INVARIANT GAMES AND NON-HOMOGENEOUS BEATTY SEQUENCES

Michel Rigo, joint work with J. Cassaigne (CNRS, IML Marseille) and E. Duchêne (Lyon 1)

> http://www.discmath.ulg.ac.be/ http://arxiv.org/abs/1312.2233

> > 8th January 2015

Wythoff's game defined by a set of moves (or rules)

- 2 players play alternatively,
- first player unable to move loses (normal condition),
- 2 piles of tokens:
 - remove a positive number of tokens from one pile,
 - remove the same positive number of tokens from both piles.

 $\mathcal{M}_{W} := \{(i,0) \mid i > 0\} \cup \{(0,j) \mid j > 0\} \cup \{(k,k) \mid k > 0\}.$

DEFINITION

A game is *invariant* if the same moves can be played from every position (the only restriction is that enough tokens are available).

Invariant take-away games are Golomb's vector subtraction games (1966).

VARIANT RULESETS (EXAMPLE)

- Remove an even number of tokens from one pile whenever the total number of tokens is even;
- remove an odd number of tokens from one pile, otherwise.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Other examples of games usually defined with a variant ruleset

- Rat and mouse game, Fraenkel
- Raleigh game, Fraenkel'07
- Tribonacci game, Duchêne-R.'08
- Pisot cubic games, Duchêne-R.'08
- Flora game, Fraenkel'10

• . . .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●

COMBINATORIAL GAMES

The first few *P*-positions (up to symmetry)

 $(0,0), (1,2), (3,5), (4,7), (6,10), (8,13), \ldots$

DEFINITION OF P-POSITIONS

A P-position is a position q from which the *previous* player (moving to q) can eventually force a win.

Well-known characterizations of the *P*-positions of Wythoff's game (recursive, morphic, syntactical properties of Fibonacci expansions, ...)

THEOREM

The P-positions of the Wythoff's game are exactly the pairs

 $(\lfloor n\tau \rfloor, \lfloor n\tau^2 \rfloor), \quad n \ge 0$

where τ is the golden ratio $(1 + \sqrt{5})/2$.

Remarks

- To a game, i.e., a set of rules, corresponds a set of P-positions.
- ► Several games may have the same set of *P*-positions.
- Hence, a given set of P-positions can be associated with invariant as well as variant games.
- One can define the notion of invariant subset of \mathbb{N}^p .

N.B. HO, TWO VARIANTS OF WYTHOFF'S GAME ...

Adjoining a move removing k tokens from the smaller pile (or any pile if the two piles have the same size) and ℓ tokens from the other pile where $\ell < k$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

RAYLEIGH OR BEATTY'S THEOREM

Let $\alpha, \beta > 1$ be irrational numbers such that $\alpha^{-1} + \beta^{-1} = 1$. The sequences $(\lfloor n\alpha \rfloor)_{n>0}$ and $(\lfloor n\beta \rfloor)_{n>0}$ partition $\mathbb{N}_{>0}$.

Two such sequences are *complementary* (homogeneous) Beatty sequences.

EXAMPLE

For the golden ratio, $\tau^2 = \tau + 1$ thus $1 = \tau^{-1} + (\tau^2)^{-1}$. Hence, the set of *P*-positions of Wythoff's game is derived from a pair of complementary homogeneous Beatty sequences. A000201 and A001950 in OEIS.

QUESTION

Given a pair $(\lfloor n\alpha \rfloor)_{n>0}$ and $(\lfloor n\beta \rfloor)_{n>0}$ of homogeneous Beatty sequences, does there exist an invariant game having

 $\{(0,0)\} \cup \{(\lfloor n\alpha \rfloor, \lfloor n\beta \rfloor), (\lfloor n\beta \rfloor, \lfloor n\alpha \rfloor) \mid n > 0\}$

as set of *P*-positions?

- τ has c.f.-expansion $(1;\overline{1})$, Wythoff
- if α has c.f.-expansion $(1; \overline{k})$, see Fraenkel'82.
- if α has c.f.-expansion $(1; \overline{1, k})$, see Duchêne-R'10.

We conjectured that the above question always has a positive answer.

BEATTY SEQUENCES

A sequence $(B_n)_{n\geq 0}$ is B_1 -superadditive if, for all m, n > 0,

$$B_m + B_n \le B_{m+n} < B_m + B_n + B_1.$$

THEOREM (LARSSON, HEGARTY, FRAENKEL'11)

Let $(A_n, B_n)_{n\geq 0}$ be a pair of complementary sequences with $A_0 = B_0 = 0$. (Not necessarily Beatty sequences.) If the sequence $(B_n)_{n\geq 0}$ is B_1 -superadditive, then

$$\{(A_n, B_n), (B_n, A_n) \mid n \ge 0\}$$

is the set of *P*-positions of an invariant game.

 \star Every pair of homogeneous Beatty sequences satisfy the above condition, thus our conjecture holds (Larsson et al.).

QUESTION 1

What about non-homogeneous Beatty sequences that realize the set of *P*-positions of an invariant game?

$$A_n = \lfloor n\alpha + \gamma \rfloor, \quad B_n = \lfloor n\beta + \delta \rfloor$$

where $\gamma, \delta \in \mathbb{R}$. We set $A_0 = B_0 = 0$.

We want that $\{A_n \mid n \ge 1\}$ and $\{B_n \mid n \ge 1\}$ partition $\mathbb{N}_{>0}$, this means that we look for an extension of Nim, i.e.,

 $\mathcal{M} = \{ (i,0) \mid i \ge 1 \} \cup \{ (0,i) \mid i \ge 1 \} \cup \cdots$

Question 2 (Larsson et al.)

The superadditivity is a sufficient condition to get a set of *P*-positions of an invariant game. Is it also a necessary condition?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへで

QUESTION 1

What about non-homogeneous Beatty sequences that realize the set of *P*-positions of an invariant game?

$$A_n = \lfloor n\alpha + \gamma \rfloor, \quad B_n = \lfloor n\beta + \delta \rfloor$$

where $\gamma, \delta \in \mathbb{R}$. We set $A_0 = B_0 = 0$.

We want that $\{A_n \mid n \ge 1\}$ and $\{B_n \mid n \ge 1\}$ partition $\mathbb{N}_{>0}$, this means that we look for an extension of Nim, i.e.,

 $\mathcal{M} = \{ (i,0) \mid i \ge 1 \} \cup \{ (0,i) \mid i \ge 1 \} \cup \cdots$

QUESTION 2 (LARSSON ET AL.)

The superadditivity is a sufficient condition to get a set of *P*-positions of an invariant game. Is it also a necessary condition?

ヘロト ヘロト ヘヨト ヘヨト

3

THEOREM (FRAENKEL'69)

Let $\alpha, \beta > 1$ be irrational numbers such that (1) $\alpha^{-1} + \beta^{-1} = 1$. Then $\{\lfloor n\alpha + \gamma \rfloor \mid n \ge 1\}$ and $\{\lfloor n\beta + \delta \rfloor \mid n \ge 1\}$ partition $\mathbb{N}_{>0}$ if and only if (2) $\frac{\gamma}{\alpha} + \frac{\delta}{\beta} = 0$ and (3) $n\beta + \delta \notin \mathbb{Z}$, for all $n \ge 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We assume moreover that

(4) $A_1 = 1$ and $B_1 \ge 3$.

also see, K. O'Bryant (Integers 2003)

ROUGHLY STATED

We can characterize the 4-tuples $(\alpha,\beta,\gamma,\delta)$ such that the corresponding set

 $\{(0,0)\} \cup \{(\lfloor n\alpha + \gamma \rfloor, \lfloor n\beta + \delta \rfloor), (\lfloor n\alpha + \gamma \rfloor, \lfloor n\beta + \delta \rfloor) \mid n > 0\}$

is the set of *P*-positions of an invariant game.

The correct expression involves *combinatorial properties of some infinite word* derived from the two Beatty sequences (direct product of two mechanical words, except maybe for the first symbol).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

OUR MAIN RESULT

iterating $R_{\alpha,\beta}$: translation of $(\{\alpha\},\{\beta\})$ over \mathbb{T}^2 starting from $(\{\gamma\},\{\delta\})$, product of two Sturmian words

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	1
$A_{n+1} - A_n$	1	1	1	1	2	1	1	1	1	2	1	1	1	2	1	1	1	2	1
$B_{n+1} - B_n$	5	6	5	5	5	5	5	5	5	5	6	5	5	5	5	5	5	5	5
w _	a	b	a	a	С	a	a	a	a	С	b	a	a	с	a	a	a	с	0
	-											4	N 4 4	a 🔊 🖌	= .	1 1 1	-	1 00	\sim

OUR COMBINATORIAL CONDITION REDUCES TO

Take two intervals $I, J \neq \emptyset$ over [0,1) interpreted as intervals over the unit circle $\mathbb{T}^1 = \mathbb{R}/\mathbb{Z}$. For a given 4-tuple $(\alpha, \beta, \gamma, \delta)$ of real numbers, we ask, whether or not there exists some *i* such that $R^i_{\alpha\beta}(\gamma, \delta) \in I \times J$?

EXTENSION OF THE DENSITY THEOREM OF KRONECKER

The set $\{R^i_{\alpha,\beta}(\gamma,\delta) = (\{i\alpha + \gamma\}, \{i\beta + \delta\}) \in \mathbb{T}^2 \mid i \in \mathbb{N}\}$ is dense in \mathbb{T}^2 if and only if $\alpha, \beta, 1$ are rationally independent.

 $\alpha, \beta, 1$ are rationally independent (i.e., linearly independent over \mathbb{Q}), if whenever there exist integers p and q such that $p\alpha + q\beta$ is an integer, then p = q = 0.

So, if $\alpha, \beta, 1$ are rationally independent, then there exist infinitely many i such that $R^i_{\alpha,\beta}(\gamma,\delta) \in I \times J$.

Remark

If α and β are irrational numbers satisfying $\alpha^{-1} + \beta^{-1} = 1$ which are not both algebraic numbers of degree 2, then $\alpha, \beta, 1$ are rationally independent.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If $\alpha, \beta, 1$ are rationally dependent, since α and β are irrational numbers, there exist integers p, q, r with $p, q \neq 0$ such that $p\alpha + q\beta = r$.

We deduce that $q\beta^2 + (p - q - r)\beta + r = 0$, i.e., β is thus an algebraic number of degree 2. The same holds for α .

The set of points $\{R^n_{\alpha,\beta}(\gamma,\delta) \mid n \in \mathbb{N}\}$ is dense on a straight line in \mathbb{T}^2 with rational slope.

The initial question is reduced to determine whether or not a line intersect a rectangle.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

TEST

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQの

Thanks to our main result, we can produce examples as the following one.

Counter-example to Question 2

The 4-tuple given by

$$\beta = 1.99 + \frac{\sqrt{5}}{2}, \quad \alpha = \frac{\beta}{\beta - 1}, \quad \gamma = -0.2 \text{ and } \delta = -\frac{\beta\gamma}{\alpha}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

satisfies the characterization given by our main result, i.e., leads to a set of *P*-positions of an invariant game, but the sequence is not superadditive.