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a b s t r a c t

The aim of this paper is to prove that wavelet leaders allow to get very fine properties of
the trajectories of the Brownian motion: we show that the three well-known behaviors
of its oscillations, namely to be ordinary, rapid and slow, are also present in the behavior
of the size of its wavelet leaders.
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1. Introduction

Let f : R → R be a continuous function. In order to quantify its regularity around some fixed point t ∈ R, it is natural
to try to determine as sharply as possible the asymptotic behavior of the quantity

Osc(f , I(t, ρ)) = sup
t ′′,t ′∈I(t,ρ)

⏐⏐f (t ′′) − f (t ′)
⏐⏐ where I(t, ρ) = [t − ρ, t + ρ], (1)

when ρ → 0+. This quantity is called the oscillation of f on I(t, ρ).
In the last decades, wavelet methods have become a very powerful tool to finely study regularity properties of

functions (Meyer and Salinger, 1995; Jaffard, 2004) and to obtain numerical methods to study real-life signals (see among
others Jaffard, 2004; Arneodo et al., 1995; Jaffard et al., 2007; Lashermes et al., 2008; Esser et al., 2017; Deliège et al.,
2017). A compactly supported function ψ ∈ L1(R) whose first moment vanishes, i.e.∫

R
ψ(x) dx = 0 , (2)

is called a compactly supported wavelet. Let N be a positive integer such that the support of ψ is included in [−N,N]. The
wavelet coefficients cJ,K , (J, K ) ∈ N × Z, of the function f are defined by

cJ,K = 2J
∫
R
f (t)ψ(2J t − K ) dt =

∫
R

(
f
(
x + K
2J

)
− f

(
K
2J

))
ψ(x) dx (3)

=

∫ N

−N

(
f
(
x + K
2J

)
− f

(
K
2J

))
ψ(x) dx. (4)
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In what follows, we will use the notation cλ to denote the wavelet coefficient cJ,K , where λ is the dyadic interval
λ = λJ,K = [2−JK , 2−J (K + 1)), which provides the location of the wavelet ψ(2J

· −K ). We denote by Λ the set of all
dyadic intervals of R and for any J ∈ N, we denote by ΛJ the set of all dyadic intervals of size 2−J . Amplitudes of wavelet
coefficients cλ′ located in some fixed interval λ (that is λ′

⊆ λ) can be very fluctuating from one scale to another. In order
to avoid such a drawback, the so-called wavelet leaders, which among other things offer the advantage of stability, have
been introduced in Jaffard et al. (2007). For every λJ,K ∈ Λ, the wavelet leader dλJ,K of f is defined by

dλJ,K = max
λ∈N(λJ,K )

sup
λ′⊆λ

⏐⏐cλ′

⏐⏐ where N(λJ,K ) =
{
λJ,K−1, λJ,K , λJ,K+1

}
. (5)

Remark 1.1. In a probabilistic framework, the supremum on N(λJ,K ) appearing in (5) can create correlation between
wavelet leaders, even if it does not exist between wavelet coefficients. It might seem more natural to consider only the
dyadic intervals λ′

⊆ λJ,K in the definition of the wavelet leaders so that the supremum at a given scale is taken on non-
overlapping intervals. Let us point out that the methodology of our article can easily be adapted to this setting. However
we will work with the classical wavelet leaders defined as in (5) since they provide a characterization of pointwise
regularity of functions (Jaffard, 2004).

Note that there exists a link between the notions of oscillation and wavelet leaders. First, for any t ∈ R and J ∈ N,
let λJ (t) denote the unique dyadic interval of size 2−J that contains t , and let dJ (t) be the corresponding wavelet leader.
From (4) and (1), if λj,k ⊆ λ for some λ ∈ N

(
λJ (t)

)
, one has

|cj,k| ≤

∫ N

−N

⏐⏐⏐⏐f (x + k
2j

)
− f

(
k
2j

)⏐⏐⏐⏐ |ψ(x)| dx ≤ c0 Osc
(
f , I
(
t, (2 + N)2−J)),

where c0 = ∥ψ∥L1(R). As a consequence, one has that

dJ (t) ≤ c0 Osc
(
f , I
(
t, (2 + N)2−J)). (6)

Conversely, Jaffard (1998) has shown that, under some general assumptions on f , the reverse inequality holds up to a
logarithmic factor, i.e.

Osc
(
f , λJ (t)

)
≤ c1dJ (t)

⏐⏐log(dJ (t))⏐⏐ (7)

for some constant c1 > 0. It can be derived from (6) and (7) that there is a priori a loss of information if one considers
wavelet leaders instead of oscillations.

In the present paper, we treat the particular case of Brownian motion. Despite Inequality (7), a first numerical
work (Kleyntssens and Nicolay, 2017) has led to the idea that, in this case, working with wavelet leaders instead of
oscillations does not imply a logarithmic loss. We confirm in this paper that wavelet leaders are precise enough to reflect
very fine properties of the trajectories of Brownian motion, namely the coexistence in them of slow, rapid and ordinary
points. Section 2 contains useful recalls on the Brownian motion and the statement of the main result (Theorem 2.3).
Section 3 is devoted to the proof of this result.

2. Brownian motion and statement of the main result

The Brownian motion is the unique real-valued centered Gaussian process B = {B(t)}t∈R defined on a probability space
(Ω,A,P) with independent and stationary increments satisfying B(t)− B(s) ∼ N (0, |t − s|) for any t, s ∈ R and such that
almost surely, B has continuous paths and B(0) = 0. From now on, if the value of B(t) has to be explicitly associated to
an elementary event ω ∈ Ω , the notation B(t, ω) will be used. The following theorem (Kahane, 1985) summarizes some
properties of the regularity of B: it shows the existence of three different possible behaviors of the oscillations of the
Brownian motion.

Theorem 2.1. There exists an event Ω∗
⊆ Ω of probability 1 such that for every ω ∈ Ω∗ and every non-empty open interval

A of R, there are to(ω), tr (ω), ts(ω) ∈ A such that

1. to(ω) is an ordinary point of B(·, ω), i.e.

0 < lim sup
ρ→0+

⎧⎨⎩Osc
(
B
(
·, ω

)
, I
(
to(ω), ρ

))
ρ1/2

√
log log(ρ−1)

⎫⎬⎭ < +∞ ;

2. tr (ω) is a rapid point of B(·, ω), i.e.

0 < lim sup
ρ→0+

⎧⎨⎩Osc
(
B
(
·, ω

)
, I
(
tr (ω), ρ

))
ρ1/2

√
log(ρ−1)

⎫⎬⎭ < +∞ ;
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3. ts(ω) is a slow point of B(·, ω), i.e.

0 < lim sup
ρ→0+

⎧⎨⎩Osc
(
B
(
·, ω

)
, I
(
ts(ω), ρ

))
ρ1/2

⎫⎬⎭ < +∞ .

Moreover, for every ω ∈ Ω∗, almost every t ∈ R is an ordinary point of B(·, ω), and for every t ∈ R,

lim sup
ρ→0+

⎧⎨⎩Osc
(
B
(
·, ω

)
, I
(
t, ρ

))
ρ1/2

√
log(ρ−1)

⎫⎬⎭ < +∞ . (8)

From now on, we assume that cJ,K (resp. dJ,K ), (J, K ) ∈ N × Z, represent the wavelet coefficients (resp. the wavelet
leaders) of the Brownian motion B. Theorem 2.1 motivates the following definition.

Definition 2.2. Let ω ∈ Ω and t ∈ R. We say that

1. t is a leader-ordinary point of B(·, ω) if

0 < lim sup
J→+∞

{
dJ
(
t, ω

)
2−J/2

√
log(J)

}
< +∞ ;

2. t is a leader-rapid point of B(·, ω) if

0 < lim sup
J→+∞

{
dJ
(
t, ω

)
2−J/2

√
J

}
< +∞ ;

3. t is a leader-slow point of B(·, ω) if

0 < lim sup
J→+∞

{
dJ
(
t, ω

)
2−J/2

}
< +∞ .

Our main result stated below is a reminiscent of Theorem 2.1 in our context.

Theorem 2.3. There exists an event Ω∗

0 ⊆ Ω of probability 1 such that for every ω ∈ Ω∗

0 and every non-empty open interval
A of R, there are to(ω), tr (ω), ts(ω) ∈ A such that to(ω) is a leader-ordinary point, tr (ω) is a leader-rapid point and ts(ω) is a
leader-slow point of B(·, ω). Moreover, for every ω ∈ Ω∗

0 , almost every t ∈ R is a leader-ordinary point of B(·, ω).

Remark 2.4. Theorem 2.1 together with the characterization (6) implies that for any ω ∈ Ω∗, if t is an ordinary point
of B(·, ω) (resp. a rapid or a slow point), then the upper limit appearing in the definition of the leader-ordinary points of
B(·, ω) (resp. leader-rapid or leader-slow points) is bounded from above. The main difficulty is then to obtain the bound
from below.

3. Proof of Theorem 2.3

The definition of B and Equalities (3) and (4) imply that, for every (J, K ) ∈ N × Z, one has cJ,K ∼ N (0, 2−JE
(
c20,0
)
)

(see Abry et al. (2003) for more details). Moreover, since the increments of B are independent and since the support of ψ
is included in [−N,N], Equality (4) shows that the wavelet coefficients cJ1,K1 , . . . , cJn,Kn are independent as soon as(

Ki − N
2Ji

,
Ki + N
2Ji

)
∩

(
Kl − N
2Jl

,
Kl + N
2Jl

)
= ∅, ∀1 ≤ i < l ≤ n. (9)

In particular, the coefficients cJ,K and cJ,K ′ are independent if |K ′
− K | ≥ 2N . This leads us to define the following condition.

Definition 3.1. Let n ≥ 2. We say that the dyadic intervals λJ1,K1 , . . . , λJn,Kn satisfy Condition (CN ) if (9) is satisfied.

Remark 3.2. Clearly, the sequence
{
ελ : λ ∈ Λ

}
defined by

ελ =
1√

2−JE
(
c20,0
) cλ, (10)

is a sequence of real-valued N (0, 1) random variables such that for every n ≥ 2 and every dyadic intervals λ1, . . . , λn
satisfying Condition (CN ), the random variables ελ1 , . . . , ελn are independent.
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In the sequel, we fix an arbitrary sequence
{
ελ : λ ∈ Λ

}
of real-valued N (0, 1) random variables verifying the property

of Remark 3.2. Moreover, if (J, K ) ∈ N × Z and λ = λJ,K , then for any m ∈ N, we denote by SJ,K ,m or Sλ,m the finite set
of cardinality 2m whose elements are the dyadic intervals of scale J + m included in λJ,K . The following lemma allows to
obtain a general lower bound for the size of the wavelet leaders of the Brownian motion.

Lemma 3.3. There exists an event Ω∗

1 ⊆ Ω of probability 1 such that, for every ω ∈ Ω∗

1 and every t ∈ R, one has

lim sup
j→+∞

⎧⎪⎨⎪⎩ max
λ′∈Sλ,⌊log2(N)⌋+2

λ∈N(λj(t))

⏐⏐ελ′ (ω)
⏐⏐
⎫⎪⎬⎪⎭ > 0 . (11)

Proof. Let us fix (J, K ) ∈ N × Z. For any m ∈ N and any S ∈ SJ,K ,m, there is a unique finite sequence (In)0≤n≤m
of dyadic intervals which is decreasing in the sense of the inclusion and satisfies I0 = λJ,K , Im = S and In ∈ SJ,K ,n
for all n ∈ {1, . . . ,m}. Next, we consider the sequence (Tn)1≤n≤m of dyadic intervals constructed as follows: for every
n ∈ {1, . . . ,m}, Tn is the unique dyadic interval of SJ,K ,n such that In−1 = Tn ∪ In. Note that, since the sequence (In)0≤n≤m
is decreasing, this construction ensures that the intervals (Tn)1≤n≤m are pairwise disjoint. Let us also note that, for every
n ∈ {1, . . . ,m}, one has Tn ∈ N

(
In
)
. Moreover, for every n ∈ {1, . . . ,m}, there is a dyadic interval T ′

n ∈ STn,⌊log2(N)⌋+2 such
that (

kn − N
2jn

,
kn + N
2jn

)
⊆ Tn

where T ′
n = λjn,kn . Consequently, by assumption, the corresponding Gaussian random variables (εT ′

n
)1≤n≤m are independent.

In the sequel, the set {T ′
n : 1 ≤ n ≤ m} is denoted by T ′

J,K ,m(S).
Let c0 = 2−3/2√π . Then, the probability p0 that a real-valued N (0, 1) random variable belongs to the interval (−c0, c0)

belongs to (0, 1/2). For all S ∈ SJ,K ,m, we denote by BJ,K ,m(S) the Bernoulli random variable defined as

BJ,K ,m(S) =

∏
T ′∈T ′

J,K ,m(S)

1{|εT ′ |<c0} . (12)

Notice that, using the definition of p0 and the independence property of the random variables εT ′ for T ′
∈ T ′

J,K ,m(S), one
has E

(
BJ,K ,m(S)

)
= pm0 . Next, let GJ,K ,m be the random variable with values in {0, . . . , 2m

} defined as

GJ,K ,m =

∑
S∈SJ,K ,m

BJ,K ,m(S) .

Since the cardinality of SJ,K ,m equals 2m, one gets that E
(
GJ,K ,m

)
= (2p0)m. It follows from Fatou Lemma that

0 ≤ E
(
lim inf
m→+∞

GJ,K ,m

)
≤ lim

m→+∞
E
(
GJ,K ,m

)
= 0

Hence, the events

Ω∗

1,J,K =

{
ω ∈ Ω : lim inf

m→+∞
GJ,K ,m(ω) = 0

}
and Ω∗

1 =

⋂
(J,K )∈N×Z

Ω∗

1,J,K (13)

have a probability equal to 1.
Let us now consider ω ∈ Ω∗

1 and t ∈ R. We fix J ∈ N and K = ⌊2J t⌋, so that λJ,K = λJ (t). Since for every m ∈ N, GJ,K ,m
takes values in {0, . . . , 2m

}, (13) implies that there are infinitely many m such that BJ,K ,m(S) = 0 for every S ∈ SJ,K ,m,
i.e. using (12), there exists T ′

∈ T ′

J,K ,m(S) such that |εT ′ | ≥ c0. In particular, we have this result for S = λJ+m(t). In this
case, T ′

∈ Sλ,⌊log2(N)⌋+2 with λ ∈ N(λJ+m(t)). Hence (11) is satisfied. □

Proposition 3.4. Let Ω∗

1 denote the event of probability 1 of Lemma 3.3. For every ω ∈ Ω∗

1 and every t ∈ R, one has

lim sup
J→+∞

{
dJ (t, ω)
2−J/2

}
> 0 . (14)

Proof. Note that using (5) and (10), one has

dJ (t, ω) ≥ max
λ′∈Sλ,⌊log2(N)⌋+2

λ∈N(λJ (t))

⏐⏐cλ′ (ω)
⏐⏐ =

√
2−(J+⌊log2(N)⌋+2)E

(
c20,0
)

max
λ′∈Sλ,⌊log2(N)⌋+2

λ∈N(λJ (t))

⏐⏐ελ′ (ω)
⏐⏐ .

Remark 3.2 and Inequality (11) imply then that (14) is satisfied. □
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As we will see in the proof of Theorem 2.3, this result allows to get the existence of leader-slow points. Let us now
focus on leader-ordinary points. First, let us recall the following classical lemma which provides asymptotic estimates on
the tail behavior of a standard Gaussian distribution.

Lemma 3.5. If ε is a real-valued N (0, 1) random variable, then one has

lim
x→+∞

P
(
|ε| > x

)
(2π−1)1/2x−1e−x2/2

= 1 .

Lemma 3.6. There exists an event Ω∗

2 ⊆ Ω of probability 1 such that, for every ω ∈ Ω∗

2 and almost every t ∈ R, one has

lim sup
j→+∞

⎧⎪⎨⎪⎩ 1
√
log(j)

max
λ′∈Sλ,⌊log2(N)⌋+2

λ∈N(λj(t))

|ελ′ |

⎫⎪⎬⎪⎭ > 0 . (15)

Proof. Within this proof, we will use the same notations as in the proof of Lemma 3.3. Let us fix t ∈ R. If J ∈ N, we set
K = ⌊2J t⌋. For every m ∈ N, we consider the dyadic interval S = λJ+m(t) ∈ SJ,K ,m and the associated sequence (T ′

n)1≤n≤m
of dyadic intervals. Next, we set

EJ,m(t) :=

{
ω ∈ Ω : max

1≤n≤m
|εT ′

n
| ≥

√
log(2m)

}
By construction, the Gaussian random variables εT ′

n
, 1 ≤ n ≤ m, are independent. Therefore, one has

P
(
EJ,m(t)

)
= 1 −

∏
1≤n≤m

P
(
|εT ′

n
| <

√
log(2m)

)
= 1 −

(
1 − P

(
|ε| >

√
log(2m)

))m
where ε ∼ N (0, 1). Let us set C = 1/2 (2π−1)1/2 > 0. Using Lemma 3.5 and the fact that log(1 − x) ≤ −x if x ∈ (0, 1),
there exists M ∈ N such that for any m > M , we have

P
(
EJ,m(t)

)
≥ 1 −

(
1 − C

e−
1
2 log(2m)

√
log(2m)

)m

≥ 1 − exp

(
−Cm

e−
1
2 log(2m)

√
log(2m)

)

≥ 1 − exp
(

−C
√

m
2 log(2m)

)
≥ 1 − exp(−mγ )

for γ ∈ (0, 1/2). Consequently, one has in particular∑
M∈N

P
(
E2M ,2M (t)

)
= +∞ .

In view of the fact that the events E2M ,2M (t), M ∈ N, are independents, it follows from the Borel–Cantelli lemma that

P

(⋂
M∈N

⋃
m≥M

E2m,2m (t)

)
= 1 .

Hence for a fixed t ∈ R, almost surely, there are infinitely many j ∈ N such that

max
λ′∈Sλ,⌊log2(N)⌋+2

λ∈N(λj(t))

|ελ′ | ≥

√
log j .

Fubini’s theorem implies then that there is an event Ω∗

2 ⊆ Ω of probability 1 on which for almost every t ∈ R, (15) holds
true. □

Proposition 3.7. Let Ω∗

2 denote the event of probability 1 of Lemma 3.6. For every ω ∈ Ω∗

2 and almost every t ∈ R, one has

lim sup
J→+∞

{
dJ (t, ω)

2−J/2
√
log(J)

}
> 0 .

Proof. It suffices to proceed as in the proof of Proposition 3.4, using Lemma 3.6. □

Let us end with a result which will be useful for rapid points.
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Lemma 3.8. There exists an event Ω∗

3 ⊆ Ω of probability 1 such that, for every ω ∈ Ω∗

3 and every non-empty open interval
A of R, there is t ∈ A such that

lim sup
j→+∞

{
|ελj(t)|
√
j

}
> 0 .

Proof. To avoid making the notations heavier, we suppose that A = (0, 1). The proof can be easily adapted in the general
case. The conclusion follows then by covering R with all open intervals with rational endpoints.

Let us fix a ∈ (0, 1) and C > 0 such that C2 < 2a log 2. Let us also consider for every (j, l) ∈ N × {0, . . . , ⌊2j(1−a)
⌋ − 1},

the event

Fj,l :=

{
ω ∈ Ω : max

k∈{l⌊2aj/(2N)⌋,...,(l+1)⌊2aj/(2N)⌋−1}
|εj,2kN (ω)| ≥ C

√
j
}
.

Let j0 be the smallest j such that ⌊2aj/(2N)⌋ ≥ 1. Assume for a while that

P

⎛⎝∁

⎛⎝ ⋂
l∈{0,...,⌊2j(1−a)⌋−1}

Fj,l

⎞⎠⎞⎠ (16)

is the general term of a convergent series; Borel–Cantelli lemma implies then that

Ω∗

3 :=

⋃
J≥j0

⋂
j≥J

⋂
l∈{0,...,⌊2j(1−a)⌋−1}

Fj,l (17)

is an event of probability 1. Let us consider ω ∈ Ω∗

3 . For every j ≥ j0, let us set

Gj(ω) :=

{
k ∈ {0, . . . , 2j

− 1} : |εj,k(ω)| ≥ C
√
j
}
. (18)

Moreover, for every n ≥ j0, one considers

On(ω) :=

⋃
j≥n

Uj(ω), where Uj(ω) :=

⋃
k∈Gj(ω)

(
k
2j ,

k + 1
2j

)
. (19)

The open subset On(ω) is dense in (0, 1). Indeed, let us consider t ∈ (0, 1), j ≥ j0 and k such that λj(t) = λj,k. Then, either
there is l ∈ {0, . . . , ⌊2j(1−a)

⌋−1} such that k ∈
{
l⌊2ja

⌋, . . . , (l+1)⌊2ja
⌋−1

}
, or k ∈ {⌊2j(1−a)

⌋⌊2ja
⌋, . . . , 2j

−1}. In the first case,
using (17) and (18), there is k′

∈ {l⌊2aj/(2N)⌋, . . . , (l+1)⌊2aj/(2N)⌋−1} such that 2k′N ∈ Gj(ω). From (19), we get that t is at
a distance at most 2 ·2j(a−1) of Uj(ω). In the second case, there is k′

∈ {(⌊2j(1−a)
⌋−1)⌊2aj/(2N)⌋, . . . , ⌊2j(1−a)

⌋⌊2aj/(2N)⌋−1}
such that 2k′N ∈ Gj(ω), and similarly, we get that t is at a distance at most c · 2j(a−1) of Uj(ω), for some constant c > 0
depending only on N and a. The density follows. Hence, Baire’s theorem gives that the set

⋂
n≥j0

On(ω) is not empty. Let
t be an element of this set. For every n ≥ j0, there is j ≥ n such that |ελj(t)| ≥ C

√
j, and it leads to the conclusion.

It remains then to show that (16) is the general term of a convergent series. Note that the variables εj,2kN , k ∈

{l⌊2aj/(2N)⌋, . . . , (l + 1)⌊2aj/2N⌋ − 1} and l ∈ {0, . . . , ⌊2j(1−a)
⌋ − 1}, are independent. Consequently, one has

P

⎛⎝∁

⎛⎝ ⋂
l∈{0,...,⌊2j(1−a)⌋−1}

Fj,l

⎞⎠⎞⎠
= 1 −

∏
l∈{0,...,[2j(1−a)]−1}

⎛⎝1 −

∏
k∈{l⌊2aj/(2N)⌋,...,(l+1)⌊2aj/2N⌋−1}

P
(
|εj,2kN | < C

√
j
)⎞⎠

= 1 −

(
1 −

(
1 − P

(
|ε| ≥ C

√
j
))⌊2aj/(2N)⌋

)⌊2j(1−a)
⌋

≤ 1 − exp
(
2j(1−a) log(1 − xj)

)
(20)

where ε ∼ N (0, 1) and xj =
(
1 − P

(
|ε| ≥ C

√
j
))⌊2aj/(2N)⌋. Let us remark that xj is always positive and tends to 0 as

j → +∞. Indeed, let us set C ′
= (1/2)(2π−1)1/2. Using Lemma 3.5 and the fact that log(1 − x) ≤ −x if x ∈ (0, 1), there

exists J ∈ N such that for any j ≥ J ,

0 ≤ xj ≤ (1 − C ′
√
j exp(−C2j/2))⌊2

aj/(2N)⌋
≤ exp

(
−

⌊
2aj

2N

⌋
C ′
√
j exp(−C2j/2)

)
≤ exp

(
−C ′′

√
j exp(j(a log 2 − C2/2))

)
, (21)
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where C ′′ > 0 depends only on a, N and C . Expression (21) tends to 0 since C2 < 2a log 2. Moreover, the same argument
shows that 2j(1−a)xj tends to 0. Using the fact that log(1 − x) = −x + o(x) and exp(x) = 1 + x + o(x) as x → 0, we obtain
that, for any ϵ > 0, (20) is upper bounded by 2j(1−a)(ϵ(xj + ϵxj) + xj + ϵxj) for j large enough. Together with (21), this
implies that (20) is indeed the general term of a convergent series. □

Proposition 3.9. Let Ω∗

3 denote the event of probability 1 of Lemma 3.8. For every ω ∈ Ω∗

3 and every non-empty open
interval A of R, there is t(ω) ∈ A such that

lim sup
J→+∞

{
dJ
(
t(ω), ω

)
2−J/2

√
J

}
> 0 .

Proof. We proceed as in Proposition 3.4, using Lemma 3.8 and Remark 3.2. □

We are now able to prove Theorem 2.3.

Proof of Theorem 2.3. Inequalities (8) and (6) imply that for every ω ∈ Ω∗,

lim sup
J→+∞

{
dJ (t, ω)
2−J/2

√
J

}
< +∞ (22)

holds for every t ∈ R, where Ω∗ is the event given in Theorem 2.1. Let us consider the event Ω∗

0 := Ω∗
∩Ω∗

1 ∩Ω∗

2 ∩Ω∗

3 of
probability 1, where the events Ω∗

1 , Ω
∗

2 and Ω∗

3 are the events of Lemmas 3.3, 3.6 and 3.8 respectively. Let us fix ω ∈ Ω∗

0
and consider a non-empty open interval A of R.

Let us first show that almost every t ∈ R is a leader-ordinary point of B(·, ω). Using Theorem 2.1, we know that almost
every t ∈ R is an ordinary point of B(·, ω). Together with Remark 2.4 and Proposition 3.7, this implies that for almost
every t ∈ R,

0 < lim sup
J→+∞

{
dJ (t, ω)

2−J/2
√
log(J)

}
< +∞ .

In particular, there exist leader-ordinary points of B(·, ω) in A.
Secondly, Proposition 3.9 shows that there exists tr (ω) ∈ A such that

lim sup
J→+∞

{
dJ
(
tr (ω), ω

)
2−J/2

√
J

}
> 0.

This result combined with Eq. (22) implies that the point tr (ω) is a leader-rapid point of B(·, ω).
Finally, Theorem 2.1 and Remark 2.4 give ts(ω) ∈ I such that

lim sup
J→+∞

{
dJ
(
ts(ω), ω

)
2−J/2

}
< +∞ .

Using Proposition 3.4, we obtain that ts(ω) is a leader-slow point of B(·, ω). □
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