C̄0 has been used in the symmetriza-
tion and stabilization terms instead of the algorithmic op-
erator ∂σ̄

∂ε̄ in order to ensure the stability -which requires
non-vanishing quadratic terms- of the method near and
beyond the strain softening onset. A complete non-local
discontinuous Galerkin formulation accounting for discon-
tinuities within the domain, and not only at the interfaces
between the different materials, can be found in [64]. In
this formulation the continuity of the non-local field is also
weakly ensured across the interfaces.

In the weak form (20-21), the homogenized stress tensor
σ̄ and the homogenized local accumulated plastic strain
p are obtained from the damage-enhanced incremental-
secant mean-field homogenization method summarized in
Section 2.3. The traction t̄ on the delaminated interfaces
ΓLC results from the traction separation law developed in
Section 2.4. The delamination criterion forcing an initially
un-cracked part of ΓLU to become part of the cracked in-
terface ΓLC is also defined in that Section 2.4.

2.2.3. Finite element implementation

Each ply Ωi is discretized into several finite elements Ωei .
The solution of the weak form (20-21) arises by considering
polynomial approximations of the displacement mapping
ū and of the non-local accumulated plastic strain p̃, fol-
lowing,

ū(X) =
∑
m

Nm(X)ūm ,

wū(X) =
∑
m

Nm(X)δūm , and (22)

p̃(X) =
∑
m

Nm(X)p̃m ,

wp̃(X) =
∑
m

Nm(X)δp̃m , (23)

where Nm is the traditional shape function corresponding
to the node m. In all generalities, the two interpolations
could use different shape functions, but in this paper we
consider the same quadratic polynomial approximations
for the two fields for simplicity.

As the two fields ū and p̃ are piece-wise continuous
within each ply Ωi but are discontinuous at the ply in-
terfaces ΓL, the shape functions N ought to represent this
discontinuity. At each node m of the interface ΓLi+1

i
the

degrees of freedom are duplicated so that the degrees of
freedom ūmi and p̃mi on ply i coexist with the degrees of
freedom ūmi+1 and p̃mi+! on ply i+ 1, see Fig. 3.

The finite-element forces can be computed by applying
the polynomial approximations (22-23) into the weak form
(20-21). Defining q̄T =

[
ūT p̃T

]
as the vector regroup-

ing the degrees of freedom of the whole mesh reduces the
system into a set of ordinary differential equations, to be
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integrated in the time interval T , which are expressed in
the matrix form as

M¨̄u + fū int(q̄) + fūL(q̄) = fū ext ∀t ∈ T , (24)

fp̃ int(q̄)− fp int(q̄) = 0 ∀t ∈ T , (25)

where M is the discretized mass matrix, fū int is the in-
ternal forces vector, fūL is the interface (including the
un-delaminated and delaminated parts of ΓL) force vec-
tor, fū ext is the external force vector, fp̃ int is the non-local
internal force vector related to p̃, and where fp int is the
non-local force vector related to p. These vectors are con-
structed from the nodal elementary forces reported in Ap-
pendix B. The set of equations (24) is completed by the
initial conditions ua(t = 0) = 0 and u̇m(t = 0) = vm0 ,
where vm0 are the initial nodal velocities. The time in-
terval of interest T is discretized into time steps and the
integration is accomplished through an incremental solu-
tion procedure in each time interval [tn, tn+1].

This DG/ECL finite element formulation

• is consistent, i.e. the exact solution of the problem
satisfies equations (20-21);

• is stable if the stability parameter βs is larger than a
constant that depends on the finite element polyno-
mial order only,

• has the optimal convergence rate with the mesh size
hs for linear analyses;

• does not require mesh modification to introduce the
crack as a Gauss point of ΓLU simply becomes part of
ΓLC when the delamination criterion is met.

The system of equations (24-25) can be solved either
in a static way using a Newton-Raphson scheme or in
a staggered way in which case equations (24) are solved
using an explicit time integration algorithm, while equa-
tions (25) are solved using Newton-Raphson iterations. In
the latter case, the dynamics Eq. (24) can be integrated
using the Hulbert-Chung time integration [65], which ex-
hibits numerical dissipation, and the remaining non-local
equations of system (25) are iteratively solved every thou-
sands of explicit steps. Such a staggered technique was
previously proposed in [66], and is herein adopted with an
implicit resolution of the non-local equations every 5000
explicit steps. The linearized expressions of the non-local
equations are reported in Appendix C.

As extensive computations will be required due to the
need for fine meshes, the framework is implemented in par-
allel in Gmsh [67] following the scalable face-based ghost
implementation presented in [44, 45] for classical mechan-
ics and adapted in a straightforward way to the non-local
implicit scheme.

What remains to be defined are the bulk constitutive
material model and the traction-separation law at the
cracked interfaces.

2.3. MFH for elasto-plastic materials with gradient en-
hanced damage models

Instead of using an anisotropic macro-scale material law
whose parameters are experimentally identified, we use a
mean-field homogenization process, which requires the ma-
terial parameters of the composite material constituents
and the definition of the micro-structures. This method
naturally leads to macro-scale anisotropic non-linear be-
haviors. In our previous work [27, 28], a gradient-enhanced
damage multiscale analysis has been developed on the ba-
sis of the incremental-secant mean-field homogenization
(MFH) [26], and of the gradient-enhanced formulation [32].
In this section after having recalled the non-local damage-
enhanced J2-elasto-plastic material model of the compos-
ite matrix phase, the main ideas of the gradient-enhanced
incremental-secant MFH method are given.

2.3.1. Elasto-plastic materials with non-local enhanced
damage models

The non-local implicit approach recalled in Section 2.1
can be applied to damage models in order to avoid the loss
of ellipticity at the macro-scale during the strain-softening.

Damage in the matrix phase is introduced with the usual
assumption that the strain tensors in the actual body and
in its undamaged representation are equivalent [68, 69].
The usual definition of the effective stress reads

σ̂ =
σ

(1−D)
, (26)

where σ is the apparent Cauchy stress and where 0 ≤ D <
1 is the damage variable.

Assuming an elasto-plastic material for the matrix
phase, which obeys J2-elasto-plasticity, the von Mises
stress criterion is written in the effective space following

f (σ̂, R) = σ̂eq −R(r)− σY ≤ 0 , (27)

where f is the yield surface, σ̂eq =
√

3
2 σ̂ : Idev : σ̂ is the

equivalent von Mises stress defined using the deviatoric
operator Idev, σY is the initial yield stress, and R(r) > 0
is the isotropic hardening stress in terms of r, an internal
variable related to the accumulated plastic strain p and
to the plastic multiplier λ̇ with ṙ = λ̇ = (1 − D)ṗ, see
[70] for details. However in this paper we use the classical
approximation that consists in writing the J2-plasticity in
the effective stress space: f (σ̂, R(p)) 6 0. During the
plastic flow, i.e. f = 0, ∆p > 0, the plastic strain tensor
increment follows the plastic flow direction

∆εp = ∆p
∂f

∂σ̂
=

3∆p

2

Idev : σ̂

σ̂eq
= ∆pN , (28)

where N is the normal to the yield surface in the effective
stress space. The apparent stress follows from the coupled
damage concept and reads

σ = (1−D)Cel : (ε− εp) = (1−D)Cel : εel . (29)
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This formulation is completed by the damage evolution
description. In this work the non-local accumulated plastic
strain p̃ is applied to calculate the damage evolution in the
incremental damage model:

∆D =

{
0, if p̃ 6 pC ;

(Yn+α

S0
)s∆p̃, if p̃ > pC .

(30)

In this expression, pC is a plastic threshold for the damage
evolution, S0 and s are the material parameters, Y is the
strain energy release rate computed as

Y =
1

2
εel : Cel : εel , (31)

and α is an interpolation parameter ranging from 0 to 1.
In the non-local implicit approach the non-local accu-

mulated plastic strain p̃ is computed from the implicit for-
mulation (4), which is rewritten

p̃−∇ · (cg ·∇p̃) = p . (32)

where cg is the characteristic squared lengths tensor as
defined in Section 2.1.

2.3.2. Incremental-secant mean-field homogenization for
two-phase composites

In the multiscale approach depicted in Fig. 1, at each
macro-point X of a ply, the macro-strain tensor ε̄ is
known, and the macro-stress tensor σ̄ is sought from the
resolution of a micro-scale boundary value problem (BVP).
The Hill-Mandell condition, expressing the equality be-
tween energies at both scales, transforms the relation be-
tween macro-strains ε̄ and stresses σ̄ into the relation be-
tween the volume average strains 〈ε〉ω and stresses 〈σ〉ω
over the RVE. For a two-phase isothermal composite with
the respective volume fractions v0 + vI = 1 (subscript 0
refers to the matrix and I to the inclusions), the average
quantities are expressed in terms of the phase averages as

ε̄ = v0〈ε〉ω0
+vI〈ε〉ωI

and σ̄ = v0〈σ〉ω0
+vI〈σ〉ωI

. (33)

For simplicity, in the following developments, the no-
tations 〈•〉ωi will be replaced by •i. Considering the so-
called linear comparison composite (LCC), the relation be-
tween the average incremental strains in the two phases
depends on the chosen expressions of the virtual elastic
operators CLCC

0 of the matrix phase and CLCC
I of the in-

clusions phase, leading to

∆εI = Bε(I,CLCC
0 , CLCC

I ) : ∆ε0 . (34)

On the one hand, for a single ellipsoidal inclusion Bε in
a infinite matrix can be obtained from the Eshelby so-
lution [13]. On the other hand, in the case of multiple
inclusions Bε can be obtained analytically under some as-
sumptions on the micro-mechanics [14, 17]. In this paper,
the Mori-Tanaka (M-T) expression of Bε, which assumes
that the strain at infinity in the single inclusion problem

corresponds to the average strain in the matrix phase, is
used and the strain concentration tensor reads

Bε = {I + S : [(CLCC
0 )−1 : CLCC

I − I]}−1 , (35)

where the Eshelby tensor S(I, CLCC
0 ) depends on the ge-

ometry of the inclusion (I) and on the virtual elastic op-
erator CLCC

0 . The expressions of the tensors CLCC
0 and

CLCC
I depend on the chosen MFH process. In linear elas-

ticity, these operators correspond to the material moduli
Cel

0 and Cel
I . In the incremental-tangent MFH method for

non-linear materials, they correspond to the “consistent”
average tangential operators Calg

0 and Calg
I , and are uni-

form by construction. Although this incremental-tangent
method can be used for elasto-plastic constitutive ma-
terials exhibiting damage [27], such an approach implic-
itly implies –through the linearization of (34)– that the
strain rates in both phases have the same sign. How-
ever for composite materials, during the strain softening
of the matrix (positive strain rate) the fibers can see an
elastic unloading (negative strain rate). This has moti-
vated the development of the incremental-secant method
[26, 28] to be able to capture this behavior. Moreover
within the incremental-secant formalism, the new secant
operator of the matrix phase, CS

0 is naturally isotropic,
which prevents the isotropisation step required with the
incremental-tangent method [22].

Considering a time interval [tn, tn+1], with the total
strain tensor ε̄n at time tn and the strain increment ∆ε̄n+1

resulting from the FE resolution, the strain tensor ε̄n+1 at
time tn+1 follows from

ε̄n+1 = ε̄n + ∆ε̄n+1 . (36)

At time tn, a virtual elastic unloading from the stress state
σ̄n is applied, which corresponds to a residual strain ten-
sor ε̄res

n , see Fig. 4(a). The unloading ∆ε̄unload
n is chosen

so that the homogenized residual stress of the composite
material vanishes

σ̄res
n = v0σ

res
0 n + vIσ

res
I n = 0 . (37)

The main idea of the incremental-secant method, is to de-
fine a LCC subjected to a strain increment ∆ε̄r

n+1 from
the virtually unloaded state, satisfying

ε̄n+1 = ε̄res
n + ∆ε̄r

n+1 , (38)

and from which the stress tensor at time tn+1 can be com-
puted. The resulting stress and strain states in the com-
posite material are illustrated in Fig. 4(a).

To complete the incremental-secant MFH process, the
residual stress and strain state in the phases of the com-
posite material illustrated in Fig. 4(b) have to be defined.
At time tn+1 the stress and damage values reach respec-
tively σn+1 and Dn+1. Following the method pictured on
Fig. 4(b), the effective stress tensor at time tn+1 can also
be expressed as

σ̂n+1 = σ̂res
n + ∆σ̂r

n+1 , with ∆σ̂r
n+1 = CSr : ∆εr

n+1 .
(39)
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Figure 4: Definition of the incremental-secant formulation [28]. (a)
Virtual unloading and incremental-secant formulation on the com-
posite material. (b) Definition of the residual strain and stress and
of the residual-secant operator in a phase. (c) Definition of the zero-
secant operator in a phase.

In this last equation CSr is the residual-incremental-secant
operator of the undamaged linear comparison material. In
particular for J2-elasto-plastic materials this operator is
isotropic and can be expressed as

CSr = 3κrIvol + 2µr
sIdev , (40)

with the equivalent undamaged bulk and shear moduli κr

and µr
s that can be computed following [28].

Finally the apparent stress tensor is readily obtained
from

σn+1 = (1−Dn+1) σ̂n+1 , (41)

and the residual-incremental-secant operator of the dam-
aged isotropic-linear comparison material can directly be
evaluated from

CSDr = (1−Dn+1)CSr = 3κDrIvol + 2µDr
s Idev , (42)

with the equivalent damaged bulk and shear elastic moduli
κDr and µDr

s that can be computed following [28]
As lengthy discussed in [26], when defining the LCC, it

can be advantageous to modify the residual-incremental-
secant approach by neglecting the residual stress -but not
the residual strain- in the matrix phase for composites
whose inclusions remain elastic, or exhibit an elasto-plastic
behavior with a hardening coefficient higher than the one
of the elasto-plastic matrix material.

The modification follows the suggestion illustrated in
Fig. 4(c) and consists in neglecting σ̂res

n in the formal-
ism described here above, which leads to defining the two
operators

CS0 = 3κ0Ivol + 2µ0
sIdev , and

CSD0 = (1−Dn+1)CS0 = 3κD0Ivol + 2µD0
s Idev ,(43)

respectively the zero-incremental-secant operator of the
un-damaged isotropic-linear comparison material and the
zero-incremental-secant operator of the damaged isotropic-
linear comparison material.

The MFH scheme can now be applied from the unloaded
state. The MFH scheme stated by Eqs. (33-35) is finally
rewritten as

∆ε̄r
n+1 = v0∆εr

0n+1 + vI∆ε
r
In+1 , (44)

σ̄n+1 = v0σ0n+1 + vIσIn+1 , (45)

∆εr
In+1 = Bε(I,CSD0

0 ,CSr
I ) : ∆εr

0n+1 , (46)

where in this last equation we have considered a matrix
phase experiencing damage, hence the use of the zero-
incremental-secant operator CSD0

0 of the equivalent dam-
age material, and an inclusion phase experiencing no dam-
age, hence the use of the residual-incremental-secant op-
erator CSr

I of the equivalent material The resolution of the
set of Eqs. (44-46) follows the iterative process described
in [28].

Note: the local variable p and the non-local variable p̃
are uniform representation of the local matrix accumulated
plastic strain p0 and of its non-local value p̃0, but they do
not correspond to their mean values in the matrix.

2.4. Traction separation law (TSL)

The delamination process is usually modeled by recourse
to cohesive elements which integrate an intrinsic cohesive
law, see [33–38] among many others. In that case, the TSL
of the cohesive element also models the elastic response
prior to the delamination process, yielding mesh-size effect
[37, 38].

In the presented DG/ECL framework, the response prior
to delamination is accounted for by the DG formalism,
avoiding this mesh-size effect. Moreover this formalism
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Figure 5: Mixed mode traction separation law.

virtually allows for any constitutive material behavior to
be considered within the ply while the stresses at ply inter-
faces remain accessible in order to evaluate a delamination
criterion such as the one proposed in [36]. However, be-
cause of the existence of the damaging process taking place
in the matrix phase of the ply, the stresses are reduced in
the presence of damage D, which could prevent the de-
lamination initiation. In this paper we propose to use the
following criterion

� σ �2

σ2
I C

+
τ2

τ2
II C

≤ (1−D)2 , (47)

where σ = n · σ · n and τ =
√

(n · σ) · (n · σ)− σ2 are
respectively the normal and tangent components of the ap-
parent surface traction t̄ at the interface, σI C and τII C are
the maximum tension and shearing of the cohesive model,
and where the operator� • � refers to the positive value,
i.e. equals to zero in case of negative argument. At delam-
ination initiation, the respective (apparent) stress compo-
nents are referred to as σ0 and τ0, see Fig. 5.

During the delamination process, the opening and shear-
ing between the two plies respectively result into the en-
ergy release rates GI and GII, with a complete fracture
obtained for (

GI

GI C

)α
+

(
GII

GII C

)α
= 1 , (48)

where GI C and GII C are the mode I and mode II critical
energy release rates respectively, and where α is a mixed
mode parameter. The critical openings for pure mode I
and mode II fracture are respectively obtained from ∆I C =
2GI

σI C
and from ∆II C = 2GII C

τII C
.

To model a mixed-mode opening, see Fig. 5, an effec-
tive surface separation ∆∗ is evaluated from the surface

opening vector JūK by

∆∗ =

√
� ∆n �2 +∆t

2 , (49)

where ∆n = JūK · n is the separation along the interface
element normal n, and where ∆t = JūK−∆nn is the sepa-

ration along the interface element tangent t̄ = JūK−∆nn
‖JūK−∆nn‖ .

This definition of the effective opening is completed by

β =

{
τ
σ if ∆n > 0 ,

0 if ∆n ≤ 0 ,
(50)

which characterizes the failure mode, and by

∆max = max
t′≤t

(∆∗ (t′)) , (51)

the maximum opening reached up to the current time t.
These definitions allow defining the critical mixed mode

opening ∆mC that ∆∗ can reach to release the correct
amount of energy for a constant β1 [36]

∆mC =


2(1+β2)√
�σ0�2+τ2

0

[
1

GαI C
+ β2α

GαII C

]− 1
α

if ∆n > 0 ,

∆II C if ∆n ≤ 0 .

(52)
The traction separation law directly follows from

σ̄ =


� σ0 �

(
1− ∆∗

∆mC

)
if ∆̇∗ > 0 and

∆∗ = ∆max ,

σ̄max
∆∗

∆max
if ∆̇∗ < 0 ,

(53)

τ̄ =


τ0

(
1− ∆∗

∆mC

)
if ∆̇∗ > 0 and

∆∗ = ∆max ,

τ̄max
∆∗

∆max
if ∆̇∗ < 0 ,

(54)

where σ̄ and τ̄ are the components of the traction-
separation law t̄

t̄ = σ̄n+ τ̄t , (55)

and where σ̄max and τ̄max correspond to the normal and
tangential components, respectively, reached at maximum
opening ∆max. Indeed the linear cohesive law, as shown in
Fig. 5, includes an irreversible softening part during the
crack opening and a reversible part if a crack unloading
occurs.

3. Numerical simulations and validations

First the required material parameters of carbon fibers
and of the epoxy matrix of prepreg Hexply M10.1/38%
/ UD300 / HS (R) are identified from the manufacturer

1During the delamination process, the relative contributions of
modes I and II could vary, as illustrated in e.g. [9], in which case
a damage-based thermodynamically consistent cohesive model, such
as the one proposed in [37], should be used.
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data. The cohesive energy required for the delamination
model is extracted from a Double Cantilever Beam (DCB)
experiment. Using these material parameters, the model
behavior is first studied by comparing the results obtained
from the anisotropic gradient-enhanced MFH model to
the results obtained with the isotropic gradient-enhanced
MFH model. Afterward, the model is validated by com-
paring numerical predictions to experimental tensile tests
on open-hole laminates with different stacking sequences.

3.1. Materials identifications

Table 1: Material properties of the carbon fibers.

Property Value
Long. Young’s modulus EL [GPa] 230
Trans. Young’s modulus ET [GPa] 40
Trans. Poisson ratio νTT [-] 0.20
Long.-Trans. Poisson ratio νLT [-] 0.256
Trans. shear modulus GTT [GPa] 16.7
Long.-Trans. shear modulus GLT [GPa] 24
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Figure 6: Idealized material law of the epoxy matrix in tension.

Table 2: Material properties of the epoxy.

Property Value
Young’s modulus E0 [GPa] 3.2
Poisson ratio ν0 [-] 0.3
Initial yield stress σY 0 [MPa] 15
Hardening modulus h0 [MPa] 300
Hardening exponent m0 [-] 100
Damage critical energy release S0 [Mpa] 0.1
Damage exponent s0 [-] 1.73
Damage critical plastic strain pC [-] 0.0

The material studied in this section is a continuous car-
bon fibers reinforced epoxy composite. The material is

made of prepreg Hexply M10.1/38% / UD300 / HS (R),
which results in a fiber volume fraction of 60% after cur-
ing2. When manufacturing the samples, the prepreg was
cured at 120 oC during 60 min under an applied pressure
of 0.4 MPa.

The carbon fibers are assumed to be linear elastic and
transversely isotropic. Typical material constants, see e.g
[71], for carbon fibers are considered and are reported in
Table 1.

The cured epoxy matrix properties reported by the man-
ufacturer are a tensile modulus of 3.2 GPa, and a tensile
strength of 85 MPa at 0.035 strain. By lack of elasto-
plastic data, an exponential hardening law

R0(p) = h0[1− e−m0p] , (56)

and a damage law obeying to Eq. (30) are defined, with the
material properties reported in Table 2. The correspond-
ing stress-strain curve of the epoxy matrix is illustrated
on Fig. 6(a) and the manufacturer data are also reported.
The parameters of the matrix law were defined so that the
maximum experimental strength and strain are captured
by the material model. From the damage evolution on Fig.
6(b), it can be seen that softening onset is reached for a
strain around 0.032. The real behavior of an epoxy resin
is more complex as it experiences different responses in
compression and tension. However, as the simulations will
be carried out under tension, we only consider the tensile
strength of the material in this idealized curve.

 

 55

 125
 20

 10

O 4 

 4.2±0.05

Figure 7: DCB setup, units in mm.

In order to characterize the traction separation law
of the cohesive model, a delamination test on a Double
Cantilever Beam (DCB), is performed following the ISO-
15024-norm. The specimens were cut from an autoclave
consolidated unidirectional laminate panel at 0o, with an
initially 55-mm-long delaminated zone obtained using ad-
hesive. Two loading blocks were glued on the sample de-
laminated extremity, see Fig. 7.

The sample is first loaded up to crack initiation before
being unloaded. When applying this loading P on the

2The percentage is obtained from a microscopic imaging process
of the cured laminates
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Figure 8: Experimental DCB test.

Table 3: Material properties of the delamination model.

Property Value

Mode I critical energy release rate GI C [J/m
2
] 600

Mode II critical energy release rate GII C [J/m
2
] 1200

Mode I critical stress σI C [MPa] 20
Mode II critical stress τII C [MPa] 20
Mixed mode parameter α [-] 1

blocks, the evolution of the opening δ at loading point and
the evolution of the delamination length a are recorded.
The evolution of the opening in terms of the loading is re-
ported in Fig. 8(a). The regression analysis of the modi-
fied compliance δ/(PN), where N is a correction factor de-
fined by the norm to account for the block loading, in terms
of the crack propagation a is reported in Fig. 8(b). This
regression analysis leads to the definition of ∆ = −0.01162
m, the extrapolated negative crack size corresponding to
a zero compliance. This value is required by the norm to
evaluate the critical energy release rate. The norm can
then be used to define the corresponding critical energy
release rate following GI C = 3Pδ

2b(a+|∆|) ×
F
N , where b is the

sample width and where F/N ' 1 is a correcting factor
given by the norm. The results obtained for a compliance
at least 5% higher than the original one (the 5% value of

the norm) are reported in Fig. 8(c). It can be seen that
during the crack propagation a value of GI C ' 600 J/m2

can be considered. For mode II, the critical energy for
carbon-fiber reinforced composite material is usually sev-
eral times higher than for mode I and a value twice higher
is assumed herein by lack of mode II delamination tests.
The critical stresses σI C and τII C are taken equal to 20
MPa so that the critical openings ∆I C = 2GI C

σI C
= 0.06

mm and ∆II C = 2GII C

τII C
= 0.12 mm are of comparable size

with the distance between Gauss points at the interface
elements. As pointed out in [38, 54], in order to initiate
the delamination, the element size should be small enough
to resolve the cohesive model. In order to keep reason-
able element sizes while ensuring the correct propagation
of the delaminated zone, the critical stress can be lowered
as long as the proper energy is dissipated, which is the case
by considering the correct values of GI C and GII C. The
complete parameters list of the cohesive law is reported in
Table 3.

Before validating the model with experiments, the effect
of the characteristic length is first described.

3.2. Effect of the anisotropic gradient model
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Figure 9: Damage distribution in a 45o unidirectional ply under
tensile loading. Comparison of results for (a) The isotropic gradient-
enhanced model with c2 = 2.0 mm2, (b) The isotropic gradient-
enhanced model with c2 = 8.45×10−5 mm2, and (c) The anisotropic
gradient-enhanced model with c1 = c2 = 8.45 × 10−5 mm2 and
c3 = 2.0 mm2. The arrows represent the loading direction.

The model is a rectangular composite plate under ten-
sile loading. The sizes of the plates are 10 mm (along the
loading direction) × 8.5 mm (perpendicular to the loading
direction). The mesh size is about 0.2 mm. The test is 3D
with plane stress state along the thickness. In this compos-
ite plate, all the fibers are set to be along the 45o direction.
Due to the geometry and the boundary conditions of the
problem, the damage will initiate at the boundary of the
plate.

The numerical simulations are carried out successively
with the isotropic gradient-enhanced MFH model and with
the improved anisotropic gradient-enhanced MFH model
developed herein. For the isotropic gradient model, two
different characteristic length parameters c2, see Section
2.1, are considered: the first one is c2 = 2.0 mm2 according
to the reference [72], and the second one is c2 = 8.45×10−5

mm2, which is chosen according to the distance between
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the fibers. For the anisotropic gradient model, c1 = c2 =
8.45× 10−5 mm2 are used for the transverse directions to
the fibers, and c3 = 2.0 mm2 for the longitudinal direction
of the fibers. Indeed, for a real material, on the one hand,
fibers have the effect of preventing the interactions among
the matrix material points in the transverse direction, and
on the other hand, they dominate the long range effects in
the longitudinal direction [49].

The damage distributions obtained by the different
models are presented in Fig. 9 for a tensile displacement
equal to 0.3 mm. From the damage distribution, we can see
that for the isotropic gradient enhanced MFH model, when
the large characteristic length is used, Fig. 9(a), the dam-
age spreads widely in the plate and the maximum damage
value is the lowest. The opposite result is obtained for the
simulation with an isotropic model and the small charac-
teristic length, Fig. 9(b). The damage spreads in a narrow
band, and its value at the two edges of the plate, from
where the damage is initiated, is much higher than in the
central area (around 20%). However, the simulation with
the anisotropic gradient-enhanced model gives a relatively
narrow damage band, and the damage distributes more
evenly, Fig. 9(c), in the damage band compared to the re-
sults obtained of isotropic gradient enhanced model with
the small characteristic length, Fig. 9(b). In these simula-
tions, the interactions between elements within a certain
distance were taken into account through the gradient-
enhanced model. With the anisotropic non-local model,
the interaction distance between elements can be different
in the different material directions, which allows repre-
senting with higher accuracy the properties of a transverse
isotropic material as in a composite ply.

In the following applications, the following length scales
are considered: c3 = 2.0 mm2 according to the reference
[72] along the fiber directions, and c1 = c2 = 8.45 × 10−5

mm2 in the transverse direction according to the distance
between the fibers.

3.3. Experimental setup

Specimens of carbon fibers reinforced epoxy compos-
ite were manufactured from layers of the prepreg Hexply
M10.1/38%/UD300/HS (R) whose components properties
are reported in Section 3.1.

The specimens were cut from an autoclave consolidated
unidirectional laminate panel of 300 × 300 mm2. Two
laminates were successively considered: the first one has
a [−45o4/45o4]S-stacking sequence and the second one has
a [90o/+ 45o/− 45o/90o/0o]S stacking sequence. The ge-
ometries of the samples considered for these two cases are
illustrated in Figs. 10(a) and 10(b). To prevent gripping
damage, aluminum tabs were glued at both ends of each
specimen. For each stacking sequence, between three and
five samples coming from a single manufactured plate per
laminate, were tested. The reported thickness is an aver-
age one, and the discrepancy between samples of a com-
mon stacking sequence is up to 0.05 mm. Actual values
are however used to extract the strain-stress curves.
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39.60±0.35  O13 

(a) [45o4/− 45o4]S
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200 

2.74±0.05 

29.91±0.1  O5.99±0.1 

(b) [90o/+ 45o/− 45o/90o/0o]S

Figure 10: Geometry schematics of open-hole experimental speci-
mens (units in mm) for (a) the [45o4/− 45o4]S stacking sequence and
(b) the [90o/+ 45o/− 45o/90o/0o]S stacking sequence.

For the [−45o4/45o4]S-stacking sequence, static tensile
tests were carried out on a 1185 no H4573(ME002) Instron
machine in displacement control mode with a constant
cross-head speed of 2 mm/min, according to the specifi-
cation of ISO-527-4 standard. Tensile tests up to failure
and up to 90% of the maximum strength were conducted.
The strain-stress curves were extracted from the experi-
mental results by using a 50 mm-long extensometer, as
illustrated in Fig. 11.

For the [90o/+ 45o/− 45o/90o/0o]S stacking sequence,
tensile tests were carried out in an electromechanical uni-
versal testing 3384 Instron machine in displacement con-
trol mode with a constant cross-head speed of 2 mm/min,
according to the specification of ISO-527-4 standard. Ten-
sile tests up to failure and up to 50 %, 75%, and 90% of
the maximum strength were conducted. The testing de-
vice was equipped with a 150 kN load cell. Total strain
was measured with the help of an extensometer whose dis-
tance between the blades was modified in order to increase
as much as possible the region where the strain was reg-
istered, reaching 50 mm. X-ray computed tomography
(XCT) was performed on selected samples loaded up to
90% of failure using a Nanotom 160NF (GE Sensing &
Inspection Technologies PhoenixX-ray). The tomograms
were collected at 100 kV and 120 µA using a tungsten tar-
get. For each tomogram, 2,000 radiographs were acquired
with an exposure time of 500 ms. The tomogram voxel size
was set to 15 µm. The tomograms were then reconstructed
using an algorithm based on the filtered back-projection
procedure for Feldkamp cone beam geometry. The damage
in the reconstructed volumes was qualitatively and quanti-
tatively analyzed using the freeware ImageJ software and
the commercial software VGStudio Max 2.0. Accurate
quantification of crack density and delaminated area was
possible because of the use of a dye penetrant liquid con-
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Figure 11: Experimental setup for the tensile tests of the open [45o4/−
45o4]S-hole specimens.

taining ZnI which caused the cracks and delaminations to
appear brighter in the tomograms due to the higher X-ray
absorption coefficient of ZnI as compared with the carbon
fibers or the polymeric matrix.

3.4. Numerical simulation of the open-hole laminates

In this section, the anisotropic gradient enhanced MFH
model is used to investigate the response of the open hole
specimens subjected to uni-axial tension experimentally
conducted in Section 3.3.

The numerical models represent the part in-between the
extensometer grips, see Figs. 12(a) and 12(c). The geome-
tries are meshed using one bi-quadratic tetrahedron on the
thickness of each ply (as the problem is plane stress one el-
ement on the thickness was used). Each ply follows a MFH
model with the appropriate fibers directions entered as in-
put parameter. The resulting meshes can be seen in Figs.
12(b) and 12(d). For the [90o/+45o/−45o/90o/0o]S stack-
ing sequence only the upper half of the plate is considered
because of the symmetry. For the [−45o4/45o4]S-stacking
sequence, as there are less plies, we consider the full thick-
ness to obtain the final delaminated configuration.

 
50 

39 
 O13 

45° 

(a) [45o4/− 45o4]S-model

(b) [45o4/− 45o4]S-mesh

 
50 

30 
 O6 

(c) [90o/+ 45o/− 45o/90o/0o]S-
model

(d) [90o/+ 45o/− 45o/90o/0o]S-mesh

Figure 12: Numerical models. (a) Geometry and (b) finite element
mesh for the [45o4/ − 45o4]S stacking sequence. (c) Geometry and
(d) finite element mesh for [90o/ + 45o/ − 45o/90o/0o]S stacking
sequence. The different colors in the finite element meshes are related
to the different processors of parallel computations.

3.4.1. Results for the [−45o4/45o4]S-open hole sample

Numerical predictions and experimental results are com-
pared in Fig. 13. The stress evolution, evaluated by di-
viding the tensile load by the plain section, is in good
agreement –note the oscillations resulting from the explicit
time integration although numerical damping is used and
curves are filtered as not every time-steps are represented–
up to the point of plastic flow. Beyond this state the stress
is over-predicted, with a maximum discrepancy near the
fracture point, see Fig. 13(a). The reason lies in the im-
perfection in the experimental plates and in the damaging
modes such as debonding, fiber rotations, etc., which are
not modeled. Moreover uncertainties remain in the model
due to the considered idealized matrix elasto-plastic and
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(a) Stress-strain curve
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Figure 13: Tensile test until failure of the [45o4/− 45o4]S-open hole
sample. (a) Comparison of the apparent stress deduced from the
loading force (the experimental strain corresponds to the average
strain value measured by a 50 mm-long extensometer). (b) Predicted
evolution of the maximum damage reached in each ply.
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Figure 14: Snapshots of the damage distribution (logarithmic scale)
for an average 0.66% strain in the different plies. The arrows repre-
sent the loading direction.

damage evolutions, in the values of some parameters such
as the Mode II critical energy release rate, etc. However,
the failure stress is captured within 20% error and the
failure strain within 15% error –which is of the magnitude
order of the numerical oscillations.

The evolution of the maximum damage value reached
in the matrix phase of each ply is reported in Fig. 13(b).
Figure 14 illustrates the damage distributions in the ex-
ternal and internal plies. It can be seen that the max-
imum damage location of the numerical prediction is in
good agreement with the crack initiation locations in the
different plies observed for the experimental results, see

 

 

Figure 15: Delaminated parts of the [45o4/− 45o4]S-open hole sample
for the (a) numerical model, (b) experimental sample.

Fig. 15(b). Finally the configuration after total failure is
presented for both the numerical and experimental tests
in Fig. 153. This figure demonstrates the ability of the
method to capture the failure mode of the test.

In this application, the damage values are locally beyond
the softening point of the matrix behavior, but the damage
does not localize in a single element as it would be the case
with a local approach. Besides, the non-local approach
was shown to be insensitive to the mesh size, thanks to
the non-local approach [28].

3.4.2. Results for the [90o/+ 45o/− 45o/90o/0o]S-open
hole sample

The stress evolution, evaluated by dividing the tensile
load by the plain section, obtained with the numerical pre-
dictions is compared to the experimental results in Fig.
16(a) and is in good agreement up to the failure point.
At this level, as the numerical model does not account for
fiber failure, the plies are still sustaining the loading. For
the experimental results, three tests were carried out and
are found to be almost similar, hence the small size of the
error bars. The evolution of the maximum damage value
reached in the matrix of each ply is also reported in Fig.
16(b). It can be seen that the damage initiates and prop-
agates first in the 0o-ply, while the outer 90o-ply is the
last one to exhibit damage. In all the plies, the damage
evolves locally (near the hole as discussed here below) to
the maximum value within 0.0002 strain increments.

3Although strict discontinuities are only modeled at the ply in-
terfaces, the intra-laminar failure model results in finite elements
reaching a damage value equal to 1. As a result, the in-ply displace-
ment field sees a steep slope at the damage bands, which allowed
this image of the numerical results to be constructed by successively
considering the displacement below and above 0.3 mm (which is a
value above the cohesive model critical openings).
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Figure 17: Damage in the different plies of the [90o/+45o/−45o/90o/0o]S-open hole sample at 90% of the failure. Left column: experimental
tomographic results [8]. Right column: numerical prediction (logarithmic scale). The arrows represent the loading direction.
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Figure 18: Delaminated parts in the different interfaces of the [90o/ + 45o/ − 45o/90o/0o]S-open hole sample at 90% of the failure. Left
column: experimental tomographic results [8]. Right column: numerical predictions (logarithmic scale is saturated at 0.2 mm). The arrows
represent the loading direction.

The damage distributions in the different plies at 90%
of the failure are reported in Fig. 17 where they are com-
pared to the XCT results. The diffuse damage predicted
with the numerical method represents an average value of
the damaging process in the matrix of the material while
the XCT is able to capture the micro-crack openings in
the material. A direct quantitative comparison is there-
fore not possible, so the analysis focuses on a qualitative
comparison. It can be seen that the maximum damage
location of the numerical prediction is in good agreement

with the tomographic image:

• In the outer 90o-ply, for both the numerical and ex-
perimental results, the damage develops along two di-
rections: along the fiber direction, but also along a
+45o.

• In the 45o-ply, the damage concentrates at the in-
tersection of the hole with a −45o-line and develops
along a +45o-line.
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(a) Stress-strain curve
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(b) Damage evolution

Figure 16: Tensile test until failure of the
[90o/+ 45o/− 45o/90o/0o]S-open hole sample. (a) Compari-
son of the apparent stress deduced from the loading force for
(the experimental strain corresponds to the average strain value
measured by a 50 mm-long extensometer). (b) Predicted evolution
of the maximum damage reached in each ply.

• In the −45o-ply, the damage concentrates at the in-
tersection of the hole with a +45o-line and develops
along a −45o line. Both the numerical and experimen-
tal results also exhibit damage along the +45o-line.

• In the central 90o-ply, the damage is more diffuse
around the hole, with a preferred-direction along the
fibers direction.

• In the central 0o-ply, the damage develops along the
fibers direction and initiates tangentially to the hole;
The damage extends further with the numerical re-
sults at the left side of the hole;

The delaminated parts of the ply interfaces at 90% of
the failure are illustrated in Fig. 18. For the experimen-
tal results, the illustration are obtained from superimposed
information from the tomographic slices composing the in-
terfaces stacked in the direction perpendicular to the plies.
It can be seen that the location and extension of the de-
laminated zone are in good agreement between the numer-
ical prediction and the experimental observations, and in
particular

• At the 45o/90o out-interface, the delamination is con-
fined in-between these two directions.

• At the −45o/45o-interface, the delamination takes the
typical triangular shape around the hole and delami-
nation at the laminate edges are more important (for
the numerical results the delaminated parts at the
right and left edges result from the finite length of
the mesh);

• At the 90o in/ − 45o-interface, delamination still oc-
curs mainly around the hole at the intersection of the

damage zone of the two plies, but there are some parts
at the laminate edges as well;

• At the 0/90oin-interface, delamination occurs mainly
around the hole at the intersection of the damage zone
of the two plies; For the numerical results, the exten-
sion of the delaminated zone on the left side of the
hole is higher than for the experimental results, due
to the higher extension of the damage observed in the
0o ply, see Fig. 18;

 

Figure 19: Failure mode of the [90o/ + 45o/ − 45o/90o/0o]S-open
hole sample [8].

From this comparison we can conclude that the devel-
oped numerical damage-enhanced MFH scheme coupled
with the DG/ECL delamination model is able to predict
the damage distribution in complex laminate problems.
In particular the damage distribution in the outer-ply, see
Fig. 17, is a combination of +45o and 90o evolution, in
good agreement with the failure mode observed in Fig. 19.

4. Conclusions

In order to analyze the failure of laminated compos-
ite structures, an anisotropic gradient-enhanced mean-field
homogenization (MFH) procedure has been developed. In
this approach, the fibers are assumed to remain linear elas-
tic while the matrix material obeys an elasto-plastic be-
havior enhanced by a damage model. The loss of solution
uniqueness at onset of strain softening has been avoided
by using a non-local implicit approach, reformulated in an
anisotropic way, to describe the damage in the matrix.

To capture the failure mode of the composite laminates,
delamination is also modeled. To this end, the hybrid
DG/ECL model integrates the traction separation law at
the interface between plies. On the one hand this hybrid
method avoids the need to propagate topological changes
in the mesh with the propagation of the delamination, and
on the other hand it preserves the consistency and stability
in the un-cracked interfaces, thus avoiding the change of
compliance issues common to the use of intrinsic cohesive
models.

As a demonstration of the method abilities, two open-
hole laminates with different stacking sequences are stud-
ied. It is shown that the model predicts within each ply
the damaging process in bands oriented with the experi-
mentally observed failure mode. Moreover the regions of
high damage values in the different ply are in qualitative
agreement with the crack initiation locations observed in
the experiments.

In the future a more evolved material model for the ma-
trix material, including the damage law, will be considered
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and characterized directly with experiments conducted on
the epoxy. Damage-to-crack transition scheme will also be
developed for intra-laminar failure in order to model the
fracture observed during the experiments.
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age model for the simulation of delamination in advanced
composites under variable-mode loading, Mechanics of Ma-
terials 38 (11) (2006) 1072 – 1089, ISSN 0167-6636, doi:
10.1016/j.mechmat.2005.10.003.

[38] A. Turon, C. Dãvila, P. Camanho, J. Costa, An engineer-
ing solution for mesh size effects in the simulation of delami-
nation using cohesive zone models, Engineering Fracture Me-
chanics 74 (10) (2007) 1665 – 1682, ISSN 0013-7944, doi:
10.1016/j.engfracmech.2006.08.025.

[39] G. T. Camacho, M. Ortiz, Computational modelling of impact
damage in brittle materials, International Journal of Solids and
Structures 33 (20-22) (1996) 2899–2938, ISSN 0020-7683, doi:
10.1016/0020-7683(95)00255-3.

[40] A. Pandolfi, P. Guduru, M. Ortiz, A. Rosakis, Three dimen-
sional cohesive-element analysis and experiments of dynamic
fracture in C300 steel, International Journal of Solids and
Structures 37 (27) (2000) 3733 – 3760, ISSN 0020-7683, doi:
10.1016/S0020-7683(99)00155-9.

[41] J. Mergheim, E. Kuhl, P. Steinmann, A hybrid discontinuous
Galerkin/interface method for the computational modelling of
failure, Communications in Numerical Methods in Engineering
20 (7) (2004) 511–519.

[42] R. Radovitzky, A. Seagraves, M. Tupek, L. Noels, A scalable 3D
fracture and fragmentation algorithm based on a hybrid, discon-
tinuous Galerkin, cohesive element method, Computer Meth-
ods in Applied Mechanics and Engineering 200 (2011) 326–344,
ISSN 0045-7825, doi:10.1016/j.cma.2010.08.014.

[43] M. Prechtel, G. Leugering, P. Steinmann, M. Stingl, To-

wards optimization of crack resistance of composite mate-
rials by adjustment of fiber shapes, Engineering Fracture
Mechanics 78 (6) (2011) 944 – 960, ISSN 0013-7944, doi:
10.1016/j.engfracmech.2011.01.007.

[44] L. Wu, D. Tjahjanto, G. Becker, A. Makradi, A. Jérusalem,
L. Noels, A micromeso-model of intra-laminar fracture
in fiber-reinforced composites based on a discontinuous
Galerkin/cohesive zone method, Engineering Fracture
Mechanics 104 (2013) 162–183, ISSN 0013-7944, doi:
10.1016/j.engfracmech.2013.03.018.

[45] G. Becker, L. Noels, A full discontinuous Galerkin formulation
of non-linear Kirchhoff-Love shells: elasto-plastic finite defor-
mations, parallel computation & fracture applications, Interna-
tional Journal for Numerical Methods in Engineering 93 (2013)
80–117, ISSN 1097-0207, doi:10.1002/nme.4381.

[46] Y. Charles, A finite element formulation to model extrinsic in-
terfacial behavior, Finite Elements in Analysis and Design 88 (0)
(2014) 55 – 66, ISSN 0168-874X, doi:10.1016/j.finel.2014.05.008.

[47] V. P. Nguyen, An open source program to generate zero-
thickness cohesive interface elements, Advances in Engineer-
ing Software 74 (0) (2014) 27 – 39, ISSN 0965-9978, doi:
10.1016/j.advengsoft.2014.04.002.

[48] V. P. Nguyen, Discontinuous Galerkin/extrinsic cohesive
zone modeling: Implementation caveats and applications
in computational fracture mechanics, Engineering Frac-
ture Mechanics 128 (2014) 37–68, ISSN 0013-7944, doi:
10.1016/j.engfracmech.2014.07.003.

[49] M. Geers, R. de Borst, W. Brekelmans, R. Peerlings, Validation
and internal length scale determination for a gradient damage
model: application to short glass-fibre-reinforced polypropy-
lene, International Journal of Solids and Structures 36 (17)
(1999) 2557 – 2583, ISSN 0020-7683.

[50] L. Wu, L. Noels, L. Adam, I. Doghri, Non-local Damage-
Enhanced MFH for Multiscale Simulations of Composites, in:
Composite Materials and Joining Technologies for Composites,
Volume 7, chap. 13, Springer, doi:10.1007/978-1-4614-4553-
1 13, 2013.

[51] F. van der Meer, L. Sluys, Continuum Models for the Anal-
ysis of Progressive Failure in Composite Laminates, Jour-
nal of Composite Materials 43 (20) (2009) 2131–2156, doi:
10.1177/0021998309343054.

[52] E. Abisset, F. Daghia, P. Ladevèze, On the validation of a dam-
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Appendix A. Anisotropic implicit gradient for-
mulation

Following the same process as for isotropic materials
[32], an alternative gradient formulation can be derived
in the local coordinates. For an anisotropic material, we
define the characteristic volume (VC) in the local coor-
dinates (l1, l2, l3). For simplicity, we fix the origin of
the coordinates at the material point under consideration.

The non-local equation (1) can be rewritten in the local
coordinates as

ã(0) =
1

VC

∫
VC

a(l)φ(l; 0)dV , (A.1)

where l denotes the position of the infinitesimal volume
dVC in terms of the local coordinates. Thus, a Taylor
expansion for a in these local axes reads

a(l) = a(0) +
∂a

∂li

∣∣∣
0
li +

1

2!

∂2a

∂li∂lj

∣∣∣
0
lilj +

1

3!

∂3a

∂li∂lj∂lk

∣∣∣
0
lilj lk +

1

4!

∂4a

∂li∂lj∂lk∂ll

∣∣∣
0
lilj lkll + · · · . (A.2)

Substituting this relation into (A.1) and integrating on the
characteristic volume (VC) yield

ã(0) = a(0) + ci2
∂2a

∂li
2

∣∣∣
0

+ cij4
∂4a

∂li
2∂lj

2

∣∣∣
0

+ · · · , (A.3)

where ci2 and cij4 (i, j = 1, 2, 3) are coefficients obtained
from the integration, and related to the dimensions of the
characteristic volume VC . Note that odd orders and cross
derivatives annihilate due to the symmetry of the weight
functions and of the characteristic volume.

Let us compute ci2
∂2ã
∂li2

from (A.3), yielding

ci2
∂2ã

∂li
2 = ci2

∂2a

∂li
2 + (2− δij)ci2c

j
2

∂4a

∂li
2∂lj

2 + · · · , (A.4)

where δij is Kronecker’s symbol. In this expression, we
omit the origin “0” without losing its generality. Sub-
tracting this relation from (A.3) allows writing

ã−ci2
∂2ã

∂li
2 = a+

[
cij4 − (2− δij)ci2c

j
2

] ∂4a

∂li
2∂lj

2 +· · · . (A.5)

Neglecting terms of order four and higher in the right-hand
side, another approximation of the non-local form (A.1) is
obtained:

ã− ci2
∂2ã

∂li
2 = a . (A.6)

Replacing ci2 by ci without possible confusion, and us-
ing the definition of the characteristic length tensor cl =
diag

(
ci
)
, the equation (A.6) is rewritten as

ã−∇l · (cl ·∇lã) = a , (A.7)

where “∇l” and “∇l·” represent the gradient operator and
the divergence operator expressed in the local coordinates,
respectively. In this expression, each term ci of the diag-
onal tensor cl represents the square of the characteristic
length along the direction li.

In order to get the unique solution of this differential
equation, a boundary condition must be provided. The
following boundary condition is used:

(cl ·∇lã) · nl = 0 , (A.8)
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with nl the unit normal to Γ, the boundary of the en-
tire problem domain Ω, expressed in the local coordinates.
Then, in the entire problem domain Ω, one has∫

Ω

[ã−∇l · (cl ·∇lã)]dΩ =∫
Ω

ãdΩ−
∫

Ω

∇l · (cl ·∇lã)dΩ =∫
Ω

ãdΩ−
∮

Γ

(cl ·∇lã) · nldΓ . (A.9)

According to governing equation (A.7) and to the pre-
sented boundary condition (A.8), we have∫

Ω

ãdΩ =

∫
Ω

adΩ . (A.10)

This last relation demonstrates that the non-local formu-
lation respects the average values on the entire domain.

As the material is not always oriented accordingly to
the global coordinates, the gradient enhanced formulation
should be stated in the inertial frame. A rotation tensor
R is defined to represent the change of orthonormal coor-
dinates from global to local. This rotation tensor R can
be formulated from the Euler angles as

R =

 c1c3 − c2s1s3 c1c2s3 + c3s1 s2s3

−c1s3 − s1c2c3 c1c2c3 − s1s3 c3s2

s1s2 −c1s2 c2

 , (A.11)

where ck = cos(θk), sk = sin(θk), (k = 1, 2, 3), and where
θk is the kth Euler angle.

The characteristic length tensor is thus defined in the
global coordinates as

cg = RT · cl ·R . (A.12)

As ∂Xi
∂lj

= Rji = RTij (i, j = 1, , 2, 3), the anisotropic im-

plicit gradient formulation stated in the global coordinates
(A.7) is rewritten

ã−∇ · (cg ·∇ã) = a , (A.13)

and is completed by the boundary condition (A.8), which
becomes in the global coordinates

(cg ·∇ã) · n = 0 . (A.14)

In these last equations “∇” and “∇·” represent the gra-
dient operator and the divergence operator in global co-
ordinates, respectively, and n is the outward unit normal
expressed in the global coordinates.

Appendix B. Expressions of the finite element
forces

The elementary finite-element forces can be computed
by inserting the polynomial approximations (22-23) into

the weak form (20-21), which leads directly to the follow-
ing expressions of the elementary (bulk elements Ωe and
interface elements ΓsL) nodal forces

feū int
m =

∫
Ωe
σ ·∇NmdV , (B.1)

feū ext
a =

∫
Ωe
ρ̄b̄NmdV +

∫
ΓN

Nm · ¯̄tds , (B.2)

fsūL
mi+1
i = ±

∫
ΓsLC

t̄i (JūK)Nmi+1
i ds±∫

ΓsLU

〈σ̄〉 · n̄iNmi+1
i ds+

1

2

∫
ΓsLU

∇Nmi+1
i ·

[
(JūK⊗ n̄i) : C̄0

i+1
i

]
ds±∫

ΓsLU

[
〈βs
hs

C̄0〉 : JūK⊗ n̄i
]
· n̄iNmi+1

i ds , (B.3)

fep̃ int
m =

∫
Ωe

[p̃Nm + ∇Nm · (cg ·∇p̃)] dV ,

(B.4)

and fep int
m =

∫
Ωe
pNmdV . (B.5)

The interface forces fsūL
mi+1
i (B.3) arising from the

DG/ECL formulation are evaluated for the degrees of free-
dom belonging for both the plies i and i+ 1. In their ex-
pression, “±” holds for “+” on the “i+1”-side and for “-”
on the “i”-side. This is a particularity of the presented im-
plementation, which duplicates the degrees of freedom at a
common node instead of duplicating the nodes at common
interfaces as this is usually done for cohesive methods. In

their integration the shape functions Nmi+1
i are volume

shape functions evaluated at the integration points of the
interface elements. Due to the symmetrization terms all
the nodes of the 2 neighboring tetrahedra have force contri-
butions, and not only the nodes of the common interface.
For quadratic tetrahedra, the evaluation of the interface
forces requires a full 6-point integration at the interface
element in order to avoid spurious penetration modes as
shown in [73].

Appendix C. Linearization of the non-local finite
element forces

In the case of a staggered resolution, only the non-local
contribution of the system of Eqs. (24-25) required to be
linearized for the Newton-Raphson resolution. At iteration
i, this reduced system linearized around the non-local field
˜̄pi reads[

Kp̃p̃ −Kpp̃

] [
δ ˜̄p

]
=
[

fp int(˜̄pi)− fp̃ int(˜̄pi)
]
.

(C.1)
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The linearization of the elementary forces (B.4-B.5) can
be obtained as

Ke
p̃p̃ intmn =

∂fep̃ int
m

∂p̃n

=

∫
Ωe

(NmNn + ∇Nm · cg ·∇Nn) dV ,

(C.2)

Ke
pp̃ int

mn =
∂fep int

m

∂p̃n
=

∫
Ωe
C̄pN

nNmdV , (C.3)

where the material tensor C̄p = ∂p
∂p̃ follows from the MFH

scheme and is reported in [28].
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