

EDMONTON ALBERTA CANADA

Internship Defense

David Taralla

University of Liège

Thursday 19 December 2013

Contents

Introduction

Context

Basic idea

From the idea to the theoretical implementation

Conclusion

MCTS algorithm discovery

- Much research in AI games uses MCTS
- Problem known in advance: Customize MCTS in a problem-driven way
- Why not automatize this task?

 \Rightarrow Monte Carlo search algorithm discovery, for finite-horizon fully-observable deterministic sequential decision-making problems

For example:

- Sudoku puzzles
- Pyramid card game

Grammar & algorithm space

- Generate a rich space of MCTS algorithms thanks to search components
 - simulate
 - repeat
 - step
- Space cardinality grows combinatorially with length and # of search comp.
- Multi-armed bandit approach to get a collection of well-performing algorithms

David Taralla 1st Master in Engineering Sciences

Multi-armed bandit model Bandit in this context

- Machine with multiple arms
- Pulling an arm has a budget cost and gives some reward
- Finite budget

Multi-armed bandit model Model description

Here,

- Arm = algorithm execution
- Reward = this algorithm execution reward
- We want the best arm to be the algorithm with the best mean reward

i.e. the algorithm performing the best on average

David Taralla 1st Master in Engineering Sciences

Multi-armed bandit model Model flaws

One cannot pull half an arm!

Big cardinality

Existing methods not really adapted to big cardinality with finite budget

\blacktriangleright They used UCB policy with 100 \times #AlgoSpace steps

Length up to 5 \rightarrow #AlgoSpace = 3155: this method is not easily scalable

Multi-armed bandit model An alternative approach

Design an alternative to standard UCB arm space exploration

- This is the best arm identification problem
- ▶ Get info. about pulled arms so far, select next arm accordingly

 \Rightarrow Perform some kind of information transfer from a (set of) arm(s) to another

 \Rightarrow This internship was about this problem

Basic idea

Maximize the "distance" between the pulled arms and the next pull

Get maximal information \rightarrow Reduce required samples amount!

Many challenges in this "simple" idea

Best arm identification algorithm

From the idea to the theoretical implementation

Create sampling plan

- G-optimal experiment design
 - Concerned with the variance of predictions
 - Get allocation vector γ s.t. information is, in some way, maximized

(Erratum — Report says we maximize $J(\gamma)$). That is incorrect, we minimize $J(\gamma)$).

- Simple rounding procedure
 - "Translate" γ into a sequence of arms to pull

From the idea to the theoretical implementation

Get a regressor using RLS on data gathered so far

Predictions?

- Regressor θ
- Features Φ

•
$$r_{a} = \langle \phi_{a}, \theta \rangle = \left\langle \phi_{a}, \hat{\theta} \right\rangle + \eta$$

From the idea to the theoretical implementation

Get a regressor using RLS on data gathered so far

- Predictions?
 - Regressor θ
 - Features Φ

•
$$r_{a} = \langle \phi_{a}, \theta \rangle = \left\langle \phi_{a}, \hat{\theta} \right\rangle + \eta$$

Features of an algorithm

From the idea to the theoretical implementation

Get a regressor using RLS on data gathered so far

Predictions?
 Regressor θ
 Features Φ

•
$$r_a = \langle \phi_a, \theta \rangle = \left\langle \phi_a, \hat{\theta} \right\rangle + \eta$$

Features of an algorithm

• ???

From the idea to the theoretical implementation

Get a regressor using RLS on data gathered so far

- Predictions?
 - Regressor θ
 - Features Φ

•
$$r_{a} = \langle \phi_{a}, \theta \rangle = \left\langle \phi_{a}, \hat{\theta} \right\rangle + \eta$$

- Features of an algorithm
 - ???
 - In fact, we just need features to compute $\hat{r}_{a} = \left\langle \phi_{a}, \hat{\theta} \right\rangle$

From the idea to the theoretical implementation

Get a regressor using RLS on data gathered so far

- Predictions?
 - Regressor θ
 - Features Φ

•
$$r_{a} = \langle \phi_{a}, \theta \rangle = \left\langle \phi_{a}, \hat{\theta} \right\rangle + \eta$$

- Features of an algorithm
 - ???
 - In fact, we just need features to compute $\hat{r}_{a}=\left\langle \phi_{a},\hat{ heta}
 ight
 angle$
 - Features dual: kernels

n arms (...)
$$\Rightarrow \exists \hat{\alpha} \in \mathbb{R}^{n \times 1}$$
:

$$\left\langle \phi_{a}, \hat{\theta} \right\rangle = \left\langle \phi_{a}, \sum_{t=1}^{n} \hat{\alpha}_{t} \phi_{a} \right\rangle = \sum_{t=1}^{n} \hat{\alpha}_{t} \underbrace{\left\langle \phi_{a}, \phi_{a_{t}} \right\rangle}_{\mathcal{K}(a, a_{t})}$$

Get a regressor using RLS on data gathered so far

— Kernels —

The kernel "mimics" the inner product of two feature vectors

Get a regressor using RLS on data gathered so far

— Kernels —

The kernel "mimics" the inner product of two feature vectors

Get a regressor using RLS on data gathered so far

— Kernels —

The kernel "mimics" the inner product of two feature vectors

Get a regressor using RLS on data gathered so far

— Regularization parameter λ —

• Auto tuning of λ given dataset

$$\Rightarrow \text{ Minimize } e(\lambda) = \frac{1}{n} \sum_{i=1}^{n} (f_{D_{-i},\lambda}(a_i) - r_i)^2$$

Naïve approach:

1. Get
$$\hat{\alpha} - O(n^3)$$
 (1 matrix inversion)

 \Rightarrow If *M* evaluations of $e(\lambda)$, total complexity of $O(Mn^4)!$

Kernelized generalized cross-validation

 \Rightarrow If *M* evaluations of $e(\lambda)$, achievable total complexity of $O(n^3 + Mn^2)$

David Taralla 1st Master in Engineering Sciences

From the idea to the theoretical implementation

Get a regressor using RLS on data gathered so far

— Regularization parameter λ —

Example

Mean error when predicting the mean reward of an algorithm

From the idea to the theoretical implementation

Get lower & upper confidence bounds

- Theorem developed by Abbasi-Yadkori et al. (2011)
- Extension to the kernel case by Abbasi-Yadkori (2012)
- Given some assumptions on the model, allows to compute the (symmetrical) bounds

Prune arm space

- Discard all arms whose upper bound is smaller than the lower bound on a*
- Illustration [on the board]

David Taralla 1st Master in Engineering Sciences

Conclusion

Wrap up: Sudoku 16×16

Maybe a little wrap-up example?

Data

- Problem: 16×16 Sudoku, $\frac{1}{3}$ prefilled grid
- About 3200 algorithms
- 2 rounds with sampling plans consisting of sequences of n₁ and n₂ algorithms

David Taralla 1st Master in Engineering Sciences

Conclusion

Wrap up: Sudoku 16×16

Conclusion

This internship in a nutshell

1 month of preparation

- Implement MCTS algorithms generation & execution
- C++ was used
- 1 week to implement, more than 3 weeks to debug

2 months in RLAI lab

- Create a dataset thanks to Westgrid network
- Design, implement and check correctness of each parts of this new approach
- Sadly not enough time to do significant comparisons
- Half a month to complete and re-read report

Conclusion

Thank you for your attention

Special thanks to my mentors for making this internship possible.