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Abstract

This paper proposes to use a game-theoretic framework in analyzing complex corporate net-

works, notably in measuring the “amount of control” of both direct and indirect shareholders.

The values of the indices are defined by complex voting games, composed by interlocked weighted

majority games. This paper proposes a characterization of corporate networks in which the notion

of “control” can be well defined, as well as an algorithm that consistently estimates the power

indices when it is the case.
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1 Introduction

Economists have been studying the problem of corporate control in several ways. While the structure

within corporations, that is, the interaction between shareholders and managers, has been analyzed

by contract theorists with principal-agent models, the inter-corporate structure has yet to attract

more academic attention. When analyzing the inner structure of a particular corporation, it might

seem that whether a shareholder is a individual investor or a corporation is of little importance. Yet

the fact is that in complex corporate networks, the two situations can have completely divergent

implications.

In its apparent form, the problem of shareholders’ decision can be modeled as a majority voting

game. Hence, the notion of control in the game theory can be borrowed to define the “control power”

of shareholders (cf. [21]). Notice that the distribution of actual “control power” is often different

from the nominal distribution of voting weights, mainly because the voting function is, in its essence,

a non-linear function. A trivial example is the case in which there is a dominant voter whose voting

weight exceeds the half of the total weight: this voter has absolute voting power, although he might

only possess 51% of the total weight.
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Power indices were therefore invented to measure voters’ actual power to change the outcome

of the vote. The definition of “Shapley value”, given by Shapley and Shubik (1954) [21] relies on

the concept of cooperative game. Banzhaf (1965) [2] defines the “control power” of a voter as the

probability that his or her vote is decisive, i.e. the outcome of the vote is directly determined by his

or her vote, assuming that every voter votes “yes” or “no” with equal probability. In fact, both power

indices define similar probabilities and their difference remains only in the presumptions: Shapley

and Shubik assume the probabilities of having any number of voters voting “yes” are equal, while

Banzhaf assumes any individual voter votes independently and randomly “yes” or “no” (with equal

probabilities). The literature has also developed several methods for computing power indices. Mann

and Shapley (1960) [12] propose using Monte-carlo simulation methods for computing Shapley in-

dices. Mann and Shapley (1962) put forward an alternative computing method using generating

functions. Owen (1972, 1975) [19] [20] proposes methods for both exact calculation (by using mul-

tilinear extension of a game) and approximation. Leech (2003) [15] combines these methods and

presents another approximate method, with a parameter to deal with the trade-off between precision

and complexity.

Leech (2002) [14] computes both power indices for large voting bodies in a cross section of British

companies and appraises them according to some reasonable criteria. His argues that “the Banzhaf

index much better reflects the variations in the power of shareholders between companies as the

weights of shareholder blocks vary”. It is partly for this reason that the present paper, as well as

many others in the literature of corporate vote analysis, adopts Banzhaf indices rather than Shapley

values.

However, although the literature has proposed many methods for the computation of power indices

for shareholders of one special corporation, little has been said on financial systems which include, by

definition, corporations whose shares are possessed by other corporations or dispersed in the hands

of public investors. The literature distinguishes two systems of governance in financial market: the

Anglo-Saxon outsider system in which corporations rely mainly on public debt and equity market and

the majority of their shareholders are individuals (and some investment funds); the insider system in

which bank financing, as well as the direct investment of non-financial corporations in shares, plays

a more prominent role.[6]

The following figures could help reveal the different features of the two systems. We use graphic

tools to show corporate control structure: corporations and investors are represented by vertices,

while share ownership is represented by weighted edges. The outsider system is represented by a

simple one-layer graph (Figure 1), while the insider system could be as complex as Figure 2.

Gambarelli and Owen (1994) analyze complex corporate networks and introduce the notion of

consistent reduction and propose the method of multilinear extension to calculate it. However, this

notion of consistent reduction could only solve problems in which there are well-defined investors,
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Figure 1: The outsider system: dispersed control

Figure 2: The insider system: mutual control
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i.e., firms that can be considered as their own shareholders thus free to make their decisions. But in

more complex corporate networks, we might want to tell the “controlling power” of some dependent

firms. In addition, they present no algorithms with reasonable complexity to calculate the “consistent

reductions” and the passage by multilinear extensions seem to be hard to realize. Hu and Shapley

(2003) [10] [11] formulate a notion of equilibrium authority distribution that has much similarity with

the invariant measure of a Markov chain. They interpret the authority distribution as some form

of individuals’ long-run influence in the network. Yet some of their presumptions seem difficultly

applicable to the reality of financial markets. In particular, they implicitly assume the independence

of firms when they operate additions and multiplications over probability matrices. Crama and

Leruth (2005) [5] make a natural extension of Banzhaf power index in simple voting games to the

case of corporate network, and propose a Monte-Carlo simulation algorithm to compute it; yet a

formal definition of the power index is missing in this article to concretize their idea and make it

more than heuristic.

The purpose of the present paper is to analyze corporate networks in the most general form, define

conditions under which Banzhaf power indices can be naturally generalized, as well as to describe an

algorithm of estimation.

2 Basic notions

2.1 Game and Graph

We follow some of the terminology and notations used in [5] to describe our formal model of corporate

networks. Assume that there are N firms 1; we denote by V = {0, 1, ..., N − 1} the set of firms. For

any firm i ∈ V and another firm j ∈ V , denote by Sij the percentage of firm i’s shares owned by

firm j. S is therefore the shareholding matrix. We have:

∀i,
∑
j∈V

Sij ≤ 1

which says that the sum of shares owned by the shareholders of firm i that appear in the network

should be less than 1. The equality holds if all shareholders of firm i are included in V . If the equality

holds for all banks, that is, if all shareholders of all banks appear in the network, the network is said

to be complete. The network is incomplete if the inequality is strict for some firms.

A firm i is said to be autonomous if it satisfies Sii = 1. This is in fact a tricky way to represent

independent investors as “fictitious firms” whose only shareholders (thus decision makers) are them-

selves. The model does not need to exclude non-autonomous firms from being their own shareholders,

1we do not distinguish firms from individual investors: the latter can be regarded as firms who possess all of their

own shares
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Figure 3: Example of a simple corporate graph

even if we consider this situation is unrealistic.

We use a directed and weighted graph to represent the network. 2 Every firm is represented by

a vertex. For the sake of convenience, we still note the set of vertices by V . There is an edge from

firm j to firm i if Sij > 0, that is, if j is among i’s shareholders. The edge is associated with the

positive weight Sij . Notice that there could be edges going from one firm to itself: this is especially

true for autonomous firms. Denote by A the set of edges, and by w the function from A to positive

real numbers that associate an edge with its weight. When (i, j) ∈ A, we say i is a predecessor (or

direct shareholder) of j. G = (V,A,w), therefore, is a complete graph-theoretic description of the

network and S is the adjacency matrix of G. The graph G is said to be complete if the associated

corporate network is complete.

Example 2.1. Figure 3 is the graphic representation of a simple corporate network: there are five

firms in this network, four of which, firms A, B, C and D, are autonomous, while they own respectively

37%, 33%, 18% and 12% of firm E’s shares. The correspondent shareholding matrix is:

S =



A B C D E

A 1 0 0 0 0

B 0 1 0 0 0

C 0 0 1 0 0

D 0 0 0 1 0

E 0.37 0.33 0.18 0.12 0


(1)

2We use the terminology from Bang-Jensen and Gutin [1], for instance
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2.2 Banzhaf power index

Consider a simple majority voting game: let i be a firm whose shareholders are all included in G.

Denote the set of firm i’s shareholders by Shi and its size by n. Let T ⊆ Shi be a sub-set of i’s

shareholders, define vi(T ) as the characteristic function to judge whether T is a winning coalition

for the voting game of firm i, that is, vi(T ) = 1 if and only if
∑

j∈T Sij ≥ 0.5 and vi(T ) = 0 in the

opposite case. The (non-normalized) Banzhaf index of any of i’s shareholder j ∈ Shi with respect

to i is the quantity:

Zi(j) =
1

2n−1

∑
T⊆(Shi\{j})

(vi(T ∪ {j})− vi(T )) (2)

The Banzhaf index of voter j can be usefully interpreted as the probability that j can change the

outcome of the vote by changing his own vote from 1 to 0, assuming that all voters vote randomly

and are equally likely to vote either 0 or 1. We use the Banzhaf index as a measure of the amount

of a priori voting power, or control, held by a firm.

Example 2.2. We retake Example 2.1 used in the last paragraph and calculate the Banzhaf power

indices of firm A with respect to firm E:

ZE(A) =
1

8
(vE({A})− vE(∅) + vE({A,B})− vE({B}) + ...+ vE({A,B,C,D})− vE({B,C,D}))

= 0.5

Similarly, we could compute ZE(B) = ZE(C) = 0.5 and ZE(D) = 0. This example shows that

the control power of shareholders could be considerably different from the distribution of their shares:

firm A possesses twice firm E’s shares as firm C does, yet they have exactly the same control power;

on the other hand, firm D possesses a non-negligible amount of 12% of E’s shares which gives it no

power at all.

2.3 Direct extension to acyclic complete graphs

Let G = (V,A,w) be a corporate network. A walk is a sequence of vertices (i1, i2, ..., ik) such that

(ir, ir+1) ∈ A for r = 1, ..., k − 1. A cycle is a walk such that i1 = ik.3

In order to generalize the notion of Banzhaf power indices to more complex networks, let us first

examine the case of acyclic (without cycles) and complete graphs. Let G be such a graph. G must

take a pyramidal form similar to Figure 4 (weights on the edges are omitted from the graph).

In such a graph, we define the layer of a firm by induction: the autonomous firms are of layer

1; the layer of any other firm is defined to be one plus the maximum layer of its predecessors. The

3We do not allow a path or a cycle to include any edge of type (i, i) even if (i, i) ∈ A.
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Figure 4: Pyramidal form of an acyclic complete graph

outcome of the vote of a firm in layer k is thus completely determined by the votes of firms in the first

k − 1 layers. Hence, all firm’s votes are utterly determined by autonomous firms which are situated

at the top of the pyramid.

Denote by M the set of autonomous firms in G and its size by n. Notice that since votes of firms

in V \M are ultimately determined by votes of firms in M , only firms in M should have control power

over other firms. Let t ∈ V be a target firm and T ⊆ M be a sub-set of autonomous firms. Define

vt(T ) as the outcome of firm t’s vote if all autonomous firms in T vote 1 and other autonomous firms

vote 0. Let j ∈M be an autonomous firm, a natural extension of the Banzhaf power index of firm j

with respect to a target firm t can be given as:

Zt(j) =
1

2n−1

∑
T⊆(M\{j})

(vt(T ∪ {j})− vt(T )) (3)

The index can be interpreted as the probability that j can change the “ultimate” outcome of t’s

vote by changing his own vote from 1 to 0, assuming that all other autonomous voters vote randomly

and are equally likely to vote either 0 or 1. In this case, the non-autonomous firms are of no control

power.
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2.4 An alternative definition of the Banzhaf power index

In order to describe the results of the present paper in cyclic or incomplete corporate networks, it is

useful to consider an alternative definition of the Banzhaf power index in the two cases mentioned

above. In fact, the Banzhaf power index of a firm j with respect to another firm t can also be

regarded as the probability that j can change the ultimate outcome of t’s vote by changing his own

vote, assuming that all voters start by voting randomly and equally likely either 0 or 1 and all

firms are asked to update (simultaneously) their votes according to their direct predecessors until no

further change of vote occurs.

In the acyclic and complete case (the one-layer graph is a special case of this), since the au-

tonomous firms are considered as their own shareholders, their votes should never change in the

update process. Therefore, the votes of firms on the first layer should at most be changed once and

accordingly, votes of firms on the k-th layer should be changed no more than k times. The update

process thus stops after a finite number of times.

Mathematically, let e ∈ {0, 1}V be firms’ votes (for any firm i ∈ V , ei represents i’s vote). Let t

be a target firm and ut(e) be firm t’s final vote after update processes starting from the state e. An

alternative definition of the Banzhaf power index of a firm j with respect to t can be given as: 4

Zt(j) =
1

2|V |−1

∑
e∈{0,1}V

∑
ej=1

ut(e)−
∑
ej=0

ut(e)


= E[ut(e)|ej = 1]− E[ut(e)|ej = 0] (4)

which says, basically, that since non-autonomous firms are of no importance in deciding the results

of the voting games, the index does not change if the probability is calculated by assuming that all

firms, instead of autonomous firms only, vote randomly.

3 Incomplete networks

Until now, we have assumed the graph is complete. However, real world data in general do have

missing shareholder information: financial authorities often do not require small shareholders to

report their status. In our model, we define the float of a firm i as the quantity:

fli = 1−
∑
j∈V

Sij

which is the total share of unidentified shareholders of the firm.

Consider a one-layer graph with float. To correctly define the voting game, one needs apparently

specify the voting behavior of the float. Two limiting cases are described in Cubbin and Leech (1983)

4E(X) stands for the expected value of X. The proof of the equivalence of the two definitions is left to readers.
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[7] and Leech (1988 [16], 2002a [14]). In what they call the “concentrated float” case, the number of

unidentified shareholders is assumed to be as small as possible: since the shares held by each of them

must be no larger than the smallest identified shareholder’s portion, denoted by Si, the number of

unidentified shareholders of firm i, nunidentifiedi , should satisfy:

nunidentifiedi ≥ dfli
Si
e

where dae means the smallest integer larger than or equal to a.

On the contrary, an “oceanic float” case is described in Dubbey and Shapley (1979) [8]. An

infinite number of unknown shareholders is assumed in this case and each of them holds only an

infinitesimal fraction of the shares.

These two models can be regarded as two extreme situations of the float: highly concentrated

or largely dispersed. In the light of these models, float or unidentified shareholders can be dealt

with in the same way as recognized shareholders are, that is, float can be considered as “fictitious

shareholders” that follow the same law as real shareholders. Yet the present paper follows a more

general method that avoids the discussion of the modeling of float: let i ∈ V be a firm with positive

float fli > 0. Let Fli be any random variable that takes value in [0, f li] with cumulative distribution

function F i and density function f i. The random variable represents the total weight of unidentified

shareholders that vote 1. Thus, if we denote by n the number of identified shareholders of firm i

and let j be one of them. Let vi be the function that associates T ⊆ Shi, a sub-set of the set of i’s

identified shareholders, with the total shares of shareholders in T . The Banzhaf power index of j

with respect to i (for the one-layer situation, with float) can be defined as:5

Zi(j) =
1

2n−1

∑
T⊆(Shi\{j})

(P(Fli + vi(T ∪ {j}) ≥ 0.5)− P(Fli + vi(T ) ≥ 0.5))

=
1

2n−1

∑
T⊆(Shi\{j})

(F i(0.5− vi(T ))− F i(0.5− vi(T ∪ {j})))

=
1

2n−1

∑
T⊆(Shi\{j})

∫ 0.5−vi(T )

0.5−vi(T∪{j})
f i(x)dx (5)

which can be interpreted as the difference of probability that j can change the outcome of a vote by

changing his own vote from 1 to 0, assuming that all identified voters vote randomly and are equally

likely to vote either 0 or 1, and unidentified voters vote according to the cumulative distribution

function F i.

5P(A) stands for the probability that A happens.
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4 The general model

4.1 Transition matrix

In this section, we intend to solve the problem in its most general form.

The presence of float and cycles reveals the probabilistic aspect of the problem: the Banzhaf

power indices have to be defined in a way that combines both the problem of vote updates (cf.

Equation 4) and the problem of having random float (cf. Equation 5).

Since a firm can either vote 0 or 1, denote by E = {0, 1}V the space of all possible votes. If e is

an element in E, e(i) ∈ {0, 1} describes the vote of firm i for any i ∈ V .

Let e ∈ E be the “current” state of firms’ votes. If the boards of directors of each firm re-vote

again according to shareholders’ current votes, as described by e, the presence of floats could give

rise to several possible outcomes (of elements in E), thanks to the existence of floats. Let f ∈ E

be one possible outcome of votes. If we assume furthermore the cumulative distribution functions

of floats are known (whatever those distribution functions are), it then follows that we are able to

calculate P (e, f), the probability that the outcome of re-votes is f , given the current votes e.

Notice that the huge matrix P , which is of size 2N ∗ 2N (N = |V |), is a transition matrix. That

is, ∀e, f ∈ E, P (e, f) ≥ 0; and ∀e ∈ E,
∑

f∈E P (e, f) = 1.

For the sake of simplicity, we should label the N corporations from 0 to N − 1. Then arrange the

2N elements of E in a binary way: represent each of the elements by a binary number of exactly N

bytes (bytes are also counted from the 0-th to N−1-th); the k-th binary of an element e ∈ E, denoted

by ek, should represent the vote of the k-th corporation; sort the binary numbers in the increasing

order (from 0...0 to 1...1). The matrix P in this basis can therefore be calculated according to the

shareholding matrix S. ∀0 ≤ k, l ≤ 2N − 1, let a and b be the binary number that equals to k and

l. If we take the further assumption that says the floats of different firms vote independently6, we

have:

P (a, b) = Pk,l

=
N−1∏
i=0

Proba(bi be firm i’s next vote, knowing firms’ current votes a)

=
∏

0≤i≤N−1,bi=1

Proba

Fli +
N−1∑
j=0

ajsij ≥ 0.5

 ∏
0≤i≤N−1,bi=0

Proba

Fli +
N−1∑
j=0

ajsij < 0.5


=

∏
0≤i≤N−1,bi=1

1− F i

0.5−
N−1∑
j=0

ajsij

 ∏
0≤i≤N−1,bi=0

F i

0.5−
N−1∑
j=0

ajsij


6independence is of course a key hypothesis here to give out the formula, yet it is not required to define the transition

matrix
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Figure 5: Example 4.1

The following examples illustrate how the shareholding matrix, S, can be transformed into the

transition matrix, P .

Example 4.1. Consider 4 firms A,B,C and D (Figure 5). Firms A, B and C are autonomous, while

each of them possesses one third of firm D’s shares. Their shareholding matrix is as following:

S =


1 0 0 0

0 1 0 0

0 0 1 0

1
3

1
3

1
3 0

 (6)

An element of the outcome space can be represented by an binary number xdxcxbxa. For instance,

the number 0011 signifies the situation in which both firms A and B vote 1, while firms C and D vote

the opposite.

Since there is no float in these firms’ shares, we do not need to specify a distribution function

of float to give the transition matrix P , which is of size 16 ∗ 16. In reality, most of the terms

in this matrix are zero except exactly 16 of them: the absence of floats implies that the votes are

deterministic, which is to say that ∀i, there exists an only j such that Pij 6= 0. Yet P is a transition

matrix, which implies that we have not only Pij > 0 for this j but also Pij = 1.

Example 4.2. (with float) Consider 3 firms A, B and C (Figure 6). Now firms A and B are

autonomous, while both of them controls one third of firm C’s shares. The last third of firm C’s

shares is recognized as float. Therefore, their shareholding matrix is:
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Figure 6: Example 4.2

S =


1 0 0

0 1 0

1
3

1
3 0

 (7)

If we assume that the float of C votes according to a uniform distribution over [0, 13 ], their tran-

sition matrix is:

P =



000 001 010 011 100 101 110 111

000 1 0 0 0 0 0 0 0

001 0 0.5 0 0 0 0.5 0 0

010 0 0 0.5 0 0 0 0.5 0

011 0 0 0 0 0 0 0 1

100 1 0 0 0 0 0 0 0

101 0 0.5 0 0 0 0.5 0 0

110 0 0 0.5 0 0 0 0.5 0

111 0 0 0 0 0 0 0 1



(8)

Above is a way to build up the transition matrix from a corporate network. However, the

existence of transition matrix does not necessarily require a structure of corporate network as what

is defined previously, i.e., with well-defined shares and floats. An alternative approach is to define

a probabilistic simple game for any firm t ∈ V . The players of this game are all the other firms

in the network. Let T ⊂ V \{t} be a sub-set of players, denote by vt(T ) the outcome of the voting

game if only players in T vote 1. We define in addition the probabilities pt(T ) = P[vt(T ) = 1] (the

probability that firm t votes 1 given its shareholders vote 1 if and only if they are elements of T ).
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The transition matrix can then be calculated if, for instance, we assume that the probabilistic simple

games are independent one from another.7

The following analysis is only based on the existence of such a transition matrix, P , and does not

need to specify the origin of this matrix.

4.2 Decomposition into irreducible classes

For any two possible outcomes e, f ∈ E, we shall say e leads to f if P k(e, f) > 0 for some positive

integer k > 0. We denote this e → f . If e leads to f and f leads to e, we note e ↔ f . If for

any positive integer k, P k(e, f) = 0, we note e 9 f . Notice that although ↔ is both transitive and

symmetric, it is not an equivalence relation because it is not reflexive, which is to say, it does not

hold in general that ∀e ∈ E, e↔ e.

It is then a well-known property for transition matrices that the elements of E can be classified,

in a unique manner, into non-overlapping groups T , C1, C2,..., Ck such that each Ci is an equivalence

class of the relation ↔ (which means, ∀e, f ∈ Ci, e↔ f), said irreducible classes of P and T = {e ∈

E|e→ f but f 9 e for some f}. 8 Therefore, P has the form (after some possible re-arrangements)

of:

P =


PT W1 ... Wk

0 PC1 0 0

0 0 ... 0

0 0 0 PCk


where PC is the restriction of P to any sub-set C ⊆ E. Furthermore, PT is such that limm→∞ P

m
T = 0

and k is larger than 1 (there exists at least one equivalence class of ↔).

Example 4.3. (with cycles) In Example 4.2, the transition matrix can be re-arranged as:

P =



011 100 001 101 010 110 000 111

011 0 0 0 0 0 0 0 1

100 0 0 0 0 0 0 1 0

001 0 0 0.5 0.5 0 0 0 0

101 0 0 0.5 0.5 0 0 0 0

010 0 0 0 0 0.5 0.5 0 0

110 0 0 0 0 0.5 0.5 0 0

000 0 0 0 0 0 0 1 0

111 0 0 0 0 0 0 0 1


7Again, the independence is only one possible sufficient condition for the result.
8The readers could refer to [18] for a more thorough description of the theory.
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In this example, T = {011, 100}, C1 = {001, 101}, C2 = {010, 110}, C3 = {000}, C4 = {111}.

Notice that in the special case in which there is no float and no cycle in the corporate network,

then the transition matrix should have the form of

P =

0 W

0 I


where I stands for the Identity matrix.

4.3 Formal definition of Banzhaf power index

We have previously seen that, in an acyclic graph without float, the Banzhaf power index of a firm

X with respect to a target firm T is obtained by:

• assuming that each of the 2N votes states is equi-probable to be the starting state

• with a given starting state, calculating the influence “in the long run” on the vote of T if X

changes its vote

The difficulty in generalizing this definition stands in how to formalize the notion of firm T ’s vote

“in the long run” with a given starting state.

The answer is to first calculate, if they exist, the limits of probabilities of each state “in the

long-run”. Inspired from the arborescent case, we will let all firms update again and again their

votes, expecting that these votes will converge in a probabilistic sense, that is, the probabilities that

each possible outcome happens converge as firms vote and re-vote. It will then be easy to get the

expected value of firm T’s long-term vote by taking the weighted average of its vote in all possible

states.

Let e ∈ E be an arbitrary starting state of votes. For any sub-set A of E and any integer m ≥ 1,

denote by q(A,m, e) the probability that after m tours of re-votes, the state of votes is an element of

A. If limm→∞ q({f},m, e) exists for every pair e, f ∈ E, the previous discussion allows the extension

of Banzhaf power index.

Notice first that it is easy to show that limm→∞ q(Ci,m, e) exists for any of the irreducible classes

Ci, because:

• if e ∈ Ci for some i, then ∀m, q(Ci,m, e) = 1 and q(Cj ,m, e) = 0 if i 6= j.
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• if e ∈ T , then9:

q(Ci,m+ 1, e) =
∑
f∈E

q({f},m, e)

∑
g∈Ci

P (f, g)


≥

∑
Cj

∑
f∈Cj

q({f},m, e)

∑
g∈Ci

P (f, g)


=

∑
f∈Ci

q({f},m, e)

∑
g∈Ci

P (f, g)


=

∑
f∈Ci

q({f},m, e)

= q(Ci,m, e)

(q(Ci,m, e))m≥0 is therefore an increasing sequence bounded by 1 and it converges necessarily.

Since PT is such that limm→∞ P
m
T = 0, it is easy to show that q(T,m, e) converges to 0 for any

starting state e. We need the following assumption to conclude the existence of the limits.

Assumption 4.1. Each equivalence class Ci of ↔ is aperiodic.

Theorem 4.1. Under Assumption 4.1, limm→∞ q({f},m, e) exists for any pair e, f ∈ E.

Proof. The restriction of the transition matrix to any of the equivalence classes of ↔ is a finite-

state irreducible Markov chain. Under the assumption of aperiodicity, it is ergodic, which is to say

limm→∞ q({f},m, e) exists for any pair of e, f ∈ Ci. For a given f ∈ Ci, the limit is also called the

stationary distribution of the irreducible Markov chain, denoted by πf .

If f ∈ Ci for some i but e ∈ Cj with j 6= i, then it is clear that limm→∞ q({f},m, e) = 0.10

If f ∈ Ci for some i and e ∈ T , we then have: limm→∞ q({f},m, e) = πf ∗ limm→∞ q(Ci,m, e).

Lastly, if f ∈ T , then limm→∞ q({f},m, e) = 0 for any e ∈ E.

Definition 4.1. Under the Assumption 4.1, the Banzhaf index of a firm X to a target firm T can

be defined as the difference between the expected value of firm t’s votes “in the long run” when firm

x changes its vote from 0 to 1. Mathematically, we have

ZT (X) =
1

2N−1

 ∑
e∈E,e(X)=1

∑
f∈E

f(T )limm→∞q({f},m, e)−
∑

e∈E,e(X)=0

∑
f∈E

f(T )limm→∞q({f},m, e)


Corollary 4.1. In an acyclic corporate network (with float or not), the Banzhaf index is well defined.

9Let f ∈ Ci,
∑

g∈Ci
P (f, g) = 1 by definition of irreducible classes.P (f, g) = 0 if f ∈ Ci, g ∈ Cj with i 6= j.

10by definition of irreducible classes.
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Proof. It suffices to show that any of the equivalence classes in an acyclic corporate network is

aperiodic. Let C be one equivalence class in such a network and assume that C is not aperiodic. It

implies that for any element e ∈ C, P (e, e) = 0.

We use the notion of layer defined previously, and for each firm x in the network, denote its layer

by l(x).

For any element e ∈ C, let A(e) = {f ∈ C|P (e, f) > 0} be the set of probable outcomes if we

let the firms re-vote. If f ∈ A(e), define φ(f, e) = min(l(x)| firm x votes differently in e and in f).

φ(f, e) is well defined since P (e, e) = 0. Define then ϕ(e) = max(φ(f, e), f ∈ A(e)).

Now let e∗ ∈ C be the element that maximizes ϕ(e) and let f∗ be the element in A(e∗) that

maximizes φ(f, e∗). Let x∗ be the firm with minimum depth that votes differently in e∗ and in f∗

(if there are several such firms, we choose one of them). Since e∗ and f∗ are in the same equivalence

class, firm x∗ should not be that l(x∗) = 0 (autonomous firms never change their votes through

updates). All firms whose layer is smaller (strictly) than l(x∗), notably its shareholders, should vote

the same in e∗ as in f∗ (by the definition of φ(f∗, e∗)). The fact that f∗ ∈ A(e∗) shows that, if

we let firms re-vote from situation f∗, there is a non-zero probability that all these firms whose

layers are smaller than l(x∗) will get the same votes, and so does the firm x∗. But this is true for

all firms having the same layer with x∗. That is to say, there must be some g ∈ A(f∗) such that

φ(g, f∗) > l(x∗) (because it might be that none of the firms whose layer is weakly smaller than l(x∗)

changes its vote). Therefore, ϕ(f∗) ≥ φ(g, f∗) > l(x∗) = ϕ(e∗) which contradicts the hypothesis that

e∗ maximizes ϕ.

Banzhaf power index is defined in, but not restricted to, acyclic graphs, as shown in the following

example.

Example 4.4. Consider four firms A,B,C and D (Figure 7). Only firm A is autonomous. Firms

B,C and D are in symmetric positions: firm B’s shares are controlled by firm A (33.33%) and firm

D (33.33%), with a float of 33.33%; firm C’s shares are controlled by firm A (33.33%) and firm B

(33.33%), with a float of 33.33%; similarly, firm D’s shares are controlled by firm A (33.33%) and

firm C (33.33%), with the same amount of float.

The shareholding matrix, S, is as following:

S =


1 0 0 0

1
3 0 0 1

3

1
3

1
3 0 0

1
3 0 1

3 0

 (9)

If we represent a possible state of votes by the binary number xdxcxbxa and assume that all

floats follow uniform law, the transition matrix takes the following form (Figure 8), which could be
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Figure 7: Example 4.4

Figure 8: Transition matrix in Example 4.4

re-arranged into (Figure 9):

One can see from the re-arranged matrix that there are only two irreducible classes: {0000} and

{1111}. Other states of votes have a non-zero possibility of becoming either 0000 or 1111. Therefore,

in the long-run, the state of votes converges in probability to 0000 or to 1111, depending on the initial

vote of (only) firm A.

Hence, the Banzhaf power indices of firm A with respect to other firms are ZB(A) = ZC(A) =

ZD(A) = 1, and all other Banzhaf power indices are zero. Despite having only one third of shares of

each of the other firms, firm A has total control over the group of firms B,C and D.

Remark 4.1. Cyclic corporate network could be periodic with period larger than 1. An easiest(but

probably unrealistic) case consists of two firms A and B who possess more than 50% of each other’s
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Figure 9: Re-arranged transition matrix

shares. In this case, there are 3 equivalence classes in the transition matrix which are {00}, {11}

and {01, 10}. The last one is periodic with period 2.

Remark 4.2. The previous extension of Banzhaf power index does not allow us to define it in cases

where there periodic equivalent classes. However, the author of the present paper considers it not

as a flaw of the developed theory, but as a shortage of the voting process. In principle, we rely on

the voting process to deal with any divergence of opinions among shareholders. However, in some

extreme cases (which are supposed to be “rare” in real life) such as the one mentioned in the last

paragraph, voting does not allow the two firms to solve their difference. This is part of the reason

why we need negotiation and bargaining in real life, in addition to polls. The Banzhaf power index,

as a measure of the influence of one participator in a voting game, does not and should not go out

of the principles of voting and that is why it is not defined under some circumstances.

5 Algorithm for estimating Banzhaf power indices

Always under the Assumption 4.1, the definition of the Banzhaf Index of a firm X to a target firm

T can be formulated in a slightly different way. If e ∈ E, let ē(X) be the voting situation in which

all firms but firm X vote the same as in e. The Banzhaf Index can then be rewritten as:

ZT (X) = E

∣∣∣∣∣∣
∑
f∈E

f(T )limm→∞q({f},m, e)−
∑
f∈E

f(T )limm→∞q({f},m, ē(X))

∣∣∣∣∣∣
where E stands for the expected value and e be a random variable uniformly distributed over E.

Therefore, when both n and m increase to infinity, the following algorithm generates a consistent

sequence of estimators of BZ(x, t):
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• (Counter)aux0 ← 0; aux1 ← 0

num0 ← 0; num1 ← 0

• (Initialization) Choose randomly an element e in E

• (Propagation) Starting from e, let the network vote and re-vote m times, let the final state

be f

auxe(x) ← auxe(x) + f(t)

nume(x) ← nume(x) + 1

• (Repetition) Repeat Initialization and Propagation n times.

• BZ(x, t) = aux1
num1

− aux0
num0

6 Conclusion

In this paper, we have extended the notion of Banzhaf power index to complex corporate networks.

We have shown that under a technical condition, the well-defined Banzhaf power index is capable

to measure the “control power” of one corporation with respect to another. It has also been shown

that the condition is always satisfied in acyclic corporate networks. We have, in addition, proposed

a Monte-Carlo simulation algorithm for the computation of the indices in case of existence. The

approach is based on a formal game-theoretical framework.

Major questions for future research would be associated with the technical condition. It would

be a significant improvement if we could characterize all the networks that satisfy (or not satisfy) it.

It might also be interesting to consider, when the condition is not satisfied, the possibility to define

other similar notion of control power.

The algorithm developed in the present paper could also be served to calculate Banzhaf indices

in other similar situations, with probably slight modifications. For instance, we believe that this

work could open the way for further application of power indices to the analysis of interaction among

banks, say, to the measurement of dependency of one bank on the banking network.
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