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MCTS algorithm discovery

I Much research in AI games uses MCTS

I Problem known in advance: Customize MCTS in a
problem-driven way

I Why not automatize this task?
⇒ Monte Carlo search algorithm discovery, for finite-horizon
fully-observable deterministic sequential decision-making
problems
For example:

• Sudoku puzzles
• Pyramid card game
• ...
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Grammar & algorithm space

I Generate a rich space of MCTS algorithms thanks to search
components

• simulate
• repeat
• step
• ...

I Space cardinality grows combinatorially with length and # of
search comp.

I Multi-armed bandit approach to get a collection of
well-performing algorithms

4 / 21



Internship Defense David Taralla
University of Liège 1st Master in Engineering Sciences

Multi-armed bandit model
Bandit in this context

I Machine with multiple arms

I Pulling an arm has a budget cost and gives some reward

I Finite budget
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Multi-armed bandit model
Model description

Here,
I Arm = algorithm execution

I Reward = this algorithm execution reward
I We want the best arm to be the algorithm with the best mean

reward
i.e. the algorithm performing the best on average
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Multi-armed bandit model
Model flaws

I Discrete
One cannot pull half an arm!

I Big cardinality
Existing methods not really adapted to big cardinality with finite budget

I They used UCB policy with 100 × #AlgoSpace steps
Length up to 5→ #AlgoSpace = 3155: this method is not easily scalable
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Multi-armed bandit model
An alternative approach

Design an alternative to standard UCB arm space exploration

I This is the best arm identification problem

I Get info. about pulled arms so far, select next arm accordingly
⇒ Perform some kind of information transfer from a (set of) arm(s) to another
⇒ This internship was about this problem
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Basic idea

I Maximize the “distance” between the pulled arms and the
next pull
Get maximal information→ Reduce required samples amount!

I Many challenges in this “simple” idea
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Best arm identification algorithm

Create sampling plan

Add resulting data to memory

Get a regressor using RLS on data gathered so far

Get best arm a∗ using predictions

Are we confident
enough for a∗? Return a∗

Prune arm space

Get lower & upper
confidence bounds

No Yes
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From the idea to the theoretical implementation
Create sampling plan

I G-optimal experiment design
• Concerned with the variance of predictions
• Get allocation vector γ s.t. information is, in some way,

maximized
(Erratum — Report says we maximize J(γ). That is incorrect, we minimize J(γ)).

I Simple rounding procedure
• “Translate” γ into a sequence of arms to pull
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From the idea to the theoretical implementation
Get a regressor using RLS on data gathered so far

I Predictions?
• Regressor θ
• Features Φ
• ra = 〈φa, θ〉 =

〈
φa, θ̂
〉

+ η

I Features of an algorithm

• ???
• In fact, we just need features to compute r̂a =

〈
φa, θ̂
〉

• Features dual: kernels
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From the idea to the theoretical implementation
Get a regressor using RLS on data gathered so far

I Predictions?
• Regressor θ
• Features Φ
• ra = 〈φa, θ〉 =

〈
φa, θ̂
〉

+ η

I Features of an algorithm
• ???
• In fact, we just need features to compute r̂a =

〈
φa, θ̂
〉

• Features dual: kernels

n arms (...) ⇒ ∃α̂ ∈ Rn×1 :

〈
φa, θ̂

〉
=
〈
φa,

n∑
t=1

α̂tφa

〉
=

n∑
t=1

α̂t 〈φa, φat 〉︸ ︷︷ ︸
K(a,at )
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From the idea to the theoretical implementation
Get a regressor using RLS on data gathered so far

— Kernels —

The kernel “mimics” the inner product of two feature vectors
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From the idea to the theoretical implementation
Get a regressor using RLS on data gathered so far

— Regularization parameter λ —

I Auto tuning of λ given dataset
⇒ Minimize e(λ) =

1
n

n∑
i=1

(fD−i ,λ(ai )− ri )
2

I Naïve approach:
1. Get α̂ — O(n3) (1 matrix inversion)
2. Do it for n different datasets — O(n)
⇒ If M evaluations of e(λ), total complexity of O(Mn4)!

I Kernelized generalized cross-validation
⇒ If M evaluations of e(λ), achievable total complexity of O(n3 + Mn2)
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From the idea to the theoretical implementation
Get a regressor using RLS on data gathered so far

— Regularization parameter λ —

Example
Mean error when predicting the mean reward of an algorithm
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From the idea to the theoretical implementation
Get lower & upper confidence bounds

I Theorem developed by Abbasi-Yadkori et al. (2011)
I Extension to the kernel case by Abbasi-Yadkori (2012)
I Given some assumptions on the model, allows to compute the

(symmetrical) bounds
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From the idea to the theoretical implementation
Prune arm space

I Discard all arms whose upper bound is smaller than the lower
bound on a∗

I Illustration [on the board]
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Conclusion
Wrap up: Sudoku 16× 16

Maybe a little wrap-up example?

Data
I Problem: 16 × 16 Sudoku, 13 prefilled grid
I About 3200 algorithms
I 2 rounds with sampling plans consisting of sequences of n1

and n2 algorithms
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Conclusion

Wrap up: Sudoku 16× 16

Create sampling plan

Add resulting data to memory

Get a regressor using RLS on data gathered so far

Get best arm a∗ using predictions

Are we confident
enough for a∗? Return a∗

Prune arm space

Get lower & upper
confidence bounds

No Yes
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Conclusion
This internship in a nutshell

I 1 month of preparation
• Implement MCTS algorithms generation & execution
• C++ was used
• 1 week to implement, more than 3 weeks to debug

I 2 months in RLAI lab
• Create a dataset thanks to Westgrid network
• Design, implement and check correctness of each parts of this new approach
• Sadly not enough time to do significant comparisons

I Half a month to complete and re-read report
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Conclusion

Thank you for your attention

Special thanks to my mentors for making this internship possible.
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