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Abstract 

Since the adoption of the ICH Q8 document concerning the development of pharmaceutical 

processes following a Quality by Design (QbD) approach, there have been many discussions on the 

opportunity for analytical procedure developments to follow a similar approach. While development 

and optimization of analytical procedure following QbD principles have been largely discussed and 

described, the place of analytical procedure validation in this framework has not been clarified. This 

article aims at showing that analytical procedure validation is fully integrated into the QbD paradigm 

and is an essential step in developing analytical procedure that are effectively fit for purpose. 

Adequate statistical methodologies have also their role to play: such as design of experiments, 

statistical modelling and probabilistic statements. The outcome of analytical procedure validation is 

also an analytical procedure Design Space and from it, control strategy can be set. 
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1 Introduction 

The concept of quality by design (QbD) has been adopted in the pharmaceutical industry through 

several initiatives such as the FDA’s cGMP for the 21st Century [1] and Process Analytical Technology 

(PAT) [2] as well as with the regulatory documents ICH Q8 [3], Q9 [4] and Q10 [5] and the FDA 

guidance on Process Validation [6]. The general aim is to switch from the quality by testing (QbT) 

paradigm previously implemented in the pharmaceutical industry to a development aiming at 

improving the understanding of the processes and products and hence improving products quality, 

processes efficiency and regulatory flexibility. 

QbD is not new and involves many quality and statistical tools and methods, such as statistical 

designs of experiments, multivariate statistics, statistical quality control, and so on. In order to raise 

the quality of pharmaceutical products, it has been recognized that increasing the testing of final 

products (i.e. QbT) is not adequate [7]. Instead, to increase the quality of pharmaceutical products, 

quality must be built into the products (i.e. QbD) as already done in many other industries. It requires 

understanding how variables involved in formulation and manufacturing processes influence the 

quality of the final product.  

Analytical procedures are also processes and QbD should also be implemented for the development 

of analytical procedures. Several authors recently stated that Quality-by-Design (QbD) enables to 

develop analytical procedures in a systematic and scientific approach [8-12]. The understanding and 

identification of variables affecting method performance is achieved at an earlier stage [8-12]. 

According to ICH Q8(R2) [6], QbD can be seen as an optimization strategy combining Design of 

Experiments (DoE) and Design Space (DS).  

However, developed analytical procedures are not directly usable in laboratories as they have to 

demonstrate that they are indeed fit for their purpose. This demonstration of fitness of purpose is 

generally achieved during the analytical procedure validation phase.  
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The aim of this article is to show that analytical procedure validation is fully integrated into the QbD 

paradigm and is an essential step in developing analytical procedure that are useful for their routine 

applications. Similar statistical methodologies are also implemented in analytical procedure 

validation among which are design of experiments and statistical modeling. The outcome of 

analytical procedure validation is also an analytical procedure Design Space and from it control 

strategy can be further defined. 

2 Analytical Target Profile and analytical procedure validation 

The development of a Quality by Design compliant analytical procedure starts by the definition of its 

Analytical Target Profile (ATP) which aims at defining the intended purpose of the procedure. The 

ATP compiles a set of characteristics defining what analyte or analytes will be measured, in which 

matrix, over what concentration range(s) as well as the required performance criteria of the method 

together with specifications for these last ones. These specifications and characteristics should be 

linked to the intended purpose of the analytical procedure. Examples of ATP for the interested 

readers can be found in the following references [8-11,13]. The requirements of quantitative 

performances included in the ATP are then the validation acceptance limits that must be reached by 

the analytical procedure during the validation phase. In addition, several authors have gone further 

in the definition of the ATP by including maximum acceptable risk of making wrong decisions using 

the results generated by analytical procedures [13]. 

3 Critical Quality Attribute in analytical procedure validation 

The Critical Quality Attributes (CQAs) of the analytical procedure are the responses that are 

measured to judge the quality of the developed analytical procedures. CQAs are defined as “a 

physical, chemical, biological or microbiological property or characteristic that should be within an 

appropriate limit, range, or distribution to ensure the desired product quality” [3]. For 

chromatographic analytical procedures the CQAs can be related to the method selectivity, such as 
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the resolution (RS) or separation (S) criteria [12]. Other CQAs can be the run time of the analysis, 

signal to noise ratio, the precision and the trueness of the analytical procedure, the lower limit of 

quantification or the dosing range of the analytical method. These CQAs may be directly modeled 

through a multivariate (non-)linear model. However in other situations, the modeled responses may 

be different than the CQAs. The CQAs are obtained after the modeling of these primary responses. 

For chromatographic methods, the usual key CQA is resolution of the critical pair when optimizing 

selectivity. However resolution depends on the retention factor of the two chromatographic peaks 

involved. Therefore, the retention factors are directly modeled instead of the resolution. The 

resolution can then be computed from these modeled responses.  

Nonetheless, CQAs are not limited to separative techniques or only related to the qualitative 

performance of the analytical procedure. Highly important assays in the development and control of 

pharmaceutical products are quantitative ones. Other examples than chromatographic quantitative 

procedures are immunoassays such as ELISA, q-PCR, relative potency assays, and so on. The final aim 

of any quantitative analytical procedures is to provide analytical results of adequate quality in order 

to make reliable decisions with them. Hence critical quality attributes for quantitative procedures 

should be at least related to their quantitative performances. The validation characteristics that are 

trueness, precision, linearity, range, LOQ of the analytical procedure and the accuracy of the results 

obtained by the procedure are key CQAs. They should be included into the definition of the ATP 

together with their respective acceptance values. 

The validation phase of any quantitative analytical procedure is therefore fully in line with the QbD 

framework. The CQA that should be monitored during analytical procedure validation are measures 

related to random error (e.g. intermediate precision CV), systematic error (e.g. bias or recovery) or 

the combination of both which is total error. 
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4 Critical Process Parameters in Analytical Procedure Validation 

Analytical Procedures Validation also involves several factors that are critical process parameters. 

The first main factor is concentration/amount/potency range over which the procedure is intended 

to quantify the analyte. This factor is a fixed factor and is represented by samples called validation 

standards or quality control samples of known concentration/amount/potency. By opposition, 

sources of variability that will be encountered during the future routine use of the procedure must 

be included in the validation design as random factors, such as operator, equipment, reagent batch 

or days. The combination of these sources of variability is generally called runs or series. 

5 Design of Experiments in Analytical Procedure Validation 

ICH Q8 and FDA guideline highly promote the use of adequate design of experiments when 

developing pharmaceutical processes. The main designs used in analytical procedure validation are 

nested designs or (fractional) factorial designs or a combination of both. These designs are used to 

estimate variance components. To have precise estimations, the use of more than two levels of each 

factor is recommended. Nonetheless, the various sources of variation included into the analytical 

procedure validation are generally combined into “series” or “runs” to mimic the way analytical 

procedures are effectively employed routinely.  

Suppose that for each of the i
th

 concentration level of the validation standards, the number of runs is 

J and that in each run, K replicates are performed. The validation experiments can then be described, 

for each of the i
th

 concentration level studied, by a one way Analysis Of Variance (ANOVA) random 

model with runs (or series) as random factor: 

( ) ( )2

,,

2

,,,,,
,0~,,0~, ijkiijijkijiijki NNX εα σεσαεαµ ++=  Eq. 1 
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where iµ  is the overall mean of the i
th

 concentration level studied of the validation standard, 

jii ,αµ +  is the mean in run j (j: 1 to J), jki ,ε  is the residual error, 
2

,iασ  is the run-to-run variance, and 

2

,iεσ  is the within-run or repeatability variance, both for the i
th

 concentration level. 

The overall variability of the analytical method is measured by the intermediate precision variance 

2

,

2

,

2

.,. iiiPI εα σσσ += . All these parameters of the variance components model can be estimated by 

REML methods [14]. 

6 Design Space and Analytical Procedure Validation 

In the ICH pharmaceutical development guideline Q8 [3], the DS is defined as “the multidimensional 

combination and interaction of input variables (e.g. material attributes) and process parameters that 

have been demonstrated to provide assurance of quality”. Therefore, the multidimensional 

combination and interaction of input variable corresponds to a subspace, so-called the DS, where 

assurance of quality has been proven. The main concept lying behind the ICH Q8 definition of DS is 

assurance of quality (also known as quality risk management). It has been already shown that mean 

response surface obtained during analytical procedure development do not define properly a DS as 

there is no assurance that the CQAs reach their acceptance limits. Instead probability maps answer 

this DS requirement properly [12,15].  

Analytical procedure validation also allows defining a DS: it is the range of concentration where it has 

been demonstrated that the procedure provides assurance of quality results i.e.,

)( λµλπ <−<−= TXP  Eq. 2. 

The objective of the validation phase can be summarised to evaluate whether the reliability 

probability π  that each future result will fall within predefined acceptance limits (λ) is greater than 

or equal to a minimum claimed level minπ  [16]. The statistical problem here is two-fold: the 

probability π  needs to be estimated and the uncertainty in its estimation must be taken into 
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account when comparing it to minπ . This is not an easy problem to solve since it has no exact small 

sample solution in frequentist statistics. 

Nonetheless, several approaches have been proposed to answer this aim. 

6.1 β-expectation tolerance intervals 

A first one is to compute β-expectation tolerance intervals of a defined coverage probability (e.g. 

95%) at each concentration level of the validation standards using the one way ANOVA random 

model described in Eq. 1 and comparing it to preset acceptance limits as shown in Figure 1. Using this 

approach, each future result has at least 95% probability to fall within these acceptance limits. 

Lebrun et al. [17] have shown that β-expectation tolerance intervals are equivalent to Highest 

Posterior Density (HPD) intervals. A non-negligible amount of analytical procedures have been 

validated in such a way [16, 18-19]. Figure 1 shows an accuracy profile obtained for the validation of 

an analytical procedure depicting at each concentration level of the validation standards the 95% β -

expectation tolerance interval. 
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Figure 1.: Accuracy profile, depicting at each concentration level of the validation standards the 

corresponding 95% β -expectation tolerance intervals (blue dashed lines). The acceptance limits have 

been set at  +/-15% around the known concentration values of the validation standards (black dotted 

lines). The red continuous line shows the relative bias of the assay. The green dots are the analytical 

results of the validation standards expressed in relative error values. 

 

6.2 Out Of Specification probability 

Another approach is to estimate the probability to obtain future results outside the preset 

acceptance limits (Out Of Specification, OOS). Dewé et al.[20] has proposed to compute this 

probability for results following the one way ANOVA random model described in Eq. 1. An example is 

shown in Figure 2 for the same previous analytical procedure. The DS is then the range of 

concentration over which this probability is smaller than a preset maximum value (e.g. 0.05). For 

each concentration level i this probability is computed as:  
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 Eq. 3. 

where J is the number of runs and K the number of replicates by series, N=JK. iX  is the mean 

concentration of the results obtained by the method for the i
th

 concentration level and iPI .,.σ̂  is the 

intermediate precision standard deviation for each i
th

 concentration level. t(f) is a student 

distribution with f degrees of freedom computed based on the Satterthwaite approximation [21] and 

iR̂  is the ratio between the run-to-run variance and the within-run (or repeatability) variance of each 
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concentration level. The use of a Student distribution is justified as it is the predictive distribution in 

this model as demonstrated by Lebrun et al. [17]. 

 

Figure 2.: Risk profile, giving at each concentration rang of the validation standards the probability to 

have future analytical results falling outside an acceptance value of +/- 15% around the known 

concentration values of the validation standards, i.e. OOS probability. The maximum OOS probability 

has been set at 5%.  

 

 

6.3 Continuous modeling across concentration range: the Bayesian way 

If between-run variances and repeatability variances can be assumed homogenous across the 

concentrations levels of the validation standards, a single linear mixed model can be fitted to the 

validation data, including concentration as a fixed factor. The two previous approaches to define a DS 

can then be extended to this situation. 

A less trivial situation would be to model the analytical procedure results over the concentration 

range in case of heteroscedasticity of between-run and/or repeatability variance. Determination of β 
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-expectation tolerance intervals or probability of OOS in these cases could be based on Bayesian 

approaches as no frequentist solutions are available [22].  

In this context model Eq. 2 is rewritten as the following linear model with random slopes and 

intercepts and residual variance increasing with concentration: 

ijkiTjjiTijk uuX εµµββ ++++= ,,1,0,10
 Eq. 4.  

 

where the subscripts i stands for the I concentration levels of the validation standards, j for the J 

number of series or runs and k for the K number of replicates per run. iT ,µ  is the i
th

 concentration 

level of the validation standard and is considered as a reference or conventional true value. θ









=

1

0

β

β
 are the fixed effects. Additionally, 










=

j

j

j u

u

,1

,0
U  are the random effects of the j

th
 runs and 

are also assumed coming from a normal distribution:   

jU ~ ),(
22

2

x
uiN Σ0 σ   Eq. 5. 

Finally, ijkε  is the residual error assumed to be independent and coming from a normal distribution 

of variance 
2

iσ . This variance is also given as being dependent on the concentration level i. This 

phenomenon is frequently observed in real life situations. The general form of this variance function 

is a power of the concentration:  

( )γµσσ iTi ,
=   Eq. 6. 
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Figure 3 illustrates a probability profile for an analytical procedure using this model and estimated 

using MCMC simulations. It depicts the concentration range over which the analytical procedure is fit 

for its purpose. This range represents the analytical procedure validation Design Space. 

 

Figure 3: Bayesian risk profile, modeling over the concentration range studied the probability to have 

future analytical results falling outside an acceptance value of +/- 15% around the known 

concentration values of the validation standards, i.e. OOS probability. The maximum OOS probability 

has been set at 5%. The Lower limit of quantification corresponds to the concentration where the 

OOS probability crosses the maximum OOS probability value of 5%. 

 

7 Control Strategy 

Quality by Design development of analytical procedure is useless without defining control strategy to 

ensure that the procedure remains under control during its routine application and detect 

deviations. Validation Analytical procedure validation also allows defining a control strategy using 

quality control samples. Indeed, the experiments performed allow e.g. defining β-expectation 

tolerance intervals that can be used as initial control limits when building analytical procedure 

control charts [23]. Out of control methods can efficiently be detected and corrective actions realized 

by following the daily performances of analytical methods on such charts. Indeed, the use of β-

expectation tolerance intervals ensures an adequate balance between consumer and producer risks 

[23]. 
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8 Conclusion 

Analytical procedure validation fits entirely within the QbD paradigm. In fact when comparing it with 

pharmaceutical development, analytical procedure validation can be seen at the stage 2 of process 

validation as defined by the recent FDA guideline [6]. Analytical procedure validation is then the 

performance qualification of the assay. In this context, seeing analytical procedure validation as an 

additional burden in analytical procedure development limited to the “ICHQ2 [24] check list” exercise 

should disappear: the validation phase is the confirmation of the usefulness of the developed 

procedure for its future daily application. 
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