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Abstract

The fatty acids (FA) profile was determined in n-3 enriched (ColumbusTM) Bel-

gian eggs and pork in order to evaluate to what extent the n-3 fatty acids,

which are very sensitive to oxidation, are resistant to storage or cooking. In

standard eggs or pork, no change of the fatty acid profile was observed after

storage or cooking without culinary fat, as well as in ColumbusTM eggs and pork

after storage. Some cooking processes (eggs in custard and meat in oven)

induced a slight significant loss of n-3 fatty acids in ColumbusTM eggs or pork

(11.1% in fat from eggs cooked in custard vs. 15.3% in raw ColumbusTM eggs

and 11.0% in fat from oven cooked meat vs. 11.6% in raw ColumbusTM meat).

As expected, when ColumbusTM pork is cooked with culinary fat, its fatty acid

profile is modified according to the nature of the fat used.

Introduction

The essential C18 polyunsatuared fatty acids (PUFA) n-6

linoleic (LA) and n-3 a-linolenic (LNA) acids are precur-

sors of long chain C20 and C22 highly unsaturated fatty

acids, and compete, in this process of elongation, for the

same D6 desaturase enzymes. So, an excessive intake of

n-6 compared to n-3 fatty acids could lead to a deficiency

in n-3 eicosapentaenoic acid (EPA) and docosahexaenoic

acid (DHA), which are said semi-essential fatty acids.

EPA and DHA are well known for their beneficial effects,

in particular, to prevent different pathologies, mainly

cardiovascular diseases (Delgado-Lista et al. 2012;

Lovegrove and Griffin 2013). Nowadays, it is considered

that the general western diet contains an excess of n-6,

with a ratio between n-6 and n-3 FA around 10–15 (Sim-

opoulos 2008). This imbalance is thought to contribute to

the appearance of the “modern day” metabolic syndrome,

including health problems such as cardiovascular diseases,

type 2 diabetes, obesity, allergies, inflammations, cancers,

stress etc. For several years, it was considered that for

humans, the ideal ratio between fatty acids n-6 and n-3

in food was 1:1. A recent study realized for the American

Heart Association (Harris et al. 2009) showed that n-6

fatty acids have no pro-inflammatory effects in humans.

Furthermore, this study confirms the hypo-cholesterol-

emia potency of n-6 fatty acids and recommends aban-

doning the idea that n-3 and n-6 fatty acids display
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opposite effects and to not use anymore the ratio n-6/n-3

to qualify the intake of these fatty acids. Moreover, this

study recommends to increase the n-3 and to maintain

the n-6 fatty acids dietary intake.

Increasing the amount of n-3 fatty acids in animal feed

is a way to increase human intake of those compounds

through the consumption of food from animal origin

other than fatty fish, the major natural dietary source of

long chain n-3 fatty acids. Examples from literature have

shown the possibility to obtain n-3 fatty acids enriched

meat (Raes et al. 2004; Wood et al. 2004), eggs (Jiang

and Sim 1992; Cherian et al. 2007a,b) or dairy products

(Oeffner et al. 2013). Subsequently, many products

enriched with n-3 fatty acids can be found in the market:

meat, milk and dairy products, eggs. . . For example, in

Belgium, a Walloon company developed a patented ani-

mal feed (ColumbusTM feed) containing 5% of linseed oil

(Remacle et al. 2001) suitable for hens that produce

ColumbusTM eggs with a ratio of omega-6 and omega-3

fatty acids of 1:1. The same strategy was used more

recently to produce ColumbusTM pork.

Polyunsaturated fatty acids oxidation in food is gener-

ally favored by thermal processing as well as storage

(Lopez-Bote et al. 1998; Nurnberg et al. 1999; Hayat et al.

2010). Eggs and pork are categories of foods that are

eaten cooked, that is, after thermal processing. Conse-

quently, due to the possible oxidation, the quantity of

PUFA remaining in the food when it is eaten, that is,

after storage and/or cooking, could be lower than the ini-

tial content in the raw product.

Our study investigated the impact of storage and cook-

ing on the polyunsaturated fatty acids content of two

products rich in omega-3 fatty acids marketed in Bel-

gium: ColumbusTM eggs and ColumbusTM pork.

Materials and Methods

Chemical reagents and cooking ingredients

Free and methylated fatty acids standards were purchased

from Sigma-Aldrich (St. Louis, MO). Hexane and toluene

were of Picograde quality and provided by Promochem

(Wesel, Germany). Methanol and water were of Chroma-

norm quality and provided by VWR International (West

Chester, PA). Hydrochloric acid, 37%, was from Merck

(Darmstadt, Germany).

Individual stock solutions of each fatty acid standard in

hexane were used to prepare a pool of 23 FA standards,

for the external calibration. Nonadecanoic acid (C19:0)

was used as internal standard and gadoleic acid methyl

ester (C20:1-ME) was used as injection standard.

The certified reference material (CRM) BCR-162R

(made of soya-maize oil blend) was purchased at the

Institute for Reference Materials and Measurements

(IRMM, Geel, Belgium).

Skimmed milk, sugar, flour, corn starch, palm oil, but-

ter, margarine, sesame, and peanut oils were purchased in

a local supermarket.

Fat extraction

Samples were weighed, homogenized (for raw whole eggs)

or minced (meat and cooked eggs), and lyophilized for

48 h (Benchtop, Virtis; SP Industries, Warminster, PA).

The dry matter was weighed and the water content was

then calculated. Then, extraction of the total lipids was

done using hexane at 125°C for 20 min in an accelered

solvent extraction (ASE) system (ASE 200; Dionex,

Sunnyvale, CA) and the fat residue was weighed.

Preparation of fatty acid methyl esters

Fifty milligrams of fat extracted with ASE were mixed with

5 mL hexane and 10 lL were used for the saponification/

methylation of the fatty acids. Internal standard nonadeca-

noic acid (C19:0) was then added and hexane was evapo-

rated to dryness under a stream of nitrogen. One milliliter

toluene and 2 mL sulfuric acid 2% (v/v, in methanol) were

added to the fat and the capped tube was heated in a water

bath at 100 °C for 1 h, with vigorous agitation thanks to a

magnetic stirrer. Then, 3 mL NaCl 5% were added and the

methyl esters were extracted with two times 2 mL hexane.

The extract was washed with 4 mL K2CO3 2% (w/v) and

Na2SO4 was added to a part of the extract. The extract was

then evaporated to dryness in a SavantTM Universal Speed-

VacTM Vacuum System (Thermo Fisher Scientific, Waltham,

MA) in order to eliminate the toluene. Three hundred and

fifty-five microliters hexane was added and the tube was

vortexed. Finally, 80 µL was transferred into an injection

vial and 20 µL gadoleic acid methyl ester (C20:1-ME)

was added to be used as the injection standard.

For the calibration curve, the same protocol was

applied to hexane solutions containing a pool of 23 fatty

acids, at six different concentration levels (from 0.06 to

16.68 ng lL�1).

GC–MS separation, detection, and
quantification of fatty acids

The method used to analyze fatty acid methyl esters

(FAME) was adapted from Aldai et al. (2006). FAME

were separated on a Focus GC gas chromatographer

(Thermo Fisher Scientific) using a CP-Sil88 column for

FAME (100 m 9 0.25 mm, 0.2 lm) (Varian; Agilent

Technologies, Santa Clara, CA) and analyzed with an

ion trap PolarisQ mass spectrometer (Thermo Fisher
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Scientific). The GC conditions were: inlet: 250°C; splitless
injection; helium as the carrier gas at 1.5 mL min�1; tem-

perature program: 55°C for 1 min, followed by an

increase of 5°C min�1 to 180°C, then 10°C min�1 to

200°C for 15 min, then an increase of 10°C min�1 to

225°C for 14 min; total run time was 59.50 min. Injec-

tion volume was 1 lL. The peaks were identified by com-

paring their mass spectrum and retention times with

those of the corresponding standards. The MS conditions

were: transfer line: 250°C; ion source: 220°C; collision

energy: 35 eV; positive ionization mode. The FAME were

detected using selected ion monitoring (SIM) mode in

five segment windows. In each chromatographic run, dif-

ferent ions were monitored for each fatty acid analyzed,

which allowed to perform detection and quantitative

analysis: m/z 101 + 143 for saturated, 79 + 91 for mono

and polyunsaturated fatty acids.

The 23 FAME, the internal standard, and the injection

standard were separated in a run time of 1 h using the

optimized GC–MS parameters described in Meat samples

section.

For quantification, a 6-point calibration curve contain-

ing standard solutions and the internal standard was per-

formed for each of the 23 fatty acids methyl esters

determined. The response (ratio between fatty acids

methyl esters and the internal standard peak areas) was

plotted against standard concentrations. A linear regres-

sion was used and no “fit weighting” was applied.

Eggs

ColumbusTM (“omega-3 rich”) and standard eggs were

bought in a local supermarket and were from barn raised

hens (purchase date corresponding to 1 week after lay-

ing). For both types, all eggs were of medium size (53–
63 g). A total of 252 eggs coming from four different

batches were used for two studies: one batch for the study

of the impact of the storage conditions and three batches

for the study of the impact of cooking.

Egg cooking experiment

Eggs were cooked in a water bath (hard-boiled 4, 10, and

15 min), in a pan (scrambled and “au plat”) and in an

oven (in Savoy cake and in custard). For each cooking

experiment, eggs were kept at room temperature 30 min

before cooking. Temperatures in water bath, oven, and

eggs were monitored during cooking procedures with

temperature probes from Testo (Lenzkirch, Germany),

with a measurement uncertainty of 0.5°C.
• Water-bath cooking: Water temperature was set at 100 °C.
Hard-boiled eggs (4, 10, and 15 min) were cooled 5 min

in ice to stop the cooking.

• Pan cooking: eggs were cooked (during 3 min in each

case), scrambled (two eggs), and “au plat” (one egg)

without oil, with the use of a polytetrafluoroethylene

(PTFE) cooking foil.

• Custard (oven cooking): 250 mL skimmed milk was

boiled and mixed with 50 g sugar. Then, two eggs were

beaten and added to the milk. The mixture was cooked

in the oven set at 180°C for 45 min in a water bath.

• Savoy cake: Three egg yolks were mixed with 50 g sugar

then 40 g flour, and 30 g corn starch were added.

Three egg whites were beaten firmly and 20 g sugar

were added. The beaten whites were then folded into

the egg yolk mixture; then the mixture was poured into

a cake pan and baked for 30 min in the oven set at

160°C.

All eggs have been weighed before and after cooking.

Each cooking experiment used 15 eggs of each type: one

raw, three hard-boiled (1 for 4 min, 1 for 10 min, and 1

for 15 min), two pan cooked “au plat” (1 without fat and

1 with fat), four pan cooked scrambled (2 without fat

and 2 with fat), two in custard and three in Savoy cake.

Each experiment was repeated three times with eggs from

different batches, leading to a total of 45 eggs of each

type.

Egg storage experiment

Raw and hard-boiled (10 and 15 min) ColumbusTM and

standard eggs were stored 6 weeks in the dark at +4°C
and +20°C. Each week, until the sixth week of storage,

two eggs were sampled for the fatty acid profile determi-

nation. Each condition was in triplicate for day zero and

in duplicate for the other storage times. A total of 81 eggs

of each type were used for the storage experiment. All

eggs from one type were from a single batch.

Egg control samples

For each type of eggs, a total of six raw eggs were ana-

lyzed to be used as control for both experiments: three

raw eggs coming from the cooking experiment (three dif-

ferent batches) and three raw eggs coming from the stor-

age experiment.

Meat samples

The meat was coming from the shoulder of one Colum-

busTM pig and one standard pig (both Pi�etrain), provided

by the company Marcel Biron & Fils (Bouffioulx,

Belgium). Samples of ground meat of ~70 g each, coming

from two different batches, were used for cooking and

storage experiment: one batch for the study of the impact
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of the storage conditions and one batch for the study of

the impact of cooking.

Pork cooking experiment

Samples of ground meat (~70 g) coming from one

ColumbusTM pig and one standard pig were used for each

cooking procedures. A total of 18 samples of each type of

meat were used for the cooking experiment.

Oven cooking experiment: the meat (four samples of

each category of pig) was cooked in a glass beaker in the

oven set at 180°C without culinary fat until the core tem-

perature reached 80°C (between 20 and 22 min). During

the oven cooking process, the core temperature was moni-

tored continuously with thermic probes (TC type T; Testo).

Pan-frying experiment: the meat (two samples) was

cooked in the pan without fat or with four different

culinary fats: butter, margarine, sesame, and peanut oils.

The amount of culinary fat used was around 5% of the

weight of the raw meat. Each condition was realized in

duplicate and pan frying took 20 min, during which the

meat was cooked 15 min on one side and 5 min on the

other side.

Raw pork storage experiment

Different conditions of storage were investigated for raw

ground meat samples: vacuum-packed, plastic-bag-

packed, and polypropylene tray with plastic wrap. Sam-

ples stored in plastic-bag and polypropylene tray with

plastic wrap were kept at +4°C and at �20°C, while sam-

ples stored under vacuum were kept at +4°C. All samples

were stored in the dark and analyzed in duplicate after a

determined number of weeks, depending on the package

type and temperature: 1 and 2 weeks for plastic bag and

plastic tray at +4°C; 2, 4, 6, 8 weeks for plastic bag and

plastic tray at �20°C and 3, 4, 6 weeks for under vacuum

at +4°C. A total of 33 samples of each type of meat were

used for the storage experiment.

Meat control samples

For each category of pigs (ColumbusTM or standard), a

total of seven meat samples were analyzed to be used as

control for both experiments: four samples coming from

the cooking experiment and three samples coming from

the storage experiment.

Statistical analysis

Statistical Analysis System (SAS Institute, Cary, NC) was

used for statistical analysis. Significant differences between

treatments were tested using the analysis of the variance

(two-way ANOVA) and generalized linear models (GLM)

procedure of the SAS software. Post hoc analyses were

used to compare conditions and levels of significant

effects were compared using least-square means and asso-

ciated standard error (significant for P < 0.05). The least-

square mean corresponds to the mean corrected for all

other effects in the model.

Results and Discussion

Choice of the extraction technique

To extract lipids from the samples, ASE was used, with

hexane at high pressure and at a temperature above its

boiling point. To our knowledge, no data were found

in the literature about the use of ASE using hexane as

extraction solvent. Indeed, most of the methods devel-

oped with this technique use either chloroform/metha-

nol (2:1, v/v) or isopropanol/hexane (2:3, v/v) to

extract lipids from biological matrices such as food

(Ruiz-Rodriguez et al. 2010). Nevertheless, many authors

propose to extract lipids from food using another tech-

nique called microwave Soxhlet extraction, with hexane

as extraction solvent (Priego-Capote et al. 2004, 2007;

Virot et al. 2007, 2008). The results obtained in this

study with ASE using hexane were in good agreement

with those obtained with microwave Soxhlet extraction

using hexane for major fatty acids identification in eggs

or pork.

Performances of the GC–MS analytical
method

The developed method to measure fatty acids fulfills the

criteria indicated in the Commission Decision 2002/657/

EC (European Parliament and Council Directive No

2002/657/EC 2002/657/EC 2002/657/EC, 2002) which pro-

vides guidelines to evaluate the performance of the

screening and confirmatory methods used for organic res-

idues and contaminants analysis: retention time and ions

ratios, selectivity, specificity, repeatability, reproducibility

(data not shown).

A good separation was achieved for the peaks of all

compounds except for the methyl esters of C24:0 and

C20:5n-3 (EPA). Nevertheless, C24:0 being a saturated

fatty acid and C20:5n-3 being a polyunsaturated fatty

acid, the problem was solved by quantifying them with

different m/z ratios such as 101 + 143 for C24:0 and

79 + 91 for C20:5n-3 (EPA). For calibration curves, the

linear regression provided a good curve fitting, that is,

with low residue values and correlation coefficients R²
associated with those curves higher than 0.98 for the

23 fatty acids, and demonstrated the linearity of the
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dose–response curve within the working range (data not

shown).

The limit of quantification (LOQ) was fixed as the con-

tent of fatty acids corresponding to the first point of the

calibration curve (after checking that the signal to noise

ratio was higher than 10 at that level), and corresponds

to about 0.1–0.5% of total fatty acids, depending on the

standard. The limit of detection (LOD) was set at LOQ/2,

after checking that the signal to noise ratio was higher

than 3 at that level.

A CRM was used to assess the performance of the

developed method. The CRM BCR-162R (soya-maize oil

blend) contains assigned percentage of 10.74% of palmitic

acid, 2.82% of stearic acid, 25.4% of oleic acid, 54.13% of

linoleic acid, and 3.35% of a-linolenic acid. The measured

values (n = 39) were, respectively, 105.9%, 104.1%,

107.9%, 99.9%, and 103.0% of the certified content (data

not shown).

Eggs

Characterization of raw eggs

The average water content and fat contents were, respec-

tively, 75.7 � 1.5% and 8.8 � 1.1% for ColumbusTM eggs

and 76.6 � 0.9% and 7.5 � 0.6% for standard eggs

(n = 6), expressed on fresh weight basis. In both stan-

dard and ColumbusTM whole raw eggs, the three major

fatty acids are, in decreasing order, oleic acid (45.8 vs.

40.7%), palmitic acid (23.7 vs. 19.1%), and linoleic acid

(16.3 vs. 14.3%) (Table 1). As expected, ColumbusTM

eggs contained a much higher proportion of n-3 LNA

fatty acid (12.7%) than standard eggs (1.1%), and conse-

quently, more PUFA (30.2% in ColumbusTM eggs vs.

20.2% in standard eggs) and less SFA and MUFA

(26.3% and 43.5%, respectively, in ColumbusTM eggs vs.

31.1% and 20.2%, respectively, in standard eggs). Inter-

estingly, the DHA (C22:6, n-3) content (1.4% in Colum-

busTM eggs vs. 0.7% in standard eggs) is also increased in

eggs from hens fed with linseed oil containing diet, while

the ARA (C20:4, n-6) content is decreased (0.6% in

ColumbusTM eggs vs. of 1.4% in standard eggs). The n-6/

n-3 ratio was found equal to 7.5 for standard eggs and

to 1.0 for ColumbusTM eggs, which is a value that meets

nutritional recommendations of reducing this value

below 5 (AFSSA - Agence Franc�aise de S�ecurit�e Sanitaire

des Aliments 2003).

The proportion of 12.7% of a-linolenic (LNA) acid in

the ColumbusTM eggs appeared to be higher than the

values (between 3.4% and 10.7%) reported in the litera-

ture for eggs from hens fed with diet containing linseed

products (Meynier et al. 2014; Galobart et al., 2001;

Baucells et al. 2000; Halle and Sch€one 2013; Ferrier et al.

1995; Ren et al. 2013; Botsoglou et al. 2012a,b,c). The

same authors reported for the same eggs a DHA content

varying from 1.5% to 2.3% versus 1.4% in Columbus

eggs, while a proportion of 3.2% or 5.8% of DHA can be

reached when hens are fed with fish oil containing feed

(reported in, respectively, Baucells et al. 2000 and Botsog-

lou et al. 2012a). Another author reported 4.5% of LNA

and 2.1% of DHA in commercial omega-3 eggs in Austra-

lia (Samman et al. 2009).

ColumbusTM eggs can be considered as “high omega-

3 fatty acids” products, according to the Regulation

(EC) no. 1924/2006 (European Parliament and Council

Directive No 1924/200620062006, 2006), as they contain

Table 1. Fatty acid composition (g/100 g) of standard and n-3

enriched (ColumbusTM) raw eggs.

Fatty acid content

ColumbusTM egg

(n = 6)

Standard egg

(n = 6)

10:0 ND ND

12:0 ND ND

13:0 ND ND

14:0 0.5 � 0.1 0.5 � 0.1

16:0 19.1 � 0.4 24.2 � 1.3

17:0 ND ND

18:0 6.9 � 0.2 6.6 � 0.5

20:0 ND ND

22:0 ND ND

24:0 ND ND

16:1 (n-7) 2.7 � 0.3 2.9 � 0.7

17:1 (n-7) ND ND

18:1 (n-9) 40.7 � 1.8 43.9 � 4.1

18:2 (n-6) (LA) 14.2 � 0.8 17.9 � 4.7

20:2 (n-6) ND ND

18:3 (n-3) (LNA) 12.7 � 2.0 1.2 � 0.4

18:3 (n-6) ND ND

20:3 (n-3) ND ND

18:4 (n-3) ND ND

20:4 (n-6) (ARA) 0.6 � 0.1 1.4 � 0.1

20:5 (n-3) (EPA) 0.6 � 0.1 0.3 � 0.04

22:5 (n-3) (DPA) 0.6 � 0.1 0.3 � 0.1

22:6 (n-3) (DHA) 1.4 � 0.1 0.8 � 0.2

Σ SFA 26.5 � 0.7 31.3 � 1.4

Σ MUFA 43.4 � 1.7 46.8 � 4.5

Σ PUFA 30.1 � 2.0 21.9 � 5.3

n-6 fatty acids 14.8 � 0.8 19.3 � 4.8

n-3 fatty acids 15.3 � 2.0 2.6 � 0.6

n-6/n-3 1.0 � 0.2 7.5 � 0.8

Mean � standard deviation (SD) of six eggs from four different

batches: three eggs coming from the storage experiment (one single

batch) and three eggs coming from the cooking experiment (three

different batches). Significant differences comparing ColumbusTM and

standard eggs are indicated in bold (P < 0.05). SFA, saturated fatty

acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated

fatty acids; ND, not detected.
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more than 0.6 g LNA per 100 g (based on 7.5% fat

containing 12% LNA, they contain about 0.9 g of LNA

per 100 g).

Egg cooking experiment

Evolution of the core temperature during egg cooking

The evolution of the core temperatures during each cook-

ing experiment was monitored with Testo probes. Tem-

perature values are expressed as mean � standard

deviation of three independent cooking experiments. In

the different cooking procedures where the temperature

was monitored, the maximum core temperatures recorded

at the end of the cooking time in the standard

eggs were 118.3 � 4.3°C, 102.6 � 15.6°C, 49.3 � 2.0°C,
71.9 � 5.2°C, and 80.5 � 7.0°C for Savoy cake, custard,

and hard-boiled eggs cooked 4, 10, and 15 min, respec-

tively. In ColumbusTM eggs, the maximum core tempera-

tures recorded were 97.4 � 4.3°C, 88.7 � 2.1°C,
37.4 � 4.5°C, 65.5 � 5.8°C, and 77.4 � 4.9°C for Savoy

cake, custard, and hard-boiled eggs cooked 4, 10, and

15 min, respectively. Surprisingly, the core temperatures

recorded for ColumbusTM eggs were significantly lower

than for standard eggs in the Savoy cake during the last

10 min of cooking.

Fatty acid profile of eggs before and after cooking

Table 2 shows the results obtained for the sum of SFA,

MUFA, PUFA, n-3, and n-6 fatty acids, and the LNA

(C18:3 n-3), DHA (C22:6 n-3), and ARA (C20:4 n-6)

proportion, in raw and cooked eggs. The n-6/n-3 ratio

has been calculated as well.

Results are expressed in percent of total identified fatty

acids, as least-square means and standard errors of six eggs

from four different batches for raw and hard-boiled eggs

and three eggs from three different batches for each other

cooking condition. The statistical analysis applied to the

data corrected the heterogeneity observed between batches.

The fatty acids composition of the standard eggs was not

significantly influenced by any cooking procedure. Indeed,

the SFA, MUFA, and PUFA, as well as the n-3 and n-6 fatty

acids contents showed no significant difference between

raw and cooked eggs. The LNA, DHA, and ARA contents

were neither influenced (Table 2). Murcia et al. (1999)

studied the effect of cooking on the fatty acid profile of

standard eggs (containing 36.5% of C18:1, 29.2% of C16:0,

and 26.2% of C18:2). Concerning the PUFA, they reported

a decrease of C18:2 (LA), C18:3 (LNA), and C20:4 (ARA)

in scrambled standard eggs (omelette) and microwaved

eggs compared to raw eggs. For boiled standard eggs, they

observed an increase of LA and ARA after boiling 3 min

Table 2. Effect of cooking on the fatty acid composition (g/100 g) of standard and ColumbusTM eggs.

Egg type Condition

Σ SFA Σ MUFA Σ PUFA n-3 n-6

C18:3(n-3)

LNA

C22:6

(n-3)

DHA

C20:4

(n-6)

ARA n-6/n-3

LSM SE LSM SE LSM SE LSM SE LSM SE LSM SE LSM SE LSM SE LSM SE

Standard Raw 31.3 0.8 46.8 2.2 21.9 2.9 2.6 0.3 19.3 2.6 1.2 0.2 0.8 0.1 1.4 0.1 7.5 0.8

HB 4 min 31.1 0.8 47.4 2.2 21.5 2.9 2.4 0.3 19.1 2.6 1.2 0.2 0.7 0.1 1.3 0.1 8.2 0.8

HB 10 min 32.6 0.8 44.5 2.2 22.8 2.9 2.6 0.3 20.3 2.6 1.2 0.2 0.8 0.1 1.6 0.1 7.9 0.8

HB 15 min 31.8 0.8 44.9 2.2 23.4 2.9 2.6 0.3 20.8 2.6 1.2 0.2 0.8 0.1 1.5 0.1 8.2 0.8

“Au plat” 31.7 0.9 46.8 2.5 21.5 3.3 2.4 0.4 19.1 3.0 1.1 0.2 0.7 0.1 1.5 0.1 8.2 0.9

Scrambled 32.2 0.9 45.4 2.5 22.3 3.3 2.4 0.4 19.9 3.0 1.2 0.2 0.8 0.1 1.5 0.1 8.3 0.9

Custard 32.6 1.1 46.0 3.1 21.4 4.1 2.9 0.5 18.5 3.7 1.3 0.2 0.6 0.2 1.1 0.1 6.3 1.1

Savoy cake 32.1 0.9 45.3 2.5 22.6 3.3 2.5 0.4 20.1 3.0 1.3 0.2 0.7 0.1 1.3 0.1 8.2 0.9

ColumbusTM Raw 26.5 1.0 43.4 1.2 30.1 1.8 15.3 1.5 14.8 0.5 12.7 1.6 1.4 0.1 0.6 0.1 1.0 0.1

HB 4 min 25.5 1.0 42.2 1.2 32.4 1.8 16.9 1.5 15.5 0.5 14.3 1.6 1.5 0.1 0.7 0.1 0.9 0.1

HB 10 min 27.2 1.0 43.3 1.2 29.5 1.8 14.8 1.5 14.7 0.5 12.4 1.6 1.3 0.1 0.6 0.1 1.0 0.1

HB 15 min 28.2 1.0 43.1 1.2 28.7 1.8 13.7 1.5 15.0 0.5 11.2 1.6 1.4 0.1 0.7 0.1 1.1 0.1

“Au plat” 27.0 1.1 41.4 1.4 31.7 2.0 16.2 1.7 15.5 0.5 13.6 1.9 1.4 0.1 0.6 0.1 1.0 0.1

Scrambled 28.0 1.1 42.2 1.4 29.8 2.0 14.6 1.7 15.3 0.5 12.0 1.9 1.5 0.1 0.6 0.1 1.1 0.1

Custard 31.7* 1.1 42.6 1.4 25.8* 2.0 11.1* 1.7 14.6 0.5 8.8* 1.9 0.9* 0.1 0.5 0.1 1.4* 0.1

Savoy cake 28.9* 1.1 42.4 1.4 28.7 2.0 13.6 1.7 15.1 0.5 11.3 1.9 1.3 0.1 0.5 0.1 1.1 0.1

Least-square means (LSM) and Standard errors (SE) of six eggs from four different batches for raw and hard-boiled eggs, two eggs from two dif-

ferent batches for standard custard, and three eggs from three different batches for each other cooking condition. Significant differences compar-

ing to the raw SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; n-3, n-3 fatty acids; n-6, n-6

fatty acids; LNA, a-linolenic acid; DHA, docosahexaenoic acid; ARA, arachidonic acid; HB, hard-boiled eggs condition are indicated by asterisks (*)

and in bold (P < 0.05).
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and a decrease of LA and ARA after boiling 10 min, while

LNA was constant in both boiling conditions. No informa-

tion concerning the statistical significance of the observed

results was provided.

For ColumbusTM eggs, hard-boiling, scrambling, or “au

plat” cooking of had no significant effect on PUFA and

n-3 fatty acids contents, compared to raw eggs, while sig-

nificant effects of the cooking were observed in custard

and Savoy cake (Table 2). In custard, the percentage of

LNA and DHA in the total fatty acids decreased to 8.8%

and 0.9%, respectively (it was 12.7% and 1.4%, respec-

tively, in raw eggs), with a subsequent decrease of the

percentage of PUFA (25.8%) and an increase of the per-

centage of SFA (31.7%) (in raw eggs, PUFA and SFA were

30.1% and 26.5%, respectively). These changes resulted in

an increase of 40% of the n-6/n-3 ratio (1.4 instead of 1.0

in raw eggs). In Savoy cake, the only significant differ-

ence, compared to raw eggs, was recorded for the SFA

content, but to a lesser extent than in custard (28.9% and

31.7% in Savoy cake and custard, respectively, vs. 26.5%

in raw eggs). This increase of SFA in Savoy cake probably

comes from the slight, apparently not significant, decrease

of n-3 content (15.3% in raw eggs vs. 13.6% in Savoy

cake). The decrease in PUFA observed in Savoy cake and

custard prepared with ColumbusTM eggs can be

explained by the temperatures reached in the core of the

egg preparation (97.4 � 4.3°C and 88.7 � 2.1°C, respec-
tively), which are the highest temperatures recorded

among the different cooking experiments (see Evolution

of the core temperature during egg cooking). The fact

that such a decrease is not observed in standard eggs can

be explained by the 10 times higher content of Colum-

busTM eggs in LNA, a polyunsaturated fatty acid display-

ing three double bonds, thus much more sensitive to

oxidation that the two double bonds LA contributing the

most to the PUFA content of standard eggs.

Other studies reported that boiling or scrambling

omega-3 enriched eggs, slightly decreased the C18:3 (LNA)

and C22:6 (DHA) content (LNA: 7.41% and 7.28% in

boiled and scrambled eggs, respectively, vs. 7.84% in raw

eggs; DHA: 1.10% and 1.02% in boiled and scrambled eggs,

respectively, vs. 1.62% in raw eggs) (Botsoglou et al.

2012c), while Cortinas et al. (2003) showed a significant

decrease for DHA (and not LNA) in eggs coming from hens

fed with fish oil containing feed, after scrambling only (and

not boiling). Van Elswyk et al. (1992) reported that cook-

ing (boiling or scrambling) did not alter the fatty acid com-

position of omega-3 enriched eggs.

Egg storage experiment

Eggs were stored raw, hard-boiled 10 and 15 min,

at +4°C and +20°C, during 6 weeks. As no significant

difference of the LNA, ARA, and DHA content was

observed between the +4°C and +20°C storage condi-

tions, the results from the two different storage tempera-

tures were pooled leading to four repetitions for storage

conditions from 1 to 6 weeks. The LNA, ARA, and DHA

content in ColumbusTM and standard eggs after storage

from 0 to 6 weeks are shown in Figure 1. After 6 weeks

storage, the LNA, ARA, and DHA content measured in

Columbus eggs as well as standards eggs showed no sig-

nificant tendency for a decrease in cooked (hard-boiled)

or raw eggs.

Our results are corroborated by Meluzzi et al. (2000)

who reported that n-3 rich eggs stored for 28 days at

room temperature showed a fatty acids composition simi-

lar to that observed in fresh eggs or by Yang et al. (2004)

who reported that conjugated linoleic acid (CLA) was sta-

ble in eggs during storage for a period of 6 months at 0–
4°C. Similarly, Ahn et al. (1999) did not observe the

effect of storage on the fatty acid composition when fresh

eggs were stored for 49 days at 4°C. Marshall et al.

(1994) noticed that storage stability of shell eggs from

hens fed 1.5% dietary menhaden oil, a commercial fish

oil containing approximately 30% of n-3 fatty acids, is

comparable to that from hens fed a no-added fat diet.

On the contrary, a reduction in total n-3 fatty acids of

eggs from hens fed with fish oil or olive leaves after

60 days of storage at +4°C was reported (Cherian et al.

2007a,b; Botsoglou et al. 2012c).

As suggested in different studies, the global stability of

n-3 fatty acids observed in our experiments of storage

and cooking could be explained by the protective effect of

a- tocopherol. Indeed, a-tocopherol is naturally present

in raw eggs (Murcia et al. 1999) and is also brought by

specific hens feed. According to the inventors of the

Columbus feed, the a-tocopherol content is around

100 mg kg�1 egg in ColumbusTM eggs and around

10 mg kg�1 egg in standard eggs (Remacle et al. 2001).

Pork

Characterization of raw meat from standard and
Columbus TM pork

The average water content and fat contents were, respec-

tively, 65.8 � 0.6% and 15.7 � 0.8% for ColumbusTM

pork and 67.2 � 2.7% and 13.9 � 3.6% for standard

pork (n = 7), expressed on fresh weight basis. The fatty

acid profile of standard and ColumbusTM raw meat used

as reference in the cooking experiment are shown in

Table 3. The major difference in the fatty acids composi-

tion was coming from the content in n-3 fatty acids,

which was of nearly 12% of the total fatty acids in

ColumbusTM pork, while they were not detectable in stan-

ª 2014 The Authors. Food Science & Nutrition published by Wiley Periodicals, Inc. 7

C. Douny et al. Storage and Cooking of Belgian Eggs and Meat



dard meat. These omega-3 fatty acids were a-linolenic
acid (10.4 � 0.2% LNA of the total fatty acids) and

11,14,17-eicosatrienoic acid (C20:3 n-3) (1.2 � 0.1% of

the total fatty acids), and the n-6/n-3 ratio was close to 1.

Longer chain PUFA were not detected neither in Colum-

busTM meat, neither in standard pork. The nutrition claim

“high omega-3 fatty acids” can be used for the Colum-

busTM pork because it contains more than 6 g omega-3

fatty acids per kg of meat, which is the lower limit for

this claim indicated in the Regulation EC no. 1924/2006

(European Parliament and Council Directive No 1924/

200620062006, 2006). The PUFA content found in

omega-3 pork marketed in Belgium is consistent to what

was described in the literature in controlled experiments

were pigs were fed with 5% linseed oil containing feed,

resulting in LNA content between 8.5% and 9.1% of total

fatty acid in pork muscle, with a n-6/n-3 ratio close to 1

(Nurnberg et al. 1999). Other authors reported for the

same kind of experiment a LNA content of 7.3% of

total fatty acids in pork and a n-6/n-3 ratio of about 2

(Botsoglou et al. 2012d).Some fatty acids were specified

as not detected in pork samples used for this study. How-

ever, some of these fatty acids were detected and quanti-

fied in egg samples used in this manuscript or other meat

Figure 1. LNA, ARA, and DHA fatty acids content in ColumbusTM and standard (std) eggs after storage from 0 to 6 weeks. Eggs were stored

raw, hard-boiled 10 min (HB10) and hard-boiled 15 min (HB15). Least Square Means (LSM) � standard error (SE) of 6 eggs from 4 different

batches (day 0) or 4 eggs from one single batch (week 1 to 6) for each storage condition.
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or food samples used in other studies, in quantities as

low as 0.1%. What is more, other studies working with

pork did not mention long chain PUFA when presenting

the fatty acid profile of “standard” meat (Ram�ırez et al.

2004, 2005; Paiva-Martins et al. 2009; Cardenia et al.

2011).

Pork cooking experiment

Evolution of the core temperature in pork during cook-

ing

The maximum core temperatures recorded at the end of

the cooking time (in oven) in the standard and Colum-

busTM pork were 79.8 � 1.0°C and 80.1 � 0.7°C, respec-
tively, (n = 4) (data not shown).

Fatty acids composition of pork before and after
cooking

Pork cooking without culinary fat

Standard pork cooked in the oven and in the pan without

the use of fat showed no significant change in the content

of total SFA, MUFA, or PUFA, compared to raw meat

(Table 4). For ColumbusTM pork, pan frying without fat

leaded to a significant decrease in the C20:2(n-6) content

but did not significantly affect the n-3 fatty acids (LNA

and C20:3) or the sum of PUFA (Table 4). Oven cooking

(without fat) of the ColumbusTM meat showed a larger

impact on the fatty acid content of meat, with a signifi-

cant decrease of LA, LNA, and C20:3(n-3) proportion

(14.2% vs. 15.0%, 9.9% vs. 10.4%, and 1.1% vs. 1.2%, in

cooked and raw ColumbusTM meat, respectively), and a

subsequent significant increase of SFA proportion (33.0%

vs. 31.6% in cooked and raw ColumbusTM meat, respec-

tively) (Table 4). This could be due to the high tempera-

ture reached in the core of the meat during oven

cooking, affecting the PUFA content of ColumbusTM meat

which is more than two times higher than in standard

meat. The same effect was observed for eggs cooked in

the oven (Custard and Savoy cake).

Pork cooking with culinary fat

As expected, meat cooking including the use of culinary

fat induced a larger change in the fatty acid profile of

both standard and ColumbusTM pork than cooking with-

out the use of fat. Table 4 mentions the global fatty acid

composition of the culinary fats used in the cooking

experiment, according to the Belgian NUBEL food com-

position table (Nubel 2009). In standard pork cooked

with culinary fat, the significant changes in the fatty acid

profile are according to the culinary fat used, with an

increase of SFA when meat is cooked with butter or mar-

garine and a decrease of PUFA only for meat cooked with

butter. When meat is cooked with peanut or sesame oil, a

decrease of SFA was observed and an increase of MUFA

only for meat cooked with peanut oil (Table 4).

In ColumbusTM meat, the same observations are valid

for SFA and MUFA: increase of SFA and decrease of

MUFA when the meat is cooked with butter or margarine

and decrease of SFA and increase of MUFA when the meat

is cooked with peanut or sesame oil. The PUFA decreased

in any case of ColumbusTM pork cooked with culinary fat,

except for sesame oil (Table 4). While looking at the

detailed fatty acid profile of cooked ColumbusTM pork, it is

observed that pan frying with butter, compared to raw

meat, resulted in an increase of saturated myristic (C14:0),

stearic (C16:0), and palmitic acids (C18:0) from 1.3% to

3.1%, 20.0% to 22.6% for C16:0, and 10.3% to 11.4% for

Table 3. Fatty acid composition (g/100 g) of standard and n-3

enriched (ColumbusTM) raw pork.

Fatty acid content

ColumbusTM pork Standard pork

10:0 ND ND

12:0 ND ND

13:0 ND ND

14:0 1.3 � 0.03 1.5 � 0.1

16:0 20.0 � 0.5 25.4 � 0.3

17:0 ND ND

18:0 10.3 � 0.2 13.5 � 0.2

20:0 ND ND

22:0 ND ND

24:0 ND ND

16:1 (n-7) 2.2 � 0.1 2.4 � 0.1

17:1 (n-7) ND ND

18:1 (n-9) 38.7 � 0.2 46.9 � 0.5

18:2 (n-6) (LA) 15.0 � 0.5 9.7 � 0.3

20:2 (n-6) 1.0 � 0.04 0.7 � 0.1

18:3 (n-3) (LNA) 10.4 � 0.2 ND

18:3 (n-6) ND ND

20:3 (n-3) 1.2 � 0.1 ND

18:4 (n-3) ND ND

20:4 (n-6) (ARA) ND ND

20:5 (n-3) (EPA) ND ND

22:5 (n-3) (DPA) ND ND

22:6 (n-3) (DHA) ND ND

Σ SFA 31.5 � 0.7 40.3 � 0.4

Σ MUFA 40.9 � 0.1 49.2 � 0.4

Σ PUFA 27.6 � 0.7 10.4 � 0.3

n-6 fatty acids 16.0 � 0.4 10.4 � 0.3

n-3 fatty acids 11.6 � 0.2 –

n-6/n-3 1.4 � 0.02 –

Mean � standard deviation (SD) of seven different meat samples from

two different batches. Significant differences comparing ColumbusTM

and standard pork are indicated in bold (P < 0.05). SFA, saturated

fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsatu-

rated fatty acids; ND, not detected.
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C18:0, respectively (data not shown). A decrease of the

percentage of linoleic acid (C18:2n-6) from 15.0% to

13.2% and a-linolenic acid (C18:3n-3) from 10.4% to

8.9% was also observed (Table 4). Those variations are

due to the fact that butter contains high amounts of SFA

(more than 50% of total fatty acids) and very few polyun-

saturated acids (4.1% only of total fatty acids). When the

ColumbusTM meat is cooked with vegetable oil, the per-

centage of oleic acid (C18:1) increases in its fatty acid pro-

file (42.4% with peanut oil and 40.4% with sesame oil vs.

38.7% in raw meat), because of the contribution of oleic

acid coming from the oil (data not shown). In all cases of

pan-frying experiments with culinary fat, compared to the

raw meat, the LNA percentage showed a significant

decrease, from 10.4% of total fatty acids in raw meat to

9.1% (cooking with margarine), 8.9% (cooking with but-

ter), and 8.6 and 8.5% (cooking with sesame and peanut

oils, respectively) (Table 4). This decrease seems not to be

due to a loss of LNA, as its percentage remained

unchanged when pan frying was performed without fat,

but to a dilution effect by the fatty acids coming from the

culinary fat, containing very low amount of LNA com-

pared to the ColumbusTM meat.

When the meat was cooked with fat, it appeared

clearly, that the composition of the culinary fats had a

greater influence on its fatty acid profile than the cook-

ing process itself, in both meat types. This was corrobo-

rated by the observations of Haak et al. (2007) and

Ram�ırez et al. (2005) who reported that long chain

PUFA were not significantly lost by the frying process

and that the fatty acids composition of fried pork

tended to become similar to that of the culinary fat, as

a result of the exchange between culinary fat and meat.

The same conclusions were reported by Sioen et al.

(2006) for pan-fried fish and by Candela et al. (1998)

for deep-fried sardines.

Pork storage experiment

ColumbusTM and standard pork were stored raw for

6 weeks at +4°C or 10 weeks at �20°C. Results obtained

at day 0 were compared to results obtained at different

times of storage in order to estimate the fatty acid profile

evolution. No variation in fatty acids composition was

observed after storage for both type of meat. What is

more, in ColumbusTM meat, the PUFA content remained

stable during the whole storage experiment, whatever the

temperature of conservation (data not shown).

Conclusion

A GC–MS method has been developed for the analysis of

fatty acids in food matrices and was applied to determine

the omega-3 fatty acid profile of Belgian eggs and pork

rich in omega-3 fatty acids (ColumbusTM eggs or pork), in

order to determine to which extent the omega-3 fatty

acids resist to storage or cooking. We can conclude that

the omega-3 fatty acids remained unchanged in the

ready-to-eat product, except for some specific cooking

processes (eggs cooked in custard and meat cooked in

oven), where a slight statistically significant loss of PUFA

in both ColumbusTM eggs or pork was observed. As

expected, when ColumbusTM pork is cooked with culinary

fat, its fatty acid profile is modified according to the nat-

ure of the fat used.
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