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a b s t r a c t

The aim of this paper is to present a simplified analytical method
for estimating the crushing resistance of an oblique cylinder
impacted by the stem of a striking ship. The collision angle of the
vessel is arbitrary, i.e. oblique collisions are also considered in this
article. The two extremities of the tube are assumed to be clamped.
These developments are intended to be used for evaluating the
crashworthiness of an offshore wind turbines jacket. To achieve
this goal, closed-form expressions are first derived for the partic-
ular situations of a horizontal and a vertical cylinder by applying
the upper-bound method. An interpolation formula is then pro-
posed to get the resistance opposed by the tube for any inclination
angle. In order to validate these theoretical developments, some
comparisons are made with the results of numerical simulations.
These latter are performed using the finite elements software LS-
DYNA. In almost all cases, the analytical prediction of the resis-
tance is found to be in quite good agreement with the numerical
ones. Finally, another comparison is made by simulating an OSV
collision with a full jacket. In this case, the theoretical model is
found to be insufficient for large impact energies and points out
the need of further research.
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1. Introduction

Nowadays, it is more and more important for the humanity to produce energy in a sustainable
manner. This is particularly true for electricity generation, which may no longer be provided by clas-
sical nuclear or coal power plants, which are considered to be too dangerous for the environment.
Amongst all the existing ways of producing electricity, offshorewind turbines appear to be a promising
one and many governments are supporting their development all over the world.

Amongst all the loads to be considered when dimensioning an offshore wind turbine supporting
system, the case of a ship collision has to be treated carefully as it may have very severe consequences
for the structure and the vessel. This is precisely the subject of this paper, inwhich an impact occurring
between a given ship and the jacket of a non-floating offshore wind turbine (Fig. 1) is considered.

To assess the impact resistance of the jacket, it is of course possible to resort to finite elements
simulations, as this has been done by Amdahl and Holmas [1], Vredeveldt and Schipperen [2], Biehl
[3] or Amdahl and Johansen [4] for example. As both the ship and the collided structure have to be
finely meshed, the modeling effort can be important. Such approaches are also time-expensive and
consequently not convenient at the beginning of the design process, when the final properties of
the structure are not completely fixed. Moreover, in the framework of a full collision risk analysis
where different striking vessels and collision scenarios have to be considered, a simplified
analytical approach allowing for a rapid approximation of the jacket crashworthiness becomes
more relevant.

A basic idea consists in idealizing the jacket as a set of individual tubes (Fig. 1) with particular
connections at their extremities. In this paper, it is assumed that the deformations only take place on
the cylinders in contact with the bow, all the adjacent being unaffected. This hypothesis is the single
restriction postulated in this paper.

The problem of an impact occurring on a cylinder has already been treated in the literature by Hoo
Fatt and Wierzbicki [5], Wierzbicki and Suh [6] or Zeinoddini, Harding and Parke [7], amongst others.
All these authors have considered the case of a concentrated load acting at the mid-length of a cylinder
having a length L and a radius R (Fig. 2(a)). Nevertheless, this work is insufficient, as the analysis of a
jacket component impacted by a ship (Fig. 2(b)) is similar to the one of an eccentric oblique impact,
initially located at a distance L1 from the left support, occurring on a cylinder having an inclination z

andwhere the striking direction is characterized by an angle a. Moreover, the bow shapemay also have
an influence on the deformation pattern, which is not necessarily the same as for a concentrated force.
The work detailed in this paper goes one step further by accounting for all these particularities and
aims to be a generalization of what has already been done by many authors.

Fig. 1. Collision on an offshore wind turbine.
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2. Description of the collision scenario

When a ship collides the jacket of an offshore wind turbine, the direction followed by the vessel and
the inclination of the struck cylinder are arbitrary. The collision scenario is therefore defined by the
relative position between the ship and the impacted tube.

Let us first consider the portion of the jacket depicted on Fig. 2(c) and suppose that the cylinder CH
is collided by the stem. By denoting C0 the vertical projection of point C over the horizontal plane EFGH
(Fig. 3(a)), the vertical plane CHC0 (Fig. 3(a) and (b)) containing CH is used for locating the vessel with
respect to the struck tube. A new reference frame (X,Y,Z) is defined to characterize the position the
vessel, having its origin in C and oriented so that the horizontal X axis is normal to CHC0 and Z is vertical.

Regarding the ship stem, the shape of its uppermost deck is idealized by a parabola described by its
two radii (p,q) and its center S (Fig. 4), which is also taken as the origin of the local coordinate frame

Fig. 2. Description of the collision configuration.

Fig. 3. Three dimensional view of the vertical plan containing the impacted cylinder.
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(xs,ys,zs). The stem and side angles are respectively denoted fb and jb, while the total distance sepa-
rating the uppermost and lowermost decks is designated by hb. Using these notations, the equation of
the curve ℙ corresponding to the intersection between the ship bowand a horizontal plane located at zs
(Fig. 4) has the following equation:

ℙ≡
x2s

ðq� zs cot fbÞ2
þ y2s
ðp� zs cot jbÞ2

¼ 1 ; �hb � zs � 0 (1)

It is now possible to further define the trajectory of the stem in the reference frame (X,Y,Z) by
following the point S. In fact, the vessel is supposed to move along an oblique straight line [ (Fig. 4),
making an angle awith the horizontal X axis and crossing the plane (Y,Z) located at YP. The parameters
YP and a are sufficient to locate the point S along X and Yaxes, but its position along vertical Z axis is still
unknown. This latter will be simply denoted by ZS, so that the three parameters (a,YP,ZS) are the data
required to completely define the relative position of the bow with respect to the tube.

The cylinder geometry is finally described by its radius R, its thickness tp, its length L and its
inclination angle z with respect to the horizontal plane (X,Y), as depicted on Figs. 3 and 4.

3. Impact on a vertical cylinder

3.1. Deformation mechanism

As a first step, let us start by analyzing the particular case of an impact on a vertical cylinder, i.e. for
which z ¼ p/2. The collision configuration of Fig. 5 shows that the cylinder is first impacted by the
uppermost deck. The impact kinematics is therefore analyzed in the horizontal plane located at Z ¼ ZS
(or zs ¼ 0). Fig. 6 presents a top view of the relative position occupied by the vessel and the cylinder
when the first contact appears. For clarity, the dimensions of the tube have been intentionally exag-
gerated with respect to those of the ship.

For convenience, a new reference frame (x,y,z) located at the center of the cylinder and parallel to
(xs,ys,zs) is introduced. If we denote by (xS,yS) the coordinates of point Swith respect to (x,y,z), then the

Fig. 4. Relative position of the striking vessel with respect to the cylinder.
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equations of curves ℙ and ℂ respectively describing the stem and the cylinder in the horizontal plane
zs ¼ 0 may be obtained from (1):

ℙ≡
ðx� xSÞ2

p2
þ ðz� zSÞ2

q2
¼ 1 ℂ≡

x2

R2
þ z2

R2
¼ 1 (2)

By expressing that ℂ and ℙ are initially tangent (Fig. 6), the coordinates (xI,zI) of the first contact
point I can be calculated and equation (2) gives the initial position (xS,zS) of point S.

When the ship is moving forwards, for a given value of the penetration d, the section of the cylinder
is crushed by an amount aðdÞ ¼ AI � d. From Fig. 6, the crushing distance a(d) is found by calculating the
intersection A between the current position of the stem ℙ(d) and the straight line OI relating the origin
O to the initial contact point I. The equation of ℙ(d) may be directly derived from (2):

ℙðdÞ≡z ¼ �q
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � ðx� xSÞ2

q
þ zS � d OI≡z ¼ x cot b (3)

Fig. 5. Collision configuration for an impact on a vertical cylinder.

Fig. 6. Collision configuration in the horizontal plane Z ¼ ZS.
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The coordinates (xA,zA) of point A are the particular values for which the two equations mentioned
in (3) are simultaneously satisfied and it can be shown so xA is given by:

xA ¼ q2xS � p2ðd� zSÞcot b� pqsignðxSÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ p2 cot2 b� ðxS cot bþ d� zSÞ2

q
q2 þ p2 cot2 b

(4)

which may be used to calculate aðdÞ ¼ jðxI � xAÞ=sin bj. As soon as the crushing distance is known, the
next step consists in imagining a realistic deformation pattern for the cylinder cross-section. To do so,
let us consider the straight line d that is tangent to ℙ (Fig. 7a). When d¼ 0, d is going through the initial
contact point I and is tangent to both ℂ and ℙ. However, as the ship is moving forwards (a(d) > 0),
d remains tangent to ℙ(d) and goes through the intersection point A (Fig. 7(a)). The angle made by d and
the horizontal x axis, denoted by g, is used for defining the deformation pattern of the tube cross-
section. Moreover, as detailed hereafter, considering the tangent line d and the inclination angle g is
an approximate manner of accounting for the shape of striking stem. The expression of g is found by
considering the equation of ℙ(d) given by (3), i.e.:

tan g ¼
�
vz
vx

�
x¼xA

⇔g ¼ atan

0
B@q
p

xS � xAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � ðxA � xSÞ2

q
1
CA (5)

where xA is given by (4) and xS by the initial position of the ship at the beginning of the impact. The
assumed deformation pattern related to g is depicted on Fig. 7(a), where the cylinder section is shown
to be crushed over a distance aðdÞ ¼ AI. The deformation pattern associated with a(d) is then defined
with help of the tangent line d ≡ BC and the inclination angle g introduced here above.

Let us start by considering the straight line ED perpendicular to BC and such that BD ¼ CD. In fact, ED
is the bisection of BC and E is located at the intersection of the initial cylinder cross-section ℂ (Fig. 7(b)).
By imposing symmetry condition with respect to ED, we can simply analyze the upper half EFBD of the
deforming cross-section, which may be split into three different portions:

Fig. 7. Deformation pattern of the cylinder cross-section.
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- The circular arc ℂ1 ≡ EF, characterized by its radius R1 and its center O1. For a given value of d, the
current opening of ℂ1 is equal to p � j.

- The circular ℂ2 ≡ BF, characterized by its radius R2 and its center O2. For a given value of d, the
current opening of ℂ1 is equal to j.

- The straight segment BD having the same inclination g than the tangent line d and characterized by
a total length equal to (R1 � R2)sinj.

Considering such a deformation pattern requires the calculation of R1, R2 and j for defining correctly
the deformed cross-section. To do so, we can start by deriving the coordinates (xB,zB) of point B. From
Fig. 7(b), it can be shown that:

xB ¼ ðR1 � RÞcos gþ ðR1 � R2Þcosðgþ jÞ
zB ¼ ðR1 þ R2 � RÞcos gþ ðR1 � R2Þ þ ðR1 � R2Þcosðgþ jÞ (6)

On the other hand, as d has an inclination g and is going through the point A, its equation may be
written as follow:

d≡z ¼ xA cot b� ðx� xAÞtan g (7)

where xA and g are respectively given by equations (4) and (5). The angle b is defined on Figs. 6 and 7(b)
with help of the initial contact point I. As B2d, the coordinates (xB,zB) given in (6) have to satisfy (7),
which allows us to find a first relation between R1, R2 and j:

R2 ¼ Rþ xAðcot b cos gþ sin gÞ � R1ð1þ cos jÞ
1� cos j

(8)

An additional relation may be found by assuming, as done in references [6,7], that the initial
perimeter of ℂ remains unchanged during the crushing process. This may bemathematically translated
by the following relation:

R1ðp� jÞ þ R2jþ BD ¼ pR⇔R1ðp� jÞ þ R2jþ ðR1 � R2Þsin j ¼ pR (9)

Substituting (8) in (9) leads to an explicit expression for R1 as a function j. It may be shown that:

R1 ¼ pRð1� cos jÞ � ðj� sin jÞðRþ xAðcot b cos gþ sin gÞÞ
pð1� cos jÞ � 2ðj� sin jÞ (10)

From Fig. 7(b), it appears that j ¼ pwhen the section is completely crushed. If we denote by j0 the
initial value of jwhen d¼ 0, wemay adopt the subsequent linear variation of jwith the penetration d:

j ¼ j0 þ ðp� j0Þ
d

df
(11)

where df is the final value of d for which the section is completely crushed. The value of j0 is still
unknown but will be fixed later on. The deforming pattern depicted on Fig. 7(b) is entirely charac-
terized with help of equations (8), (10) and (11) and the next step consists in deriving the displacement
field associated to this mechanism.

3.2. Definition of the displacement field

The goal of this section is to define the displacement field associated with the deformation pattern
depicted on Fig. 7(b) and reproduced on Fig. 8(a), where ED is still a line of symmetry and H is the
intersection between ED and ℂ. Let us now consider any point M belonging to ℂ and having the co-
ordinates (xM,zM) ¼ (Rcosq,Rsinq). In the deformed configuration ℂ' depicted on Fig. 8(a),M is moved to

L. Buldgen et al. / Marine Structures 38 (2014) 44e7150
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another point N located in (xN,zN). The perimeter of the cross-section remaining constant, the length of
HM measured along ℂ is equal to the length of DN in the deformed configuration ℂ', which writes:

DN ¼ Rðqþ g� p=2Þ (12)

where DN is the curvilinear length between D and N measured along ℂ'. By developing the previous
equation, it is possible to find (xN,zN) and to calculate the displacement w(q,d) of point M, i.e. the
distance MN (Fig. 8(a)):

wðq; dÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxN � xMÞ2 þ ðzN � zMÞ2

q
(13)

As the mathematical derivation of w(q,d) is particularly fastidious, we won't give any detail about it
in this paper, but additional information may be found in references [6,9,10]. By taking the time de-
rivative of (13), we get the velocity field _wðq; dÞ.

So far, only the displacements taking place in the horizontal plane Z ¼ ZS (Fig. 5) have been
considered. Nevertheless, it is clear that the entire cylinder is deforming during the impact, so we need
to extrapolate the velocity _wðq; dÞ along the vertical y axis.

This can be achieved by proceeding in a similar way than Wierzbicki and Suh [6], who considered
that the deforming portion of the tube is progressively growing with the indentation d. Consequently,
looking at the deformation in the plane x ¼ 0 (Fig. 8(b)), we can imagine that the cylinder is linearly
indented over the portion�x2� y� x1, while the other parts�L2� y < x2 and x1 < y� L1 are assumed to
remain undamaged:

_Wðq; d; yÞ ¼ _wðq; dÞ
�
1� y

x1ðdÞ
�

if y2½0; x1ðdÞ�

_Wðq; d; yÞ ¼ _wðq; dÞ
�
1þ y

x2ðdÞ
�

if y2½ � x2ðdÞ;0�

_Wðq; d; yÞ ¼ 0 if y2½L2;�x2ðdÞ½∪�x1ðdÞ; L1�

(14)

where x1 � L1 and x2 � L2 will be fixed later on.

Fig. 8. Definition of the displacement field.
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3.3. Local crushing resistance

To derive analytically the crushing resistance, the basic idea is to apply the upper bound theorem
(see Jones [8] for more details), by supposing that the cylinder is made of a rigid-plastic material
characterized by a flow stress s0.

As a first step, similarly to Wierzbicki and Suh [6], we suppose that the impacted cylinder is
composed of generators supported by independent rings that are free to slide on each other without
shearing (see Figs. 5 and 8(b)). As a consequence, the total energy rate _E of to the crushing mechanism
is simply given by:

_E ¼ _Er þ _Eg (15)

where _Er and _Eg are the energy rates of the rings and the generators.
3.3.1. Energy rate of the rings

Let us start by considering the energy rate _Eb related to the deformation of the central section
depicted on Fig. 7(b). The expression of _Eb can be derived by following a very similar procedure than
the one exposed in references [6,7]. As justified by Wierzbicki in Ref. [6], _Eb is mainly due to bending
effects taking place over the cross-section. Fig. 7(b) shows that the curvatures c1 and c2 characterizing
the circular arcs ℂ1 and ℂ2 are not the same, as we have c1 ¼ 1/R1 and c2 ¼ 1/R2. The curvature is
therefore discontinuous at the junctions ℂ1∩ℂ2 and ℂ2∩BD, which implies moving plastic hinges to be
located at points B and F. Consequently, the energy dissipation is due to both the modification of the
curvature along ℂ1 and ℂ2, and the bending effects occurring inside the moving plastic hinges, so we
have:

_Eb ¼ 2m0

0
@VB

R2
þ
�
1
R2

� 1
R1

�
VF þ

ZE
F

_c1dlþ
ZF
D

_c2dl

1
A (16)

where m0 ¼ s0t2p=4 is the cylinder bending capacity per unit of length. The first and second terms of
(16) correspond to the energy dissipated inside the hinges B and F. These latter are characterized by the
velocities VB and VF and it can be demonstrated from Fig. 7(b) that:

VB ¼ ðR1 � R2Þ _j� ðp� jÞ _R1 � j _R2 ¼
�
ðR1 � R2Þ

vj

vd
� ðp� jÞ vR1

vd
� j

vR2
vd

�
_d

VF ¼ R1 _j� ðp� jÞ _R1 ¼
�
R1

vj

vd
� ðp� jÞ vR1

vd

�
_d

(17)

Similarly, the third and fourth terms of (16) describe the change of curvature occurring in ℂ1 and ℂ2
respectively. As c1 ¼1/R1 and c2 ¼ 1/R2, these curvilinear integrals are quite easy to evaluate and may
be written as:

ZE
F

_c1dl ¼
p� j

R1

vR1
vd

_d ;

ZF
D

_c2dl ¼
j

R2

vR2
vd

_d (18)

By introducing (17) and (18) in (16), a closed-form expression of _Eb is derived, where vR1/vd, vR2/
vd and vj/vd are obtained by derivation of equations (10), (8) and (11) respectively.

The theoretical developments performed here above are only valid for the central cross-section
located in the horizontal plane y ¼ 0 (Fig. 5), but a similar procedure should be followed for all the
rings located along the vertical y axis. Nevertheless, if we want to analyze the situation for y s 0, it is
clear that the deformation pattern of Fig. 7(b) is not valid anymore because the crushing distance is not
equal to a(d) in this case. In fact, if y s 0, the penetration has to be found by integrating the velocity
field postulated in (14) with the particular initial condition W(q,d,y) ¼ 0 for d ¼ 0. Unfortunately, it is
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impossible to apply such an approach if we want to obtain a closed-form solution. As suggested in Ref.
[6], an approximate solution is derived by calculating the bending dissipation in a section located at
ys 0 through a linear interpolation of _Eb. The total energy rate _Er of the rings located along the vertical
y axis is then given by:

_Er ¼
Z0
�x2

_Eb

�
1þ y

x2

�
dyþ

Zx1
0

_Eb

�
1� y

x1

�
dy ¼ _Eb

x1 þ x2

2
(19)

where _Eb is obtained by using equation (16).

3.3.2. Energy rate of the generators
As mentioned here above, the displacement field W(q,d,y) acting on a generator may be found by

integrating the velocity profile. Equation (14) shows that both the length and the curvature of the
generator change when W(q,d,y) increases, which implies membrane and bending effects that are
difficult to evaluate analytically. A conservative hypothesis is then to neglect the flexural energy, which
means that the dissipation is entirely coming from the membrane strains developing inside the
generator. As each generator is supposed to slide freely on the rings without shearing, the only
contribution to the membrane energy rate comes from an axial elongation. The corresponding
deformation rate _εm is given by:

_εmðq; d; yÞ ¼ vW
vy

v _W
vy

(20)

Consequently, the total membrane energy rate _Em associated to a particular generator located
at the angular position q is calculated by integrating _εm along the deforming part of the
cylinder:

_Emðq; dÞ ¼ n0

Zx1
�x2

_εmðq; d; yÞdy ¼ n0 _d
�
1
x1

þ 1
x2

�
wðq; dÞ vw

vd
(21)

where n0¼ s0tp is the axial resistance of the cylinder per unit of length. Here,w(q,d) is the displacement
field of the central cross-section given by (13) and vw/vd is the corresponding velocity. It is worth
noting that _Em corresponds to a single generator located at a certain angular position q. So calculating
_Eg requires to account for all the generators, i.e.:

_Eg ¼
Z
ℂ

_Emðq; dÞdl ¼ 2Rn0 _d
�
1
x1

þ 1
x2

�Z2p
0

wðq; dÞ vw
vd

dq ¼
�
1
x1

þ 1
x2

�
_E
0
m (22)

Since it is practically impossible to find a closed-form for _E
0
m, equation (22) is solved by numerical

integration.

3.3.3. Virtual work principle
Once all the contributions have been calculated, equations (15), (19) and (22) are used to find the

total energy rate:

_E ¼ _Eb
x1 þ x2

2
þ
�
1
x1

þ 1
x2

�
_E
0
m (23)

According to the virtual velocity principle (see reference [8] for more details), the internal energy
rate is equated to the external power developed by the crushing resistance Pl(d) of the vertical cylinder.
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As depicted on Fig. 7(a), for a given penetration d, the displacement of the contact point I is equal to a(d).
Consequently, applying the virtual work principle leads to:

PlðdÞ _aðdÞ ¼ _Eb
x1 þ x2

2
þ
�
1
x1

þ 1
x2

�
_E
0
m⇔PlðdÞ ¼

�
Eb

x1 þ x2

2
þ
�
1
x1

þ 1
x2

�
E0
m

��
va
vd

��1

(24)

where Eb ¼ _Eb=d and E0m ¼ _E
0
m=d. The last step is then to evaluate x1 and x2. This can be achieved by

minimizing (24):

vPl
vx1

¼ 0 ;
vPl
vx2

⇔x1ðdÞ ¼ min
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2E0
m
�
Eb

q
; L1

�
; x2ðdÞ ¼ min

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0

m
�
Eb

q
; L2

�
(25)

As a final remark, it is worth bearing in mind that there is still one undefined parameter. Indeed, if
we go back to equation (11), we see that the initial value j0 of the angle j remains unknown. By
comparisons with numerical simulations (see Section 5.2), this one is fixed to 3p/4. This value is quite
close to the one recommended in Refs. [6,7,10].

3.4. Global crushing resistance

All the theoretical developments presented in Sections 3.1e3.3 with the objective of modeling a
localized indentation of the tube. In other words, this means that the cylinder is supposed to be
crushed without exhibiting any beam-like behavior. In this case, we say that the resistance Pl(d) is
said to be provided through a local deforming mode. However, droptests on cylinders show that
for a given penetration, the tube is forced into an overall bending motion. The deformations are
not any longer confined in a localized area near the impact point but are affect the entire structure.
In that case, we say that the resistance Pg(d) is said to be provided through a global deforming
mode.

Finite elements simulations of full-scale ship-jacket collisions show that at the beginning of the
impact, the crushing resistance of a leg or a brace is essentially coming from the local mode [11].
But as the ship is moving forwards, the global mode is progressively activated. Consequently, there
is a switch in the behavior of the tube. In reality, this transition is quite smooth but in our
mathematical model. The activation of the global deforming mode is supposed to occur abruptly, for
a particular value dt of the penetration. As depicted on Fig. 9(a), the final resistance Pv(d) is eval-
uated as follow:

PvðdÞ ¼ PlðdÞ if d � dt ; PvðdÞ ¼ PgðdÞ if d> dt (26)

The final step to get Pv(d) is then to evaluate Pg(d). In fact, the global behavior of the tube may
be studied with the classical theory of beams. If the extremities of the cylinder are totally
restrained, then the global resistance Pg(d) is derived under the assumption of a three plastic
hinges mechanism. This one is represented on Fig. 9(b), where M0 is the fully plastic bending
moment of the initial circular cross-section ℂ. If the thickness tp being small in comparison with
the radius R, we have M0 ¼ 4R2s0tp. At the beginning of the global mode, M0 has to be reached at
the two extremities of the tube, as the corresponding sections are supposed to be undamaged.
However, this is not the case for the central cross-section, where only a reduced value x(d)M0 � M0
can be reached because of the crushing of the cross-section. In fact, x(d)M0 is the plastic bending
moment calculated by considering the deformed cross-section depicted on Fig. 7(b) for a given
value of d. So the main issue is now to evaluate the reduction factor x(d), which is a quite arduous
task.

Considering the deformed cylinder section depicted on Fig. 7(b), it is difficult to evaluate precisely
the reduction factor x(d). As suggested by De Oliveira [10], x(d) may be derived for an approximate
cross-section, obtained by neglecting ℂ2 and extending ℂ1 till the tangent line d. Doing so, we get the
semi-circular section depicted on Fig. 9(c) for which it is much easier to evaluate the plastic bending
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moment. For the sake of conciseness, the detailed derivation of x(d) will not be reported here. We
finally get:

xðdÞ ¼ 1
2

 �
d*

2R

�2

� 1

!�
d*

2R
� 2

�
; d* ¼ R� ðR� aðdÞÞcosðg� bÞ (27)

where d* is the displacement of the symmetry point D (Fig. 9(c)). For a given local indentation d, the
crushing force required for activating the plastic mechanism depicted on Fig. 9(b) is derived by
applying the classical theory of beams:

PgðdÞ ¼ L1 þ L2
L1L2

ð1þ xðdÞÞM0 (28)

As shown by (27), x(d) is a decreasing function of the penetration d, which explains the decrease of
Pg(d) before the transition occurring at dt (Fig. 9(a)).

As mentioned earlier, a transition is assumed to happenwhen the local resistance reaches the value
required for activating the mechanism of Fig. 9(b). According to (28), the crushing resistance writes at
this moment:

PlðdtÞ ¼ PgðdtÞ ¼ L1 þ L2
L1L2

ð1þ xtÞM0 ; xt ¼ xðdtÞ (29)

which means that the global mode is characterized by a central cross-section having a reduced plastic
bending moment of xtM0, with xt ¼ x(dt).

In order to derive the resistance Pg(d) when d > dt and to define the displacements during the overall
motion of the beam, we consider the situation depicted on Fig. 10(a), where for clarity, the cylinder
radius has been intentionally exaggerated in comparison with the vessel size. From this figure, it ap-
pears that initially (i.e. for d¼ 0), the first contact between the stem ℙ and the ship occurs at point I. The

Fig. 9. (a) Evaluation of the total resistance; (b) Activation of the global plastic mechanism for a given penetration d; (c) Reduced
cross-section.
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local mode is then activated, and for d � dt, the section is deformed in accordance with the pattern
drawn on Fig. 7(b). When d¼ dt, the local resistance Pl(dt) is sufficient for activating the global mode. At
this moment, the crushing penetration is at ¼ a(dt), the inclination angle is gt ¼ g(dt) and the
approximate plastic bending moment of the corresponding deformed cross-section is equal to xtM0.

When d> dt, the local crushing process is stopped and the section starts moving as awhole. Fig.10(a)
shows that for a given value of d, point A is moving to C such that AC ¼ d� dt , which causes the section
to move aside. This displacement is characterized by AB ¼ ðd� dtÞcos gt and the global deforming
mode may be studied using the classical beam theory applied to the structure depicted in Fig. 10(b).

During the overall motion represented on Fig. 10(b), the resistance Pg(d) comes from both bending
and membrane effects. These latter are due to the development of normal tensile forces N associated
with the axial lengthening of the beam. A criterion is therefore needed to define how the flexural and
extensional contributions are interacting. According to De Oliveira [10], the relation between the
bending moment M and the normal force N in the plastic hinges may be written as:

M ¼ M0

 
1� N2

N2
0

!
or M ¼ xtM0

 
1� N2

N2
0

!
(30)

where N0 ¼ 2pRs0tp is the plastic tensile capacity of the tube. The first of equation (30) is valid for the
two extreme cross-sections, while the second has to be applied to the central one. Using this relation
and applying the classical beam theory, a closed-form expression of Pg(d) is obtained (see Jones [8] for
more details):

PgðdÞ ¼ L1 þ L2
L1L2

 
ð1þ xtÞM0

 
1� NðdÞ2

N2
0

!
þ NðdÞðd� dtÞcos gt

!

with : NðdÞ ¼ min

 
N2
0ðd� dtÞcos gt

2ð1þ xtÞM0
; N0

! (31)

Fig. 10. Displacement of the central section during the global mode.
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As a conclusion, the resistance Pv(d) developed during the impact of a vertical cylinder is calculated
by applying equation (26), in which Pl(d) and Pg(d) are respectively given by (24) and (31).

4. Impact on a horizontal cylinder

4.1. Deformation mechanism

Let us now investigate the particular case of an impact occurring on a horizontal tube, i.e. for which
the inclination angle z¼ 0 (Fig. 4). Fig. 11 presents the collision configuration, where the striking vessel
is traveling along the line [, making an angle a with the horizontal X axis and strikes the cylinder at a
point I defined by its coordinates (XI,YI,ZI).

ℙ being the intersection curve between the stem and the horizontal plane located at Z ¼ ZI, it is
possible to find a point H such that the tangent line to ℙ is parallel to the horizontal Yaxis. Fig. 11 shows
that when the ship is moving along the line [, the points H and I tend to come closer and finally occupy
the same position at the beginning of the penetration. At this moment, ℙ is tangent to the generator g of
the cylinder and Fig. 12(a) presents the corresponding configuration in the horizontal plane Z ¼ ZI.

Let us also consider the vertical plane p parallel to (X,Z) and passing through H. The intersection
curve G between this plane and the stem is not necessarily a straight line, unless a¼ 0. Similarly, when
the striking vessel travells along the line [, G comes closer to the ring ℂ of the cylinder and touches ℂ at
point I at the beginning of the impact (Fig. 12(b)).

Fig. 12 shows that closed-form solutions for YI, ZI and XI may be found by imposing a tangency
condition between ℙ and g, but also between G and ℂ. Since the resultingmathematical expressions are
quite complex, they are solved numerically by using a NewtoneRaphson method.

As the crushing process is concerned, although the impact on a horizontal tube can be treated
similarly than the vertical one (Section 3), it is important to account for some particularities. For a given
penetration d, the relative position between the ship and the cylinder is depicted on Fig.13. Considering
the horizontal plane Z ¼ ZI, Fig. 13(a) shows that the current position I0 of point I is located at the
ordinate YI � dsina and that the displacement of ℙ along the X axis is only dcosa. Consequently, the
collision process may be formally modeled by considering that the cylinder section located in the
vertical plane Y ¼ YIsina is simply crushed by the curve Gwith a penetration of dcosa, as illustrated on
Fig. 13(b).

Comparing Fig. 13(b) with Fig. 7(a), the two situations are seen to be nearly similar but this time the
coordinates (XA,ZA) of point A have to be derived by calculating the intersection of G with the straight
line OI. Similarly, the inclination angle g has also to be found by considering the tangent line d to the
curve G. The determination of XA, ZA and g may be achieved by assuming that the stem is sufficiently

Fig. 11. Collision configuration for an impact on a horizontal cylinder.

L. Buldgen et al. / Marine Structures 38 (2014) 44e71 57



Author's personal copy

large to considerG as a straight line and therefore very close to d. Consequently, as g is now constant for
all values of d and equal to the initial inclination b, we simply have the following relations:

g ¼ b ¼ atanðXI=ZIÞ ; XA ¼ XI � d cos a sin2
b (32)

in which the coordinates (XI,ZI) are determined from the initial position of the striking vessel. This
result allows for the evaluation of the crushing penetration: aðdÞ ¼ jðXI � XAÞ=sin bj.

Once g and a(d) have been obtained, it is possible to define how the cylinder cross-section located in
the plane Y ¼ YI � dsina is likely to deform. To do so, we can imagine that the deformation pattern of
Fig. 7(b) is supposed to be still valid, but this time g and XA are evaluated by considering (32) instead of

Fig. 12. Initial position of the stem in a horizontal and in a vertical plane.

Fig. 13. Relative position of the stem and the tube for a given penetration.
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(4) and (5). The three parameters R1, R2 and j used for characterizing the crushed section are then given
by equations (10), (8) and (11) respectively.

4.2. Definition of the displacement field

As the deformation mechanism of the ring located in the vertical plane Y ¼ YI � dsina is formally
identical to the one considered for the case of a vertical cylinder, the displacement fieldw(q,d) affecting
this cross-section is the same than the one depicted on Fig. 8(a).

Therefore, equation (13) still holds for derivingw(q,d), but the extrapolation described by (14) to get
the velocity _Wðq; d;YÞ over the entire cylinder is not valid anymore. Indeed, if we refer to Fig. 14, the
formulas given in (14) have to be modified in the following way:

_Wðq; d; yÞ ¼ 0 if Y20; ½YI � d sin a� x1ðdÞ�
_Wðq; d;YÞ ¼ _wðq; dÞ

�
1þ Y � YI þ d sin a

x1ðdÞ
�

if Y2½YI � d sin a� x1ðdÞ; YI � d sin a�

_Wðq; d; yÞ ¼ _wðq; dÞ
�
1� Y � YI þ d sin a

x2ðdÞ
�

if Y2½YI � d sin a; YI � d sin aþ x2ðdÞ�

_Wðq; d; yÞ ¼ 0 if Y2½YI � d sin aþ x2ðdÞ; L�

(33)

Here again, x1 and x2 are two parameters that will be fixed by minimizing the crushing resistance,
but it is already clear that we should have x1 � YI � dsina and x2 � L � YI þ dsina.

4.3. Local crushing resistance

The evaluation of the crushing resistance may be achieved by following the procedure detailed in
Section 3.3. The cylinder may also be considered as a set of horizontal generators slightly connected to
vertical circular rings (Fig. 15), so that the total crushing energy rate _E is still given by equation (15).

Fig. 14. Extrapolation of the displacement field for any section located along the Y axis.

Fig. 15. Ring and generator of a horizontal cylinder.
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Furthermore, as w(q,d) is defined in a similar way than for a vertical tube, the mathematical
derivation of _Eb leads again to equations (16)e(18). The interpolation (19) to get the total contri-
bution of the rings _Er is therefore still valid, as it is done in accordance with Fig. 14. Similarly, the
total contribution _Eg of the generators is also given by expression (22) and equation (23) is also used
to get _E. Once the internal energy has been calculated, the virtual work principle is applied. This
latter states that _E has to be equated to the external work rate of the crushing resistance Ph(d). As
depicted on Fig. 13(b), for a given penetration d, the contact point is moving from I to A, so that the
corresponding work rate performed by Pl(d) is simply PlðdÞ _aðdÞ. Therefore, by accounting for (32), we
have:

PlðdÞ _aðdÞ ¼ _Eb
x1 þ x2

2
þ
�
1
x1

þ 1
x2

�
_E
0
m

⇔PlðdÞ ¼
�
Eb

x1 þ x2

2
þ
�
1
x1

þ 1
x2

�
E0
m

��
sin b cos a

(34)

The derivation of x1 and x2 is achieved byminimizing (34), so expression (25) have to be corrected to
account for the obliquity of the impact:

x1ðdÞ ¼ min
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E0m
�
Eb

q
; YI � d sin a

�
; x2ðdÞ ¼ min

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0m
�
Eb

q
; L� YI þ d sin a

�
(35)

This final equationmay be used in conjunctionwith (19), (22) and (34) to get Pl(d), but this has to be
done in accordance with the particularities detailed in (32) for z ¼ 0.

4.4. Global crushing resistance

The derivation of the resistance Pg(d) during the global deforming mode for a horizontal cylinder
can be performed by following the same procedure than the one described in Section 3.4. For a given
value of d, the plastic mechanism related to the overall motion of the cylinder is depicted on Fig. 16(a),
where the central plastic hinge is also characterized by a lower plastic bending moment x(d)M0.

As for the case of a vertical tube, the reduction coefficient x(d) may be found by applying (27), but we
should account here for the particular definition of a(d) as detailed in (32):

xðdÞ ¼ 1
2

 �
d cos a sin b

2R

�2

� 1

!�
d cos a sin b

2R
� 2

�
(36)

Similarly, for a given value of d, the global resistance required to activate the plastic mechanism of
Fig. 16(a) can be calculated by modifying (28) to account for the inclination angle a. Therefore, in
equation (28), L1 and L2 simply have to be replaced by YI � dsina and L2 by L � YI þ dsina to get the
following result:

PgðdÞ ¼ L sin b

ðYI � d sin aÞðL� YI þ d sin aÞ ð1þ xðdÞÞM0 (37)

Fig. 16. Global plastic mechanism for a horizontal cylinder.
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The transition from local to global deforming mode occurs when d ¼ dt. At this moment, the local
crushing resistance is equal to the global one calculated by applying (37):

PlðdtÞ ¼ PgðdtÞ ¼ L sin b

ðYI � dt sin aÞðL� YI þ dt sin aÞ ð1þ xtÞM0 ; xt ¼ xðdtÞ (38)

which means that the value reached by Pl(d) is sufficient for activating the global mode depicted on
Fig. 16(a). Once the transition has occurred, i.e. when d > dt, the resistance Pg(d) is no longer given by
(37) because normal tensile forces N appear inside the two arms of the deforming beam (Fig. 16(b)). In
fact, when the structure is forced into the overall motion, an axial lengthening is added to the bending
effects. In the vertical case, the main difficulty is to account for the oblique trajectory followed by the
vessel (as 0). This problem has been treated by some authors, such as Tin Loi [12] or Buldgen [13]. By
following the approximate theoretical procedure described in Ref. [13] for example, it is possible to
establish the subsequent results:

PgðdÞ ¼ L sin b

[1ðdÞ[2ðdÞ

 
M0ð1þ xtÞ

 
1� NðdÞ2

N2
0

!
þ NðdÞðd� dtÞcos a sin b

!

with : NðdÞ ¼ N2
0

2ð1þ xtÞM0

ðd� dtÞcos a sin b

2

 
1þ [1ðdÞ[2ðdÞL

[1ðdtÞ[2ðdÞ2 þ [2ðdtÞ[1ðdÞ2
!

[1ðdÞ ¼ YI � d sin a ; [2ðdÞ ¼ L� YI þ d sin a

(39)

As a conclusion, the crushing resistance Ph(d) of a horizontal cylinder during the collision may be
derived in the same way than (26), but Pl(d) and Pg(d) have to be calculated by applying (34) and (39)
respectively.

5. Impact on an oblique cylinder

5.1. Crushing resistance

It is quite difficult to handle with the mathematical expressions of the stem and of the cylinder in
the oblique case. Indeed, when zs 0 and z s p/2, it is difficult to postulate a consistent displacement
field W(q,d,y) representative of the cross-section deformation during the crushing process. The main
difficulty comes from the fact that the rings have an elliptic shape and not a circular one (Fig. 17), so it is
not easy to imagine how this section is likely to deform when it is impacted by the stem.

Fig. 17. Configuration of an oblique impact occurring on an inclined cylinder.
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Solving such a problem is not the purpose of this paper. Nevertheless, in order to evaluate the
crushing resistance P(d) in the case of an oblique cylinder, we will simply admit that this one can be
calculated by performing a linear interpolation between the two particular solutions Pv(d) and Ph(d)
derived in Sections 3 and 4. In other words, we postulate that:

PðdÞ ¼
�
1� 2z

p

�
PhðdÞ þ

2z
p

PvðdÞ (40)

5.2. Numerical validation

In order to validate the mathematical developments exposed in the previous sections, we can check
if the theoretical prediction P(d) given by (40) is in accordancewith numerical solutions. To do so, some
numerical simulations are carried out using the finite element software LS-DYNA. Two different cyl-
inders, whose properties are listed in Table 1, are studied. For the first one, typical dimensions of a
jacket leg are considered, while the second may be assimilated to a classical brace. Only two different
inclinations (60� and 90�) are considered for the leg because it is quite uncommon to have z < 60� for
this kind of structure. Similarly, for the brace, it seems reasonable to keep z lower than 45�. Both
cylinders are supposed to be perfectly restrained at their extremities.

For the purpose of numerical simulations, the leg and the brace are respectively modeled with 9100
and 7040 Belytschko-Tsay shell elements (see reference [14] for more details). The mesh is regular,
with an average element dimension of 5 cm � 5 cm. The material elasticeplastic behavior is described
by the bilinear stressestrain curve depicted on Fig. 18 and by using the properties listed in Table 2. At
the end of the elastic phase (i.e. for s¼ s0), the material is submitted to a slow hardening characterized
by the tangent modulus ET. In reality, this phase ends by the rupture of the material, which is not
considered in the present paper.

These two cylinders are impacted by a stem assumed to be perfectly rigid. The main dimensions of
the striking vessel are presented in Table 3, with the notations introduced on Fig. 4. The ship is modeled
using 23012 Belytschko-Tsay shell elements [14] and the mesh is refined near the impact area in order
to ensure good contact conditions with the tube.

The relative position between the stem and the cylinder is defined by the parameters (YP;ZS;a), as
depicted on Fig. 4. In order to check the validity of equation (40), different configurations associated
with various values have been investigated.

5.2.1. Impact on a leg
A lot of numerical simulations were performed in order to assess the crushing resistance of a leg for

different values of z, a, YP and ZS. For conciseness, all the obtained results will not be presented here but

Table 1
Properties of the two cylinders used for the numerical simulations.

Property Notation Unit Leg Brace

Radius R m 0.65 0.35
Length L m 10 8
Thickness tp m 0.038 0.0127
Inclination z deg 60;90 0;30;45

Fig. 18. Stressestrain curve used for the numerical simulations.
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only the five scenarios described in Table 4. For the case of a vertical cylinder (z ¼ 90), there is no need
to specify a value for a because the impact problem is axisymmetric.

For each scenario, the curves showing the evolution of P(d) as predicted by (40) are compared on
Figs. 19e23 together with the ones calculated by LS-DYNA. The simulations were arbitrarily stopped
after reaching a penetration of 1m. These figures showa quite good accordance between numerical and
analytical results. Moreover, in almost all cases, the analytical derivation was found to be conservative
as it tends to underestimate the crushing resistance. In fact, the maximal discrepancy was observed for
scenario 2.1 (Fig. 22), for which an underestimation of 25% of P(d) was foundwhen d¼ 1m. This may be
explained by the fact that the theoretical model tends to activate the global mode a bit too early.

As shown by some of the above figures, the slope of the analytical curve may change suddenly,
reflecting the transition from the local to the global deforming mode. Indeed, it is worth recalling that
the theoretical models first postulate a local crushing of the cylinder. During this phase, the rigidity is
quite important and explains why the force is rapidly growing. This denting process ends with the
development of an overall bending motion of the cylinder, which is a more flexible deformation
process and is responsible for an inflection of the resistance curve. This change in the tube behavior
may be illustrated by Fig. 24, which presents some results obtained numerically with LS-DYNA.
Fig. 24(a) shows the deformation of a cylinder cross-section located near the initial contact point.
For a given penetration d of the striking vessel, a global backward movement (quantified by dg) occurs.
Fig. 24(b) presents two different top views of the tube. On the upper one, the total indentation d is quite
small, so the crushing process is only characterized by a local denting dl, the rear edge of the tube
remaining straight. The lower figure is obtained for a larger value of d and shows that the global mode
has already been activated.

5.2.2. Impact on a brace
We also performed a great number of collisions involving the brace and the vessel described above.

Nevertheless, for conciseness, we will only present the results obtained for the scenarios listed in
Table 5. The corresponding curves are depicted on Figs. 25e27.

Table 2
Material law used for the numerical simulations.

Property Notation Value

Young modulus E 210,000 MPa
Poisson ratio v 0.3
Flow stress s0 240 MPa
Tangent modulus ET 1018 MPa

Table 3
Main dimensions of the striking vessel.

Property Notation Unit Value

Elliptic radius 1 p m 6
Elliptic radius 2 q m 8
Total height hb m 7
Stem angle fb deg 78
Side angle jb deg 74

Table 4
Collision configurations for an impact on a leg.

Scenario z (deg) a (deg) YP (m) ZS (m)

1.1 60 0 3 6
1.2 60 30 1 6
1.3 60 45 �1 5
2.1 90 / 0 6
2.2 90 / 4 6
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As shown by these figures, the conclusions drawn for a leg are also valid for a brace. Here again, the
agreement between analytical and numerical solutions seems to be satisfactory. Moreover, in all the
cases, the theoretical approximation tends to be conservative. Themaximal discrepancy is equal to 25%
and is observed for scenario 3 (Fig. 25).

As for to the case of an impact on a leg (Section 5.2.1), the sudden slope change appearing on the
analytical curves is also due to the theoretical transition from the local to the global resisting mode. It is
worth noting that this switch is occurring sooner for braces because of a smaller radius R compared
with the legs one.

Fig. 19. Comparison of the analytical leg resistance to the numerical one for scenario 1.1.

Fig. 20. Comparison of the analytical leg resistance to the numerical one for scenario 1.2.

Fig. 21. Comparison of the analytical leg resistance to the numerical one for scenario 1.3.
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6. Impact on a full-scale jacket

In order to have a better insight of what happens during an impact on a wind turbine, the finite
elements software LS-DYNA was used to simulate a collision occurring near the top of the structure
(Fig. 28). The tubes constituting the jacket are modeled with Belytschko-Tsay shell elements [14]
associated with an elasticeplastic material law described by a similar curve than the one of Fig. 18.
The four legs are supposed to be perfectly clamped in the ground and the top of the jacket is considered
as a perfectly rigid element in order to account for the presence of the platform.

Fig. 22. Comparison of the analytical leg resistance to the numerical one for scenario 2.1.

Fig. 23. Comparison of the analytical leg resistance to the numerical one for scenario 2.2.

Fig. 24. Local and global deforming modes.

L. Buldgen et al. / Marine Structures 38 (2014) 44e71 65



Author's personal copy

The striking stem is considered as being perfectly rigid, which implies that all the collision energy is
dissipated by the support. Its total mass is close to 5000 tons and two different initial velocities of 2m/s
and 5 m/s are used for the simulations. The contact with the jacket is modeled by using the AUTO-
MATIC_GENERAL_SURFACE_TO_SURFACE penalty contact algorithm of LS-DYNA [14].

For an initial striking velocity of 2 m/s, only the leg is impacted by the stem (see Fig. 28). In order to
obtain a rapid estimation of the crushing resistance, the simplified method described previously is
applied by assuming that the collision takes place on an individual cylinder AB characterized by the
geometrical parameters introduced on Fig. 4. Applying the above-mentioned mathematical approach
to this isolated tube, the resistance P(d) is assessed for each value of the vessel penetration d. This is
achieved by applying the interpolation formula (40) and leads to the analytical curve shown Fig. 29(b).
Similarly, the internal energy dissipated by the cylinder is also computed, as depicted on Fig. 29(a). If
we compare the present analytical curves with the ones given by LS-DYNA, we see from Fig. 29 that the
agreement is quite satisfactory.

Let us now investigate the case of an initial striking velocity of 5 m/s. In such a scenario, both the leg
and the brace of Fig. 28 are impacted by the rigid stem. Once again, these cylinders can be seen as
isolated elements and equation (40) may be applied to get an approximation of the collision resistance.

Table 5
Collision configurations for an impact on a brace.

Scenario z (deg) a (deg) YP (m) ZS (m)

3 0 45 �1 1
4 30 30 1 5
5 45 0 2 6

Fig. 25. Comparison of the analytical brace resistance to the numerical one for scenario 3.

Fig. 26. Comparison of the analytical brace resistance to the numerical one for scenario 4.
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Doing so leads to the curves presented on Fig. 30. This time, there is a large discrepancy with the
numerical solution given by LS-DYNA, as the theoretical model drastically overestimates the energy
dissipation and the collision resistance.

This important divergence may be explained by the boundary conditions assumed for the
analytical derivation. Indeed, as detailed in the previous sections, we consider that both extremities
of the cylinder are strongly clamped and therefore do not move during the collision. In other words,
the hypothesis is made that the nodes A, B and C of Fig. 28 are fixed. Nevertheless, this is obviously
not the case as the jacket is also forced into an overall flexural and torsional movement (Fig. 31). For
the smaller velocity of 2 m/s, these motions remains quite small, which explains the quite good
agreement.

This particular point may be investigated in more details by comparing the reaction forces at the
extremities of AB (Fig. 28) with those derived by working on the same isolated cylinder. The curves
showing the evolution of the forces along the x and y axes are plotted on Figs. 32 and 33 for the upper
and lower supports respectively (point A and B on Fig. 28).

As the upper support is concerned (point A on Fig. 28), the results reported on Fig. 32 show that the
slopes of the reaction forces are similar. As expected, the reaction force magnitudes for an isolated
cylinder are greater than those obtained for the full-scale jacket model. This may be simply explained
by the more important flexibility of the supports in this last case. Moreover, as depicted on Fig. 32(b),

Fig. 27. Comparison of the analytical brace resistance to the numerical one for scenario 5.

Fig. 28. Collision scenario for the impact on a full-scale jacket.
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there is stabilization of the y reaction when the contact with the brace BC (Fig. 28) occurs. Of course,
this is not taken into account when working with an isolated cylinder.

Similar conclusions may be drawn for the lower support (point B on Fig. 28) when analyzing
Fig. 33. Nevertheless, it is worth mentioning that the x and y reactions for the isolated cylinder tend
to infinity when the penetration reaches the value of 1.5 m. This is particularly visible on Fig. 33(b)
and may be justified by the fact that the striking vessel enters in contact with the lower support. As
this latter is assumed to be perfectly fixed in this case, the reaction forces increase therefore
drastically.

As a conclusion of this analysis, workingwith an isolated cylinder tends to overestimate the reaction
forces to some extent because the actual flexibility of the supports is not correctly modeled. Of course,
this approach becomes irrelevant as soon as one the bow is reaching of the supports.

Fig. 29. Comparison of (a) the internal energy and (b) the total crushing force obtained analytically and numerically for an initial
velocity of 2 m/s.

Fig. 30. Comparison of (a) the internal energy and (b) the total crushing force obtained analytically and numerically for an initial
velocity of 5 m/s.
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7. Future work

The numerical simulations performed on a full-scale jacket show that the analytical model pre-
sented in this paper is not sufficient and does not entirely reflect all the phenomena involved in the
collision process.

A first point to investigate is the coupling that is likely to appear between the different tubes
constituting the jacket. In the present model, only the cylinders that are directly in contact with the
striking vessel are assumed to be crushed (Fig. 34(a)), but it is clear that the adjacent ones may also
deform even though they have not been impacted (Fig. 34(b)). In other words, our theoretical approach
is not able to account for the displacements affecting each node of the wind turbine support, but this
can be achieved in a similar way than the one followed by Paik [15] for stiffened plates. This meth-
odology is already implemented in the USFOS software developed by the company SINTEF Marintek
and the Norwegian University of Science and Technology (NTNU). Consequently, the future work will
aim to integrate the new developments exposed in this paper into a general calculation code able to
capture the overall motions of the structure.

Another point to consider is the ground flexibility. In the numerical simulations presented in Section
6, the four jacket legs were assumed to be perfectly clamped in the ground, which is not necessarily

Fig. 31. Overall flexural (1) and torsional (2) movement of the jacket for a velocity of 5 m/s.

Fig. 32. Evolution of the reaction forces with the penetration for the upper support.
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realistic as the ground does not have an infinite rigidity. This should be carefully investigated, by fixing
each leg with extensional and rotational springs (Fig. 34(c)). These latter have to be calibrated to reflect
the soil flexibility. This will be also a matter for future work.

Finally, the last point to discuss is the effect of the actual vessel strength. As considering a perfectly
rigid vessel is often too conservative, a sensitivity analysis of the jacket crashworthiness to the striking
ship bow deformability has also been performed and will be presented in an upcoming paper of Le
Sourne et al. [11].

8. Conclusion

In this paper, a closed-form expression for evaluating the resistance opposed by an inclined tube
submitted to a collision with the stem of a given ship is developed. This is done by accounting for the
shape of the flare and for different collision angles.

Fig. 33. Evolution of the reaction forces with the penetration for the lower support.

Fig. 34. Further investigations.
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As a first step, the particular case of an impact occurring on a vertical cylinder is investigated. The
analytical derivation is performed by applying the upper-bound method. To do so, we first imagine a
displacement field that is compatible with the assumed shape of the striking vessel. To evaluate the
impact resistance, the tube is idealized by a set of horizontal rings slightly connected to vertical
generators. Both of them are submitted to an assumed displacement profile and the virtual velocities
principle is applied to get the corresponding crushing resistance.

As a second step, the situation of a horizontal cylinder is treated. The method is similar to the
vertical case, but the assumed deformation pattern is of course somewhat different.

Finally, an interpolation formula is proposed to evaluate the crushing resistance for any inclination
of the tube. In order to validate the theoretical developments, the crushing force assessed analytically is
compared with numerical results. More than fifty different collision situations were investigated and
some of them are presented in this paper. In almost all the cases, the agreement between our simplified
method and the results given by the finite elements code LS-DYNA are satisfactory, as the divergence
never exceeds 25%. Moreover, the analytical procedure leads to conservative results, as the crushing
force and the energy dissipated by the cylinder are always underestimated.

In the last part of this paper, an impact on a full-scale jacket is briefly treated. Once again, the
collision is simulated using LS-DYNA and the corresponding results are compared with the analytical
predictions. The numerical simulations are performed by considering two different initial velocities for
the striking vessel, i.e. 2 m/s and 5 m/s. In the first case, when the velocity is sufficiently low, the
agreement of the present theoretical derivation is quite satisfactory. Nevertheless, in the second case,
when the velocity is increased, a non-negligible divergence is observed. This one is due to the fact that
the tubes surrounding the impacted one are also deformed during the crash. This points out the ne-
cessity of accounting for a coupling between all the super-elements, which is not done so far in our
simplified method. So there is still a need for further work that should be performed during upcoming
years.
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