
Internship Report

Taralla David, Master in Computing Sciences

UoA mentor: Csaba Szepesvári

ULg mentor: Damien Ernst

University of Liège – Faculty of Applied Sciences

Academic year 2013 – 2014

Contents

1 Introduction 1
1.1 Algorithm Discovery . 1

1.1.1 The Grammar . 1
1.1.2 Finding the Best Algorithm From the Set 2

1.2 Internship Contribution . 2
1.3 Structure of This Document . 2

2 Problem Statement 4
2.1 Various Definitions . 4

2.1.1 Algorithms as Strings of Symbols . 4
2.1.2 General Definitions . 5

2.2 Description of our Data Set . 5
2.3 Basic Idea . 6

2.3.1 The Reward of an Arm as a Function of its Features 6
2.3.2 Approximating θ . 6
2.3.3 Proposed Algorithm . 6

3 Kernels Study 9
3.1 Why Using String Kernels . 10
3.2 Kernelized Regularized Least-Squares . 10

3.2.1 Determining the Regressor Thanks to Kernels 10
3.2.2 Normalizing the Data . 11
3.2.3 Regularizing the Data . 12
3.2.4 Confidence Bands for Kernelized Least-Squares 12

3.3 Tested String Kernel . 14
3.3.1 All-Subsequences . 14

4 G-optimal Design 16
4.1 Kernelizing Optimal Experimental Design . 17
4.2 Algorithms for Finding Optimal Designs . 17

4.2.1 Multiplicative Weights Update (MWU) 18
4.2.2 Vertex Direction Update (VDU) . 18
4.2.3 Nearest-Neighbor Exchange (NNE) . 19
4.2.4 Cocktail method . 19

4.3 Low Rank Approximation to the Kernel Matrix 20
4.4 Simple Rounding Procedure . 21

3

5 Efficiency Concerns 22
5.1 Generalized Cross-Validation . 22

5.1.1 Normalizing the Data With GCV . 24
5.1.2 Automatic Determination of Lambda Interval 24

6 Conclusion 26
6.1 Future Work . 26

Chapter 1

Introduction

This report is the result of my internship in the Computer Science department of the University
of Alberta, under the direction of Csaba Szepesvári.

We will first introduce the context in which this research took place, then present the contri-
butions this internship proposes to this context. Finally, the structure of this document will be
described.

1.1 Algorithm Discovery
The field of reinforcement learning recently received the contribution by Ernst et al. (2013) who
introduced a new way to conceive completely new algorithms. Moreover, it brought an automatic
method to find the best algorithm to use in a particular situation.

Practically, Ernst et al. (2013) created a grammar over MCS algorithms, which allowed them
to generate a rich space of candidate algorithms to solve particular problems1. They then used a
multi-armed bandit approach to search this algorithm set for finding the best algorithm to solve
a particular problem.

1.1.1 The Grammar
Their grammar contains five search components:

simulate Policy-driven simulation (usually, uniformly random policy).

repeat Repeats N times its sub-search component.

lookahead Calls its sub-search component on each possible action in the current state.

step For each remaining step, calls its sub-search component to find the best possible action to
take in this step.

select Stores statistics like an MCTS and uses them to bias sub-searches using a particular
policy2.

1They considered the class of finite-horizon fully-observable deterministic sequential decision-making problems.
2To simplify this research, we used the UCB-tuned policy instead of UCB1. It allowed us not to bother with

constants tuning.

1

Example step(repeat(100, simulate)) is a depth-3 algorithm (ie. it contains three
search components) that will, for each step i,

1. run 100 random simulations;

2. pick the best simulation S among the 100;

3. record the ith action of S.

When a final state is reached, it will return the recorded sequence of actions.

1.1.2 Finding the Best Algorithm From the Set
To each algorithm of the set, they associate an arm of the bandit. Pulling an arm Ak gives
a reward rk, which is the reward obtained by executing the algorithm associated to this arm
once. You will notice that the problem of finding the best algorithm is solved by completing the
exploration phase only; no exploitation is needed here.

While pulling the arms, they observe the sequence of rewards they get to select in a smart way
the next algorithm to try. When the resources allocated to the exploration phase are exhausted,
some high-quality algorithms can then be identified.

1.2 Internship Contribution
We want to address the problem of best arm identification in the particular case of Monte Carlo
search algorithm discovery for one player games (Ernst et al., 2013).

The main problem is that the generated algorithm space (ie. the arm space) can be quite
large as the depth of the generated algorithms increases, so we just can’t sample each algorithm
the right number of times to be confident enough on the final choice (ie., to be sure the regret is
minimized). We need therefore an optimized, scalable method for selecting the best algorithm
from bigger spaces.

The main idea is to see the reward of pulling an arm as a function of its features rather than
directly exploring the algorithm space to find the best arm. This way, we demonstrate we are
able to design a confident best arm identification algorithm, without suffering from the size of
the space.

1.3 Structure of This Document
We first go through the problem statement in Chapter 2. We will define there our approach and
the main ideas which drove this research. We also present there the data set we used for our
calculations.

You will then notice than we made an intensive use of kernels, allowing us to have all benefits
of a feature-driven approach without being penalized by inner products of feature vectors and
without having to define these features; the kernel we used and the work we did with it will be
presented in Chapter 3.

Thirdly, we present a highly efficient method to find how to extract information from the
features of an algorithm called Generalized Cross-Validation (GCV). This way, we get rid of the
necessity to run an algorithm on super calculators to know which mean reward it has on a given
class of problems.

2

Sadly, we didn’t have time to test if the proposed idea was truly better than the one from
Ernst et al. (2013). We thus finally conclude this work with no practical results, but with
summaries of what we were able to do and learn and what we would have further investigated if
we had more time.

3

Chapter 2

Problem Statement

We describe here the problem statement.
We introduce first some notations and definitions. Second, we present our data set and what

its properties are. We finally present our approach and an intuitive version of a first search
algorithm we conceived.

2.1 Various Definitions
2.1.1 Algorithms as Strings of Symbols
We can see an algorithm as a sequence of elements picked from an alphabet of symbols Σ. Indeed,
an algorithm is a chain of predefined symbols. The length of this chain is referenced as the depth
of the algorithm. Given this, here are some definitions that will be useful in the next sections of
this document:

String A string s = s1...s|s| is any finite sequence of symbols from an alphabet Σ, including
the empty sequence denoted ε, the only string of length 0. We denote by Σn the set of all
finite strings of length n, and by Sigma∗ the set of all strings. In our case, Σn denotes the
depth-n algorithm space, and Σ≤n the space of algorithms of depth up to n.

Concatenation Given two strings s, t, st is the string obtained by concatenating s and t.

Substring Given two strings s, t, t is a substring of s if there exist (possibly empty) strings u
and v such that s = utv.
If u = ε, we say that t is a prefix of s.
If v = ε, we say that t is a suffix of s.

Subsequence We say that a string u is a subsequence of a string s if there exist indexes i =
(i1, ..., i|u|), with 0 < i1 < · · · < i|u| ≤ |s|, such that uj = sij for j = 1, ..., |u|
Example: cat is a subsequence of chat, because we find each symbol of cat in the same
order in chat.
Notice that if u is a substring of s, it is also a subsequence of s.

4

In addition to these definitions, we defined the following alphabet:

Σ = { simulate, lookahead, step, select,

repeat2, repeat5, repeat10, repeat20,

repeat50, repeat100, repeat200, repeat500,

repeat1000, repeat2000, repeat5000, repeat10000 }

Notice that we distinguish two repeat if they have different arguments. Moreover, the pruning
rules of Ernst et al. (2013) still apply, that is:

• no repeat to begin a string;

• no directly nested repeats;1

• no directly nested selects;

• all strings end with simulate and simulate cannot be used elsewhere in a string.

2.1.2 General Definitions
Inner product Let x, y ∈ Rd×1 (d ∈ N0). The inner product 〈x, y〉 is defined as the result of

xTy.

Feature vector Let φ : A 7→ Rd×1 (d ∈ N0) be a feature map, where A is a finite set of inputs.
We denote by φ(a) (or φa for the sake of conciseness) the feature vector of input a ∈ A.

Kernel Let A = {a1, ..., a|A|} be an arm set. A kernel is a function such that

K : (A×A) 7→ R |K(a, a′) = 〈φa, φa′〉

2.2 Description of our Data Set
Our data set is composed of 1088 samples. A sample is a pair (a, r) where

• a is an algorithm composed of symbols from Σ and respecting the aforementioned rules;

• r is the mean reward a obtained when run on 10 000 different problems of the same class.

The problem class was the game known as Sudoku, with grids of size 16 × 16. A particular
problem from this class is a random 16 × 16 Sudoku grid with approximately 33% of the grid
prefilled. The search algorithm has to fill the most cells it can with a budget of 1000 calls to the
reward function. Once this budget is exhausted, the algorithm has to return the best reward it
earned while looking for the best solution.

The reward is defined as the number of non-empty cells (the prefilled ones are included) when
entering a final state (ie. when no more moves are possible). Therefore, a reward is always an
integer from the interval [0, 256].

1Notice that Ernst et al. (2013) call this rule as “canonization of repeats”. Here we already generated the
possible canonizations and assume we can’t combine these repeats again.

5

To ensure fairness between all algorithms, each of them was run on the same set of Sudoku
grids.

This data set was computed thanks to the free access we had to Compute Canada2, and more
particularly Westgrid3.

2.3 Basic Idea
As we said earlier, the main idea is to see the reward of pulling an arm as a function of its
features rather than sampling the algorithms many times to find the best arm. To this end, we
introduce a new way of thinking to the problem.

2.3.1 The Reward of an Arm as a Function of its Features
Using a feature-driven approach, we basically want to approximate the parameter vector θ that
is such that

r̄a = 〈φa, θ〉 (2.1)

where r̄a is the mean reward of arm a.
Once we have an approximation θ̂ of the parameter vector, we can find the arm which maxi-

mizes the estimated mean reward by using

a∗ = argmax
a∈A

〈φa, θ̂〉 (2.2)

where A is the set of available arms.
Notice that if θ̂ is a good approximation to θ, we expect the found arm to be close to optimal.

2.3.2 Approximating θ

As we mentioned it in Section 2.3.1, we have to approximate θ, the parameter vector. The core
method we will use for that is the Regularized Least-Squares (RLS) method, that is

θ̂ = argmin
θ∈Rd

1
n

n∑
t=1

(〈φat , θ〉 − rat)
2 + λ‖θ‖22 (2.3)

where n is the size of the data list, λ is the regularization parameter and rat
the reward for

pulling arm at:4
rat = 〈φat , θ〉+ ηat . (2.4)

Nevertheless, we want to maximize the confidence we have on the selected arm, so this method
alone won’t be sufficient enough. This brings us to the proposed algorithm.

2.3.3 Proposed Algorithm
We conceived a prototype of algorithm to get results faster than the multi-armed bandit approach.
This should be considered as a first cut at the problem.

Given that
2http://computecanada.ca/
3http://www.westgrid.ca/
4ηat is the zero-mean noise on the reward for pulling arm at.

6

• n1, ..., nk are the lengths of k rounds,

• K is a suitable kernel,

• λ is the regularization parameter,

we have the algorithm presented as Algorithm 2.1.
The idea is to refine our algorithm space k times (incremental algorithm). The refinement

is done in each round, by

1. creating a sampling plan that will tell which sequence of arms should be played during this
round, where these arms were chosen because of the way they represent "good" samples
(regarding the features) of the action space,

2. collecting the rewards of these pulls,

3. using RLS to find an approximation of θ,

4. computing the upper and lower confidence bounds on each ra,5

5. discarding all arms for which the upper bound is smaller than the lower bound of the best
action.

By repeating this refinement process multiple times, we are able to converge towards the best
action, and this in being confident in that choice. Indeed, as the rounds go on, the algorithm
space will be reduced (step 5) in such a way that each remaining algorithm is guaranteed to have
a reward that can be at least greater or equal to the worse reward the best arm so far can earn6.
That way at each round we become more and more confident in our identification of the best
arm.

Given Algorithm 2.1 and what has been said so far, the research we conduct has to find a
solution to the following problems:

1. Defining the sample plan function, ExpDesign.

2. Find a way to efficiently compute θ̂ using RLS and the kernel.

3. Defining the bound computation functions, RLS_LowConf & RLS_UpConf.

5As θ̂ is only an approximation, it puts "noise" on each ra it allows to compute. Therefore there exist lower
and upper confidence bounds on each ra, and we want to minimize their interval.

6By can, we mean that as the reward is included into [ra − confidenceBound, ra + confidenceBound], its true
value can be any value in that interval.

7

Algorithm 2.1: Best arm identification for huge action spaces
Input: n1, ..., nk,K, λ,A
Output: a∗, the best identified arm
/* Initialization */

1 Agood ← A;
2 D ← [];

/* Procedure */
3 for i = 1 to k do /* round i */
4 m← ni; /* length of round i */
5 (a1, ..., am)← ExpDesign(A,Agood,K,m, ...); /* sample plan */
6 for j = 1 to m do
7 Execute(aj), get raj ;
8 D.append((aj , raj

));
9 end

10 θ̂ ← RLS(D,λ,K);
11 a∗ ← argmax a∈Agood

〈φa, θ̂〉;
12 lower_conf ← RLS_LowConf(D,λ,K, a∗);
13 Anew ← [];
14 for a ∈ Agood do
15 if RLS_UpConf(D,λ,K, a) ≥ lower_conf then
16 Anew.append(a);
17 end
18 end
19 Agood ← Anew;
20 end
21 return a∗

8

Chapter 3

Kernels Study

What features should we use to describe an algorithm? How can we characterize how distant two
algorithms are from each other? This chapter answers these questions and also present which
particular kernel was tested.

This chapter uses also the following property: as θ̂ is in our case an estimator obtained by
minimizing penalized empirical error, where the penalty is a function of the two-norm of the
weight, there exist some α̂t ∈ R, t = 1, ..., n (with n being the size of the data list) such that

〈φa, θ̂〉 =
〈
φa,

n∑
t=1

α̂tφat

〉
=

n∑
t=1

α̂t 〈φa, φat〉︸ ︷︷ ︸
K(a, at)

. (3.1)

This property allow us to kernelize the regularized least-squares method (cf. Section 3.2).
Equivalently, instead of (2.4), we may assume that for t = 1, 2, . . . , n, the data is generated

from

rat
=
∑
a∈A

αaK(at, a) + ηat
, (3.2)

where α = (αa)a∈A is an unknown |A|-dimensional vector and ηat
is as in (2.4).

Note that (2.4) and (3.2) are equivalent assumptions: Given K, we can always find an
appropriate feature map φ so that if (3.2) holds then (2.4) holds and vice versa. Furthermore,
the unknown vectors θ and α are related through the simultaneous linear equations∑

a′∈A
αa′K(a, a′) = 〈φa, θ〉 , a ∈ A . (3.3)

Without loss of generality, identifying A with the first N = |A| integers, introducing the matrix
K ∈ RN×N whose (i, j)th element is K(i, j) and introducing the Φ ∈ RN×d matrix whose ith
row is φ>i , we can write (3.3) in the short form

Kα = Φθ.

Without loss of generality we may assume that Φ has rank d (otherwise the dimensionality of
the feature space could be reduced). Premultiplying with Φ> the above equation and noticing

9

that Φ>Φ is non-singular by the assumption we just made, we get

θ = (Φ>Φ)−1Φ>Kα.

Noticing that
K = ΦΦ>,

we get
θ = (Φ>Φ)−1Φ>ΦΦ>α = Φ>α .

Hence,
‖θ‖22 =

∥∥Φ>α
∥∥2

2 = α>ΦΦ>α = α>Kα .

In what follows, for Q positive definite, we will use ‖x‖2Q to denote x>Qx. Hence, the above
equation can be written as

‖θ‖22 = ‖α‖2K . (3.4)

3.1 Why Using String Kernels
In order to characterize how distant two algorithms are from each other, we decided to rely on
string kernels (Shawe-Taylor and Cristianini, 2004).

We decided to base our features on pattern matching analysis. Indeed, it has already been
shown by Ernst et al. (2013) that some patterns of algorithms (like for instance the UCT pattern:
step(repeat(·, select(sim)))) are often repeated in the top ten of the selected algorithms,
according to the particular problem they try to solve. It is therefore a natural first choice.

A particular kernel of this type will be discussed in Section 3.3.

3.2 Kernelized Regularized Least-Squares
3.2.1 Determining the Regressor Thanks to Kernels
By injecting results of (3.1) into RLS equation (2.3), the problem is now reduced to solve for the
αi coefficients. This can be done by equalizing to zero the derivative with respect to α̂:

0 = ∂

∂α̂

 1
n

n∑
t=1

(〈
φat

,

n∑
i=1

α̂iφai

〉
− rat

)2

+ λ

〈
n∑
i=1

α̂iφai
,

n∑
i=1

α̂iφai

〉
= ∂

∂α̂

 1
n

n∑
t=1

(
n∑
i=1

α̂i〈φat
, φai

〉 − rat

)2

+ λ

n∑
i=1

n∑
j=1

α̂iα̂j
〈
φai

, φaj

〉
= ∂

∂α̂

 1
n

n∑
t=1

(
n∑
i=1

α̂iK(at, ai)− rat

)2

+ λ

n∑
i=1

n∑
j=1

α̂iα̂jK(ai, aj)

 .
(3.5)

Eq. (3.5) allows us to determine the α̂i minimizing the error (as we would find the θ minimizing
the error if using "standard" RLS).

Nevertheless, this mathematical form doesn’t suit well for numerical solving. Therefore, we
used the following reasoning to deal with this problem.

10

Given
K ∈ Rn×n : Kij = K(ai, aj) (3.6)

we can rewrite (3.5):

0 = ∂

∂α̂

[
1
n

∥∥KT α̂−R
∥∥2

2 + λα̂TKα̂

]
(3.7)

where

α̂ =

α̂1
...

α̂n

 , R =

ra1

...

ran

 .

Therefore, applying the ∂
∂α̂ operator,

0 = 2
nK

T
(
KT α̂−R

)
+ 2λKα̂

= 1
nK (Kα̂−R) + λKα̂

(λ′:=λn)= K (Kα̂−R) + λ′Kα̂

(3.8)

because by construction of the matrix K, as K(ai, aj) = K(aj , ai), we have KT = K. The
matrix K is called the Grammian underlying the points (a1, . . . , an) (note that K 6= K). Let’s
also notice that K is positive semi-definite and λ′In is positive definite as λ′ > 0.

Therefore, the sum K + λ′In is guaranteed to be non-singular and we can finally efficiently
compute α̂ thanks to the following system of linear equations:

0 = (Kα̂−R) + λ′α̂

= Kα̂−R+ λ′α̂

= (K + λ′In) α̂−R

⇔ α̂ = (K + λ′In)−1
R

(3.9)

Prediction Notation

Note that given the α̂i coefficients, a prediction at a new input a can be written as

fD,λ(a) =
n∑
i=1

α̂iK(ai, a), (3.10)

where D = ((a1, r1), . . . , (an, rn)) is used above to emphasize that the prediction depends on the
data D (the dependence comes through both α̂i and ai, i = 1, . . . , n). We have also denoted the
dependence on λ.

3.2.2 Normalizing the Data
Note that the larger the value of λ is, the closer is K + λI to λI and thus the closer the
inverse of K + λI is to λ−1I. Thus, for λ large, we expect (K + λI)−1 ≈ λ−1I and hence
α̂ = (K + λI)−1R ≈ λ−1R. Thus, |α̂| → 0 as λ → ∞ and as a consequence we also have

11

fD,λ(a) → 0 as λ → ∞. However, this is not ideal: While it is expected that “regularization”
compresses the range of predictions (after all, this is how you “reject” the noise), the predictions
should converge to a meaningful value, say the mean of the rewards, r = 1

n

∑n
i=1 rai

, and not
zero.

This can simply be achieved by computing α̂′ = (K + λI)R′, where R′i = Ri − r and then
change (3.10) to

fD,λ(a) = r +
n∑
i=1

α̂′iK(ai, a). (3.11)

3.2.3 Regularizing the Data
It remains to specify how to select the value of λ. One idea is the following: Fix the data
D = ((a1, r1), . . . , (an, rn)) and let D−i be obtained from D by removing the ith element from it:

D−i = ((a1, r1), . . . , (ai−1, ri−1), (ai+1, ri+1), . . . , (an, rn)),

i ∈ {1, . . . , n}.

Let

e(λ) = 1
n

n∑
i=1

(fD−i,λ(ai)− ri)2.

The value e(λ) measures how well the predictors trained with a particular value of λ are able to
generalize to the left out data-points. Putting computational issues aside, the idea is to identify
λ∗ = argmin λ>0 e(λ) and then use this value to make predictions (i.e., “future” predictions are
made using fD,λ∗).

Note that the calculation of λ∗ is a one-dimensional optimization problem.
In practice, a simple bracketing search is used because there is no need to calculate λ∗ up to

a high accuracy.
It remains then to consider the computation of e(λ) for a fixed value of λ.

The trivial procedure to calculate e(λ) is to calculate the coefficients α̂−i based on the value
of λ and D−i using (3.9) and then use (3.10) to produce fD−i,λ(ai). Assuming that matrix
inversion takes O(n3) time, the total cost of calculating e(λ) for a given value of λ is O(n4). This
is prohibitively large for even moderate values of n.

Fortunately, it is possible to implement this calculation in O(n3) time with almost the same
cost as just computing the coefficients α̂ for D. Even better, we will show that if M evalua-
tion of e(λ) is required by some procedure to find an approximation to λ∗, then O(n3 + Mn2)
computation will suffice (as opposed to O(Mn3)).

This optimized approach is presented in Section 5.1 of Chapter 5.

3.2.4 Confidence Bands for Kernelized Least-Squares
It remains to determine the confidence bands around the predictions. Abbasi-Yadkori et al.
(2011) proved the following useful theorem1.

1Notice that we present its extension to the “kernel-case”, proposed in Abbasi-Yadkori (2012).

12

Theorem 1. Assume that the data D = ((a1, r1), . . . , (an, rn)) is generated from the kernelized
linear model (3.2) and the noise in this model is such that for some L ∈ R and R > 0, for
all 1 ≤ t ≤ n, rt ∈ [L,L + R] holds w.p.1. Assume further that the unknown α ∈ R|A| is
such that ‖α‖K ≤ S, where K is the full kernel matrix that was introduced in Chapter 3. Let
fD,λ be the predictor obtained using the regularized least-squares procedure with kernel K on data
D when the regularization coefficient is fixed at λ > 0. For a ∈ A, define ka ∈ Rn by ka =
(K(a, a1), . . . ,K(a, an))> and let K be the n× n kernel matrix underlying D: Kij = K(ai, aj).
Then, for any 0 ≤ δ ≤ 1, with probability at least 1− δ, simultaneously for all a ∈ A it holds that

|fD,λ(a)− ra| ≤ ca

R
√

2 log
det
(
I + 1

λK
) 1

2

δ
+ λ

1
2S

 , (3.12)

where

ca =
√
K(a, a)− k>a (K + λI)−1ka

λ
.

Note that

B
.= 2 log det (I +K/λ)

1
2

δ
= 2 log

(
det (I +K/λ)

1
2
)

+ 2 log
(

1
δ

)
= log(det I +K/λ) + 2 log

(
1
δ

)
.

Based on the matrix determinant lemma, it may be possible to calculate the determinant re-
cursively.2 However, since the other parts of the algorithm need the eigendecomposition of K
anyways, there is no need for this. Indeed, if K = QΛQ>, with Λ = diag(λ1, . . . , λn) then
det (I +K/λ) =

∏n
i=1(1 + λi/λ) and thus log det (I +K/λ) =

∑n
i=1 log

(
1 + λi

λ

)
. Plugging this

into B, we get

B = 2 log
(

1
δ

)
+

n∑
i=1

log
(

1 + λi
λ

)
.

Note that calculating ca requires n kernel evaluations to calculate the vector ka. Again, if the
eigendecompositionK = QΛQ> is already available, k>a (λI+K)−1ka = k>a (Q(λI+Λ)Q>)−1ka =
k>a Q(λI + Λ)−1Q>ka can be calculated efficiently. First, precompute Q>ka (at a cost of n2

floating point operations) and keep a copy Qka
of it, then scale the ith component of this vector

by (λ+ λi)−1 and then take the inner product of the scaled vector and Q>ka
at the total cost of

2n+ n2 = O(n2) floating point operations.
A simple way of speeding up the algorithm when the cardinality of A is huge is to randomly

choose a subset Ã of some smaller cardinality and then run the algorithm as if Ã was the full
space. In this case, the experimental design procedure will only consider the random subset.
The cardinality of Ã can be chosen so that the computations are feasible.

Note that the above theorem is valid for a fixed choice of the regularization parameter. In
our procedure, λ is chosen based on the data. To account for this, the formula would need to be
changed. However, this is left for future work.

2We tried this approach, and it seems that the memory requirement is O(n3) and the update is O(n2), so this
may not worth the effort.

13

Figure 3.1: Mean error when predicting the mean reward of an algorithm

0

2

4

6

8

10

12

14

16

18

20

22

24

1.00E-06 1.00E-05 0.0001 0.001 0.01 0.1 1 10 100 1000 10000

M
ea

n
 e

rr
o

rs
 u

si
n

g
G

C
V

Lambda

3.3 Tested String Kernel
This section presents the string kernel we studied and experimented with. We briefly summarize
what it does before showing that it allows us to find an α̂ vector which makes the computed
reward fit as much as possible the one we expect by simply running the algorithm.

3.3.1 All-Subsequences
This kernel consider a feature mapping defined by all contiguous or non-contiguous subsequences
of a string. The main weakness of this kernel is that it doesn’t make any difference between
contiguous and non-contiguous subsequences when computing the inner product of two strings.

Experiment

We wanted to illustrate whether this kernel could help us to predict correctly the mean reward
given by any algorithm or not. To this end, we measured for several values of λ the mean squared
error committed on the left-out values using General Cross-Validation3 on our data set.

We choose to use GCV to have results reflecting how well a choice of λ performed on new
examples instead of training examples.

Figure 3.1 shows that there is a minimum for which the mean error is approximately 5.33.
This is quite good and encouraging regarding the simplicity and naiveness of the kernel we used.
This number means that the mean error committed when predicting the mean reward of an
algorithm is approximately only 5.33!

3This is the optimized method we used to determine λ. See Section 3.2.3 for introduction, and Section 5.1 of
Chapter 5 for more details on the method implementation.

14

Verification We ensured these results were correct by also implementing the naive method
from Section 3.2.3 and comparing the results. Then both of these versions were also implemented
in Matlab to prove their correctness. The four versions agreed so we can assume these results
are meaningful.

15

Chapter 4

G-optimal Design

Let φ : X → Rd be a feature map, where X is a finite set of inputs. Let N denote the cardinality
of X. To simplify notation we identify the elements of X with the integers and thus write
X = {1, . . . , N}. This can always be done without loss of generality as we will only need the
identity of the points of x and their corresponding feature values. Further, for brevity we will
denote by φi the value of φ(i).

In optimal experimental design the problem is to find out which points to sample so that if we
estimate some model parameters the accuracy is maximized in some sense. The design methods
differ in terms of what they assume about the model and the data and how the accuracy is
measured. Here, we will assume that upon sampling a point i, the response Y collected satisfies

Y = φ>i θ + ε,

where ε is a zero mean random variable and θ ∈ Rd is an unknown parameter vector. Further,
it is assumed that the variance of ε does not depend on i1 and that if we sample at a number of
sites, the corresponding noise random variables will be independent of each other.

In G-optimal designs the accuracy is measured by max1≤i≤N E
[
(φ>i θ̂ − Y)2

]
, where θ̂ is

the least-squares estimate based on the data.2 That is, the objective function is the maximum
expected squared error. As it turns out, an equivalent criterion is to maximize the log determinant
of the scaled “Fisher information matrix”,

M(γ) =
N∑
i=1

γiφiφ
>
i .

Defining the N × d matrix

Φ =

φ>1
...

φ>N

 ,

1If the variances can depend on the inputs i, we would need to measure them and adjust the method described
below to use the estimated variances. This is left for future work for now. In statistics, the assumption that the
variance is constant, is called the homoscedasticity assumption, while if the variance is allowed to depend on the
input, we talk about a heteroscedastic situation.

2That we used penalized least-squares is thus not taken into account. Future work may consider adjusting the
design so that this gap is removed, though I do not expect that the adjustment will result in significant differences.

16

and the diagonal matrix Γ = diag(. . . , γi, . . .), we can write

M(γ) = Φ>ΓΦ

and the optimization problem is defined to maximize J : ∆N → R, where

J(γ) = log detM(γ) . (4.1)

4.1 Kernelizing Optimal Experimental Design
Consider the setting of the previous section and define the kernel function K : X×X → R using
K(i, j) = 〈φi, φj〉. We can also view K(i, j) as an N × N matrix K such that Ki,j = K(i, j).
Using the notation of the previous section, we can then write

K = ΦΦT .

Note that if one is given the N × N kernel matrix K only, Φ can be recovered up to a
multiplication with a matrix of rank equal to the rank of Φ. For this take the eigendecomposition
of K:

K = QΛQ>

and define Φ′ = QΛ1/2, where Λ1/2 is obtained by taking the square root of the entries in Λ
(which is a diagonal matrix). Since the rank of Φ′ is the same as that of Φ (and K), clearly,
the linear system Φ = Φ′X has a solution X ∈ Rd×d with rank matching that of Φ (and K).
What is more, since if φ′i is the transpose of the ith row of Φ′, from K = Φ′(Φ′)> we see that
Ki,j =

〈
φ′i, φ

′
j

〉
.

In summary, given the N × N kernel matrix K, if Φ′ is defined as above, we can treat the
ith row of Φ′ as the feature vector underlying input i. In fact, without loss of generality we can
assume that Φ = Φ′. Then we can solve the optimization problem of the previous section to get
the optimal allocation vector γ∗.

In fact, the objective function J(γ) is invariant to non-singular transformation of the fea-
tures (as it should be). Indeed, if Φ′ = ΦA, the (scaled) Fisher information matrix under-
lying Φ′ is M ′(γ) = A>Φ>ΓΦA. Now, remembering the determinant multiplication theorem
which states that for square matrices U , V , det(UV) = det(U) det(V), we see that detM ′(γ) =
det(A>Φ>ΓΦA) = det(A>) det(A) det(M(γ)). Hence, detM ′(γ) = const× detM(γ), and hence
the optimal solutions defined by Φ′ are the same as that of defined using Φ.

4.2 Algorithms for Finding Optimal Designs
We follow the paper of Yu (2011). Remember that the goal is to find an approximate minimizer
of J(γ) defined using (4.1) over the simplex ∆N . Define

g(i, j, γ) = φ>i M
−1(γ)φj , g(i, γ) = g(i, i, γ). (4.2)

As it turns out g(i, γ) = ∂J(γ)
∂γi

and also g(i, γ)−d = ∂J((1−δ)γ+δei)
∂δ |δ→0+ (i.e., g(i, γ) is the partial

derivative and also the directional derivative of J , the objective function.)
The method that we consider is called the “Cocktail” method by Yu (2011). This is an

iterative method which keeps a current estimate γ of the optimizer argmin γ∈∆N
J(γ). The

name of the method comes from that it uses three different updates. The stopping criterion

17

proposed by Yu (2011) is to stop when 1
d maxi g(i, γ) ≤ 1 + ε is satisfied for the current iterate

for some small ε. The suggested initialization is to choose 2d points {X1, . . . , X2d} at random
from X and set γi = (2d)−1∑2d

k=1 I {Xk = i}, i = 1, . . . , N . When 2d ≥ N , we can start from
the uniform vector: γi = 1/N (this is the case if we use a kernel which gives a full-rank kernel
matrix; and this will normally be the case for us).

Before introducing the Cocktail method, we introduce the three update rules that it uses.
The algorithms input sometimes also includes the gradient-vector g .= (g(1, γ), . . . , g(N, γ))> in
addition to the last estimate γ. We will discuss later how to calculate g incrementally, exploiting
that the updates touch only a few of the components of γ.

4.2.1 Multiplicative Weights Update (MWU)
Yu (2011) calls this the multiplicative algorithm, but this update is known as the multiplicative
weights (MW) update in the machine learning literature. The update is shown in Algorithm
Listing 4.1.

Algorithm 4.1: Multiplicate Weights Update (γ′ = MWU(γ, g))
Input: γ (allocation vector), g (gradient vector)
Output: updated allocation vector
/* Procedure */

1 for i = 1 to N do
2 if γi > 0 then
3 γi ← 1

dγigi
4 end
5 end
6 return γ

Note that after the update,
∑
i γi = 1 is still maintained (apart from numerical errors) as

one can show that (before the update) d =
∑N
i=1 γigi.

4.2.2 Vertex Direction Update (VDU)
This corresponds to what is known as the “conditional gradient method” in the optimization
literature (experimental optimal design people have reinvented it, hence the name difference).
The update is shown in Algorithm Listing 4.2.

Algorithm 4.2: Vertex Direction Update (γ′ = V DU(γ, g))
Input: γ (allocation vector), g (gradient vector)
Output: updated allocation vector
/* Procedure */

1 i∗ ← argmax 1≤i≤N gi;
2 g∗ ← gi∗ ;
3 δ ← g∗/d−1

g∗−1 ;
4 γ ← (1− δ) γ;
5 γi∗ ← γi∗ + δ;
6 return γ

18

4.2.3 Nearest-Neighbor Exchange (NNE)
The Nearest-Neighbor Exchange (NNE) is based on the Vertex-Exchange Update (VEU), which
we define first. VEU takes two indices, 1 ≤ j, k ≤ N in addition to the usual parameters and
transfers weight from component j to component k to greedily optimize J(·). It also takes the
gradient vector components at j and k, but it also takes gjk = g(j, k, γ). The update is shown
in Algorithm Listing 4.3.

Algorithm 4.3: Vertex-Exchange Update (γ′ = V EU(j, k, γ, gj , gk, gjk))
Input: 1 ≤ j, k ≤ N , γ (allocation vector), gj , gk, gjk
Output: updated allocation vector
/* Procedure */

1 δ∗ ← gk−gj

2{gjgk−gjk} ;
2 δ ← min(γj ,max(−γk, δ∗));
3 γj ← γj − δ;
4 γk ← γk + δ;
5 return γ

For each index i, NEE computes the index whose feature vector is closest to the feature vector
of index i. It then calls the Vertex-Exchange Update to transfer weights between these indices.
The update is shown in Algorithm Listing 4.4.

Algorithm 4.4: Nearest-neighbor Exchange (γ′ = NNE(γ))
Input: γ (allocation vector)
Output: updated allocation vector
/* Procedure */

1 x← (0, . . . , 0)>;
2 for i = 1 to N do
3 if γi > 0 then
4 xi ← argmin

k:γk>0,k 6=i
‖φk − φi‖;

5 end
6 end
7 for i = 1 to N do
8 if γi > 0 then
9 γ ← V EU(i, xi, γ, g(i, γ), g(xi, γ), g(i, xi, γ)); /* 2 values are changed */

10 end
11 end
12 return γ

4.2.4 Cocktail method
The update for the Cocktail method. This simply amounts to calling VDU, then NNE and then
MWU. Algorithm listing 4.5 shows the update for completeness.

19

Algorithm 4.5: Cocktail Method Update (γ′ = CU(γ))
Input: γ (allocation vector), g
Output: updated allocation vector
/* Procedure */

1 γ ← V DU(γ, g(·, γ));
2 γ ← NNE(γ);
3 γ ←MWU(γ, g(·, γ));
4 return γ

Implementation Notes

Note that to calculate g(i, γ), or g(i, j, γ) we need the inverse matrix M−1(γ). If only one, or a
few components of γ are updated, then the inverse can be updated, too, at the cost of O(N2)
using the Sherman-Morrison formula:

(A+ uv>)−1 = A−1 − A−1uv>A−1

1 + v>A−1u
,

which holds whenever 1 + v>A−1u 6= 0 (here, A is an arbitrary, nonsingular d × d matrix and
u, v are d-dimensional vectors). Note that to calculate the matrix A−1uv>A−1, one should first
calculate A−1u, then A−T v and then take their outer product.

To see why this formula applies, it suffices to consider the case when only one component
of γ is changed (if k components are changed, we can update the Sherman-Morrison formula
k times, each time changing only one component of γ). Assume that γ′ differs from γ in one
component, let this be i. Thus, γ′j = γj except when j = i. Then,M(γ′) = M(γ)+(γ′i−γi)φiφ>i .
Hence, defining A = M(γ), u = (γ′i − γi)φ and v = φ, we get an O(N2) update. What happens
when 1 + (γ′i − γi)φ>i M−1(γ)φi = 0? In this case, we could use the Woodbury matrix identity
updating multiple components simultaneously. Note that each algorithm is such that after the
update, M(γ) is full rank if it was full rank before the update. Hence, using the Woodbury
matrix identity (which reduces the inversion of the N ×N matrix to that of a k × k matrix if k
components are changed) is guaranteed to succeed. In the worst case, one can resort to doing
the full calculation of the inverse.

4.3 Low Rank Approximation to the Kernel Matrix
When using kernels with finite space, we can expect the kernel matrixK to be full rank (otherwise
there would exist functions which cannot be represented using the space generated by the kernel).
If the kernel matrix K is full rank, all the designs will include all the points, no matter how
large N will be. This does not mean that some points will not receive more weights in the
optimal allocation than others, but the whole computation may become too expensive. (The
above updates have the nice property that they can be sped up considerably when the allocation
vectors are sparse. Further, MWU keeps the current sparsity pattern, VDU introduces at most
one new nonzero component and NNE changes only two components and is expected to zero out
components time to time (the purpose of including NNE is exactly this).

Now, when K is full rank, a reasonable approach is to cut its eigenvalues when defining
Φ. This can be done as follows: Let K = QΛQ> be the eigendecomposition of K with Λ =
diag(. . . , λi, . . .). Define Λ̃ = diag(. . . , λ̃i, . . .) as follows: Assume that λi is sorted in decreasing

20

order (we can always achieve this by permuting the columns of Q). If one is given a computation
budget that dictates the use of Φ with a certain rank r (the rank of Φ is going to control the
computational cost of optimizing J(·)), then one can simply let λ̃i = λiI {i ≤ r}. Once Λ̃ is
given, set Φ = QΛ̃1/2.

Another method is as follows: Choose α ∈ (0, 1), a variable that controls how much of the
“variation” is kept. Then let si =

∑i
k=1 λk and set λ̃i = λiI {si ≤ αsN}. In practice, one can

start with a low value of α and then if given more computation time, gradually increase it.

4.4 Simple Rounding Procedure
Once we have the optimal allocation vector γ∗, we need a rounding procedure to get the sequence
of inputs that should be chosen. One possible rounding procedure is presented in Algorithm
Listing 4.6.

Algorithm 4.6: Rounding Procedure.
Input: γ∗ (optimal allocation vector), n (desired length of output sequence),

A = {1, ..., |A|} (alphabet)
Output: (a1, ..., an) ∈ An (sequence of inputs chosen for the experiment)
/* Procedure */

1 ∀a ∈ A, e(a)← (0, · · · , 0,
a
1, 0, · · · , 0)>;

2 γ ← (0, . . . , 0)> ∈ R|A|;
3 for i = 1 to n do
4 ai ← argmax a∈A

{
(γ∗ − γ)>(e(a)− γ)

}
;

5 γ ← γ + e(ai)−γ
i

6 end
7 return (a1, ..., an)

21

Chapter 5

Efficiency Concerns

This chapter present optimized ways to deal with problems encountered conducting this research.

5.1 Generalized Cross-Validation
This approach has a long history and goes back to Wahba (1979). Our treatment follows that of
Rifkin and Lippert (2007). Remember that we have to determine the regularization parameter
λ: it has to be small enough to prevent underfitting, but big enough to prevent overfitting.
We introduced a trivial method to solve this problem in Section 3.2.3 that has a computational
complexity of O(n4) per tested λ, which is highly unscalable to big spaces of algorithms. The
idea of the more efficient method is as follows.

First observe that if we define r̂i = fD−i,λ(ai) and

D′i = ((a1, r1), . . . , (ai−1, ri−1), (ai, r̂i), (ai+1, ri+1), . . . , (an, rn))

then fD′
i
,λ(a) = fD−i,λ(a) holds for all inputs a. Roughly speaking introducing (ai, r̂i) does not

“pisses off” fD−i,λ. Once we realize the above identity, the next observation is that the Grammian
matrix underlying D′i is the same as the Grammian matrix underlying D. This observation gives
us a O(n3) procedure to calculate e(λ) for a fixed value of λ.

For this, define Kλ = K + λI (Ki,j = K(ai, aj) as before). Next, observe that if we de-
fine R̂D,λ = (. . . , fD,λ(ai), . . .)> to be the vector of predicted values when training on D with
regularizer λ, then R̂D,λ = KK−1

λ R. Hence, defining R′i = (r1, . . . , ri−1, r̂i, ri+1, . . . , rn)>,

R̂D−i,λ − R̂D,λ = R̂D′
i
,λ − R̂D,λ = KK−1

λ (R′i −Ri).

Since R′i − Ri = (r̂i − ri)ei, i.e., it has zeroes everywhere except at the ith component where it
evaluates to (r̂i − ri) (ei is the ith unit vector of the standard Euclidean basis) and for the ith
component of the difference vector on the right-hand side we have

e>i (R̂D−i,λ − R̂D,λ) = r̂i − fD,λ(ai),

it follows that
r̂i − fD,λ(ai) = (r̂i − ri)e>i KK−1

λ ei.

22

Solving for r̂i we get

r̂i =
fD,λ(ai)− rie>i KK−1

λ ei

1− e>i KK
−1
λ ei

=
e>i KK

−1
λ R− rie>i KK

−1
λ ei

1− e>i KK
−1
λ ei

.

To calculate e(λ), we need to calculate 1
n

∑
i(ri − r̂i)2. We have

ri − r̂i = ri −
e>i KK

−1
λ R− rie>i KK

−1
λ ei

1− e>i KK
−1
λ ei

=
ri(1− e>i KK−1

λ ei)−
{
e>i KK

−1
λ R− rie>i KK

−1
λ ei

}
1− e>i KK

−1
λ ei

=
ri − e>i KK

−1
λ R

1− e>i KK
−1
λ ei

.

We calculate the numerators for all indices using R − KK−1
λ R = (I − KK−1

λ)R. We can
also calculate the denominators for all indices as the diagonal elements of I − KK−1

λ (indeed,
e>i (I − KK−1

λ)ei = 1 − e>i KK−1
λ ei). Now, it is easy to verify that I − KK−1

λ = λK−1
λ (just

multiply from the left using Kλ), leading to

ri − r̂i =
e>i K

−1
λ R

e>i K
−1
λ ei

. (5.1)

Thus, by inverting Kλ we can calculate e(λ) using the above formula at an additional cost of
O(n2) operations: calculating K−1

λ R takes O(n2) time. Once this vector and K−1
λ are calculated,

ri − r̂i takes two lookups and one division, i.e., O(1) time.
The next improvement is to reduce the cost of evaluating K−1

λ at M different values to
O(n3 +Mn2) from the trivial O(Mn3). This can be done by considering the eigendecomposition
of K. Assume that K = QDQ>, where D is a diagonal matrix with non-negative diagonal
elements and QQ> = I. Note that the eigendecomposition of K can be obtained in O(n3) time
(and the actual cost is roughly within a factor of 4 of inverting an n× n matrix). Now,

Kλ = K + λI = Q(D + λI)Q>

and hence
K−1
λ = Q(D + λI)−1Q>

thanks to Q−1 = Q>.
Consider now the calculation of ri− r̂i based on (5.1). Consider first the numerator: K−1

λ R =
Q(D + λI)−1Q>R. To evaluate this expression, we can precompute R̃ = Q>R in O(n2) time
(this expression does not need to be reevaluated for a new value of λ). Once done, (D+ λI)−1R̃
can be implemented in O(n) time (just multiply the ith element of R̃ by 1/(Dii + λ)) and the
resulting vector can be left-multiplied by Q at a cost of O(n2). Thus, evaluating K−1

λ R takes
O(n2) time, which gives the numerator for all indices i. To evaluate the denominator, using
Matlab notation (Qi: denotes the ith row vector of Q) write

(Q(D + λI)−1Q>)i,j = Q>i: (D + λI)−1Qj: =
n∑
k=1

Qi,kQj,k
Dkk + λ

,

which takes O(n) time. Hence, evaluating (Q(D + λI)−1Q>)i,i for all i = 1, . . . , n takes O(n2)

23

time. Thus, we see that evaluating (5.1) takes O(n2) time, once we have the eigendecomposition
of K.

5.1.1 Normalizing the Data With GCV
To normalize the data when we use GCV optimization, we apply a slightly different trick than
the one presented in Section 3.2.2 for the naive version. The trick was reduced to just modify
the vector of rewards R such that

R′ = R− 1
n

n∑
i=1

Ri

Indeed, we do not need to add the average back anymore, as

ri − r̂i = (ri − avg)− (r̂i − avg) = r′i − r̂′i
Moreover, the average value towards which GCV version of e(λ) will converge when λ→∞

is the real mean of all the rewards from D, instead of the mean of the n− 1 rewards from D−i,λ
for the naive version. Therefore, even for small training sets, normalized GCV is much more
reliable than normalized naive version, as for small training sets it will at least converge to the
real average of the rewards if lambda is too big, leading to a smaller error on the predictions.

5.1.2 Automatic Determination of Lambda Interval
Again to get rid of constants, we implemented a way to determine dynamically the interval where
to search for the best lambda. Once we have the eigendecomposition of K, and in particular
when we have the diagonal matrix D, we define the interval as[

0.1 min
Di>0

Di ; 10 maxDi

]
.

We tested this automatic interval discovery against a predefined interval to compare whether
or not the automatic way would leave the best lambda out of the interval.

Figure 5.1 shows the results for a training set composed of 720 samples, while Figure 5.2
shows the results for a training set of 1088 samples. We clearly see that for both situation, the
automatic discovery always enclosed the minimum, leading to the same best lambda.

24

Figure 5.1: Mean error on the reward for different intervals (|Dataset| = 720)

0

2

4

6

8

10

12

14

16

18

20

22

M
ea

n
 e

rr
o

rs
 u

si
n

g
G

C
V

Lambda

Best lambda = 0.000394377

(a) Automatic interval

0

2

4

6

8

10

12

14

16

18

20

22

1.00E-06 1.00E-05 0.0001 0.001 0.01 0.1 1 10 100 1000

M
ea

n
 e

rr
o

rs
 u

si
n

g
G

C
V

Lambda

best lambda = 0.000394377

(b) Predefined interval

Figure 5.2: Mean error on the reward for different intervals (|Dataset| = 1088)

0

2

4

6

8

10

12

14

16

18

20

22

24

M
e

an
 e

rr
o

rs
 u

si
n

g
G

C
V

Lambda

Best lambda = 0.000573117

(a) Automatic interval

0

2

4

6

8

10

12

14

16

18

20

22

24

1.00E-06 1.00E-05 0.0001 0.001 0.01 0.1 1 10 100 1000

M
e

an
 e

rr
o

rs
 u

si
n

g
G

C
V

Lambda

best lambda = 0.000573117

(b) Predefined interval

25

Chapter 6

Conclusion

The goal of this internship was to find a faster and more reliable way to discover the best
algorithm to use from a huge space of candidate algorithms.

We succeeded in describing this new method and developing the tools allowing to implement
it. A study has been conducted for each part of the proposed algorithm, to find the best ways
to deal with the challenges we faced during its elaboration.

Sadly, the internship was not long enough to conduct tests in order to gather meaningful
results. The reason for that is mainly the undetermined constants: you can see in (3.12) for
example the S constant that we cannot determine for now; magnitude of S could be in fact
determined empirically, but the impact of the choice of such an S is left as future work. Therefore
Algorithm 2.1 cannot be run in an optimal way, and thus we cannot compare it to some baseline
algorithms. We will present in Section 6.1 what kind of baseline should be used and on which
criterion(s) one should compare the performance of both algorithms in order to have meaningful
results.

Nevertheless, a quasi-complete implementation of the Proposed Algorithm (2.1) has been
developed. At the end of this internship, the algorithm has been implemented and can be run
with only a slight difference from what has been told in this document: as we ran into some
problems implementing Cocktail algorithm 4.5, and in particular when calling NNE algorithm
4.4, we ignored the call to NNE. This way, the algorithm that computes the confidence bands is
still able to run, even if it is a bit slower to converge than the real Cocktail algorithm.

6.1 Future Work
The first thing to do, obviously, is to conduct proper tests on the implemented prototype algo-
rithm, at least just to see if in optimal conditions (ie., with optimal constants) it beats a baseline.
One should first plot the regret on the best arm chosen by our algorithm as a function of the
number of samples the algorithm took so far, then plot the regret as a function of the amount
of samples for the baseline algorithm. An example of baseline algorithm in the particular case
of MCS algorithm discovery is described in Algorithm Listing 6.1.

Next, there is still a big work to do with kernels. We tried only one, but maybe with others
we could achieve better results: indeed, this method hugely depends on the kernel it uses, so a
kernel change can drastically increase (or decrease!) the results of this method. Unluckily we
did not have the time to implement more than one, as we have not conducted tests for the first
one yet.

26

Algorithm 6.1: Baseline algorithm.
Input: D = [(a1, ra1), ..., (a1088, ra1088)], our data set containing 1088 algorithms and their

true mean rewards
Output: a∗, the list of best arms found, and R, the list of best arms regrets.
/* Procedure */

1 a∗ ← [];
2 R← [];
3 data ← [];
4 bestTrueMean ← maxD.trueMean(a);
5 for i = 8; i ≤ 1024; i← 2i do
6 for j = data.size() to i− 1 do
7 a← randomly pick an algorithm from D;
8 r ← a.execute();
9 data.append((a, r));

10 end
11 Train a regressor Reg with data;
12 a∗.append(findBestArm(Reg, data));
13 R.append(bestTrueMean − D.trueMean(a∗));
14 end
15 return a∗, R

Nevertheless, we presented encouraging results in Section 3.3.1. A future work on this sub-
ject should really explore more the possible kernels and deeply study their characteristics and
properties regarding this problem.

27

Bibliography

Abbasi-Yadkori, Y. (2012). Online learning for linearly parametrized control problems.

Abbasi-Yadkori, Y., Szepesvári, C., and Pál, D. (2011). Improved algorithms for linear stochastic
bandits. In Advances in Neural Information Processing Systems, pages 2312–2320.

Ernst, D., Lupien St-Pierre, D., and Maes, F. (2013). Monte carlo search algorithm discovery
for one player games. IEEE Transactions on Computational Intelligence and AI in Games.

Rifkin, R. M. and Lippert, R. A. (2007). Computer science and artificial intelligence laboratory
technical report.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Methods for Pattern Analysis. Cambridge
University Press.

Wahba, G. (1979). How to smooth curves and surfaces with splines and cross-validation.

Yu, Y. (2011). D-optimal designs via a cocktail algorithm. Statistics and Computing, 21(4):475–
481.

28

